

TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592

SLVSAG8G - SEPTEMBER 2011-REVISED JUNE 2016

TPS6125x 3.5-MHz High Efficiency Step-Up Converter In Chip Scale Packaging

1 Features

- 93% Efficiency at 3.5-MHz Operation
- 21-µA Quiescent Current in Standby Mode
- 37-µA Quiescent Current in Normal Operation
- Wide V_{IN} Range From 2.3 V to 5.5 V
- V_{IN} ≥ V_{OUT} Operation
- $I_{OUT} \ge 800 \text{ mA}$ at $V_{OUT} = 4.5 \text{ V}$, $V_{IN} \ge 2.65 \text{ V}$
- $I_{OUT} \ge 1000 \text{ mA} \text{ at } V_{OUT} = 5.0 \text{ V}, V_{IN} \ge 3.3 \text{ V}$
- $I_{OUT} \ge 1500$ mA (Peak) at $V_{OUT} = 5.0$ V, $V_{IN} \ge 3.3$ V
- ±2% Total DC Voltage Accuracy
- Light-Load PFM Mode
- Selectable Standby Mode or True Load Disconnect During Shutdown
- Thermal Shutdown and Overload Protection
- Only Three Surface-Mount External Components Required
- Total Solution Size < 25 mm²
- 9-Pin NanoFreeTM (CSP) Packaging

2 Applications

- · Cell Phones, Smart Phones
- · Mono and Stereo APA Applications
- USB Charging Ports (5V)

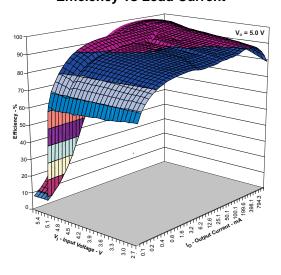
3 Description

The TPS6125x device provides a power supply solution for battery-powered portable applications. Intended for low-power applications, the TPS6125x supports up to 800-mA load current from a battery discharged as low as 2.65V and allows the use of low cost chip inductor and capacitors.

With a wide input voltage range of 2.3 V to 5.5 V, the device supports applications powered by Li-Ion batteries with extended voltage range. Different fixed voltage output versions are available from 3.15 V to 5.0 V.

The TPS6125x operates at a regulated 3.5-MHz switching frequency and enters power-save mode operation at light load currents to maintain high efficiency over the entire load current range. The PFM mode extends the battery life by reducing the quiescent current to 37 μ A (typ) during light load operation.

In addition, the TPS6125x device can also maintain its output biased at the input voltage level. In this mode, the synchronous rectifier is current limited allowing external load (e.g. audio amplifier) to be powered with a restricted supply. In this mode, the quiescent current is reduced to 21 μA . During shutdown, the load is completely disconnected from the battery. Input current in shutdown mode is less than 1 μA (typ), which maximizes battery life.


The TPS6125x offers a very small solution size due to minimum amount of external components. It allows the use of small inductors and input capacitors to achieve a small solution size.

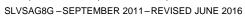
Device Information(1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS6125x	DSBGA (9)	1.206 mm x 1.306 mm

 For all available packages, see the orderable addendum at the end of the datasheet.

Efficiency vs Load Current


Table of Content	ts
------------------	----


1	Features 1	10	Application and Implementation	19
2	Applications 1	,	10.1 Application Information	19
3	Description 1	•	10.2 Typical Application	19
4	Revision History2	•	10.3 System Examples	24
5	Device Options4	11 I	Power Supply Recommendations	20
6	Pin Configuration and Functions 4	12 l	_ayout	20
7	Specifications5	•	12.1 Layout Guidelines	20
•	7.1 Absolute Maximum Ratings 5	•	12.2 Layout Example	20
	7.2 ESD Ratings	,	12.3 Thermal Considerations	2
	7.3 Recommended Operating Conditions	13 I	Device and Documentation Support	28
	7.4 Thermal Information	•	13.1 Device Support	2
	7.5 Electrical Characteristics	•	13.2 Related Links	2
	7.6 Typical Characteristics 9	•	13.3 Receiving Notification of Documentation Upon	dates 2
8	Parameter Measurement Information 14	•	13.4 Community Resources	
9	Detailed Description	•	13.5 Trademarks	28
•	9.1 Overview	•	13.6 Electrostatic Discharge Caution	2
	9.2 Functional Block Diagram		13.7 Glossary	2
	9.3 Feature Description	l:	Mechanical, Packaging, and Orderable nformation	

4 Revision History

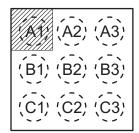
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

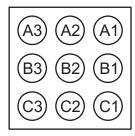
Cha	inges from Revision F (March 2016) to Revision G
•	Changed the Package Dimensions section
Cha	inges from Revision E (March 2015) to Revision F
•	Added device TPS6125924
Cha	inges from Revision D (December 2014) to Revision E Page
	Changed Body Size (NOM) from "1.60 mm × 1. 60" to "1.206 mm × 1. 306" in the Device Information table
Cha	inges from Revision C (August 2012) to Revision D Page
	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section
Cha	inges from Revision B (May 2012) to Revision C Page
•	Added TPS61259 to data sheet header as production device.
•	Changed device TPS61259 to production status

www.ti.com

INSTRUMENTS

C	hanges from Revision A (October 2011) to Revision B	Page
•	Added TPS61253 and TPS61258 to data sheet header as production devices	1
•	Changed devices TPS61253 and TPS61258 to production status	4
•	Changed graphic entity for Figure 3	10
•	Changed graphic entity for Figure 10 and Figure 13	1 1
•	Changed graphic entity for Figure 23	13




5 Device Options

T _A	PART NUMBER ⁽¹⁾	OUTPUT VOLTAGE	DEVICE SPECIFIC FEATURES
	TPS61253	5.0 V	Supports 5 V, up to 1500 mA peak loading down to 3.3 V input voltage
	TPS61254	4.5 V	Supports 4.5 V / 800 mA loading down to 2.65 V input voltage
	TPS61255 ⁽²⁾	3.75 V	
-40°C to 85°C	TPS61256	5.0 V	Supports 5 V / 900 mA loading down to 3.3 V input voltage
-40 C to 65 C	TPS61257 ⁽²⁾	4.3 V	
	TPS61258	4.5 V	Supports 4.5 V, up to 1500 mA peak loading down to 3.3 V input voltage
	TPS61259	5.1 V	Supports 5.1 V, up to 1500 mA peak loading down to 3.3 V input voltage
	TPS612592	5.2 V	Supports 5.2 V, up to 1500 mA peak loading down to 3.3 V input voltage

- For all available packages, see the orderable addendum at the end of the datasheet. Product preview. Contact TI factory for more information

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	I/O	DESCRIPTION	
			This is the mode selection pin of the device and is only of relevance when the device is disabled (EN = Low). This pin must not be left floating and must be terminated. Refer to Table 2 for more details.	
BP	C3	I	BP = Low: The device is in true shutdown mode.	
			BP = High: The output is biased at the input voltage level with a maximum load current capability of ca. 150mA. In standby mode, the device only consumes a standby current of 21µA (typ).	
EN	В3	ı	This is the enable pin of the device. Connecting this pin to ground forces the device into shutdown mode. Pulling this pin high enables the device. This pin must not be left floating and must be terminated.	
GND	C1, C2		Ground pin.	
SW	B1, B2	I/O	This is the switch pin of the converter and is connected to the drain of the internal Power MOSFETs.	
VIN	A3	I	Power supply input.	
VOUT A1, A2		0	Boost converter output.	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
Input voltage	Voltage at VIN ⁽²⁾ , VOUT ⁽²⁾ , SW ⁽²⁾ , EN ⁽²⁾ , BP ⁽²⁾		-0.3	7	V
Input current	Continuous average current into SW (3)			1.8	۸
	Peak current into SW ⁽⁴⁾			3.5	A
Power dissipation			In	ternally limite	ed
Temperature	Operating, T _A ⁽⁵⁾		-40	85	
	Operating virtual junction, T _J		-40	150	°C
	Storage, T _{stg}		-65	150	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

- 2) All voltages are with respect to network ground terminal.
- (3) Limit the junction temperature to 105°C for continuous operation at maximum output power.
- (4) Limit the junction temperature to 125°C for 5% duty cycle operation.
- (5) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A(max)}) is dependent on the maximum operating junction temperature (T_{J(max)}), the maximum power dissipation of the device in the application (P_{D(max)}), and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: T_{A(max)} = T_{J(max)} (θ_{JA} X P_{D(max)}). To achieve optimum performance, it is recommended to operate the device with a maximum junction temperature of 105°C.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Ele		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
		Machine model (MM)	±200	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
Vı		TPS61253	2.65 ⁽¹⁾		4.85	
		TPS61254	2.5		4.35	•
		TPS61256	2.5		4.85	
	Input voltage range	TPS61257	2.5		4.15	V
		TPS61258	2.65 ⁽¹⁾		4.35	•
		TPS61259	2.65 ⁽¹⁾		4.85	•
		TPS612592	2.65 ⁽¹⁾		4.85	•
R _L	Minimum resistive load for start-up	TPS6125x	55			Ω
L	Inductance	·	0.7	1.0	2.9	μΗ
Co	Output capacitance		3.5	5	50	μF
T _A	Ambient temperature		-40		85	°C
TJ	Operating junction temperature		-40		125	°C

(1) Up to 1000mA peak output current.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

7.4 Thermal Information

		TPS6125x	
	THERMAL METRIC ⁽¹⁾	YFF	UNIT
		9 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	108.3	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	1.0	
$R_{\theta JB}$	Junction-to-board thermal resistance	18	°C/W
ΨЈТ	Junction-to-top characterization parameter	4.2	
ΨЈВ	Junction-to-board characterization parameter	17.9	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

Minimum and maximum values are at V_{IN} = 2.3V to 5.5V, EN = 1.8V, T_A = -40°C to 85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at V_{IN} = 3.6V, EN = 1.8V, T_A = 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT				
SUPPLY CURRENT									
		I _{OUT} = 0mA, V _{IN} = 3.6V	30	45	μΑ				
ΙQ	Operating quiescent current into V _{IN} Operating quiescent current	EN = V _{IN} , BP = GND Device not switching	7	15	μΑ				
	into V _{OUT} Standby mode quiescent current into V _{IN} Standby mode quiescent current into V _{OUT}	$I_{OUT} = 0$ mA, $V_{IN} = V_{OUT} = 3.6$ V	11	20	μΑ				
		EN = GND, BP = V _{IN} Device not switching	9.5	15	μΑ				
I _{SD}	Shutdown current	EN = GND, BP = GND	0.85	5.0	μΑ				
\/	Under voltage lookeut threshold	Falling	2.0	2.1	V				
V_{UVLO}	Under-voltage lockout threshold	Hysteresis	0.1		V				
ENABLE	E, BYPASS								
V _{IL}	Low-level input voltage			0.4	V				
V _{IH}	High-level input voltage		1.0		V				
I _{lkg}	Input leakage current	Input connected to GND or V _{IN}		0.5	μΑ				

Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Electrical Characteristics (continued)

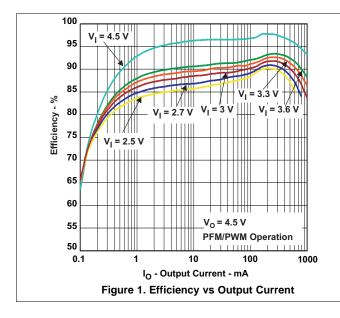
Minimum and maximum values are at V_{IN} = 2.3V to 5.5V, EN = 1.8V, T_A = -40°C to 85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at V_{IN} = 3.6V, EN = 1.8V, T_A = 25°C (unless otherwise noted).

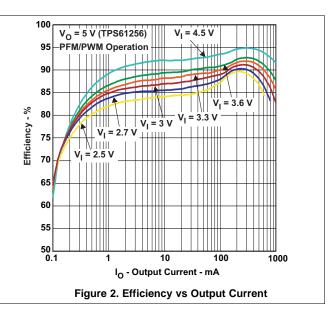
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OUTPUT	ī									
			2.3V ≤ V _{IN} ≤ 4.85V, I _{OUT} = 0mA PWM operation. Open Loop	4.92	5	5.08				
	Regulated DC output voltage	TPS61253	$3.3\text{V} \le \text{V}_{\text{IN}} \le 4.85\text{V}, \text{ 0mA} \le \text{I}_{\text{OUT}} \le 1000\text{mA}$ PFM/PWM operation	4.85	5	5.2	5.2 V			
			$3.3V \le V_{\text{IN}} \le 4.85V$, $0\text{mA} \le I_{\text{OUT}} \le 1500\text{mA}$ PFM/PWM operation Pulsed load test; Pulse width $\le 20\text{ms}$; Duty cycle $\le 10\%$	4.75	5	5.2				
	Regulated DC output voltage	TPS61254	2.3V ≤ V _{IN} ≤ 4.35V, I _{OUT} = 0mA PWM operation. Open Loop	4.43	4.5	5 4.57				
	Regulated DC output voltage	17301234	$2.65V \le V_{IN} \le 4.35V$, $0mA \le I_{OUT} \le 800mA$ PFM/PWM operation	4.4	4.5	4.65	V			
	Regulated DC output voltage	TPS61256	2.3V ≤ V _{IN} ≤ 4.85V, I _{OUT} = 0mA PWM operation. Open Loop	4.92	5	5.08	V			
	Regulated DC output voltage	17301230	$2.65V \le V_{IN} \le 4.85V$, $0mA \le I_{OUT} \le 700mA$ PFM/PWM operation	4.9	5	5.2	V			
V_{OUT}	Regulated DC output voltage	TPS61257	2.3V ≤ V _{IN} ≤ 4.15V, I _{OUT} = 0mA PWM operation. Open loop.	4.23	4.3	4.37	V			
			$2.65V \le V_{IN} \le 4.15V$, $0mA \le I_{OUT} \le 800mA$ PFM/PWM operation	4.2	4.3	4.45	V			
	Regulated DC output voltage	TPS61258	2.3V ≤ V _{IN} ≤ 4.35V, I _{OUT} = 0mA PWM operation. Open Loop	4.43	4.5	4.57				
			$3.3V \le V_{\text{IN}} \le 4.35V$, $0\text{mA} \le I_{\text{OUT}} \le 1500\text{mA}$ PFM/PWM operation Pulsed load test; Pulse width $\le 20\text{ms}$; Duty cycle $\le 10\%$	4.3	4.5	4.65	V			
			2.3V ≤ V _{IN} ≤ 4.85V, I _{OUT} = 0mA PWM operation. Open Loop	5.02	5.1	5.18				
	Regulated DC output voltage	TPS61259	$3.4 \text{V} \leq \text{V}_{\text{IN}} \leq 4.85 \text{V}$, $0 \text{mA} \leq \text{I}_{\text{OUT}} \leq 1500 \text{mA}$ PFM/PWM operation Pulsed load test; Pulse width $\leq 20 \text{ms}$; Duty cycle $\leq 10\%$	4.75	5.1	5.3	V			
	Regulated DC output voltage	TPS612592	2.7V ≤ V _{IN} ≤ 4.8V, I _{OUT} = 0mA PWM operation. Open Loop	5.1	5.2	5.3	V			
	Power-save mode output ripple voltage	TD00405 :	PFM operation, I _{OUT} = 1mA		45					
	Standby mode output ripple voltage	TPS61254 TPS61258	EN = GND, BP = V _{IN} , I _{OUT} = 0mA		80		mVpk			
ΔV_{OUT}	PWM mode output ripple voltage		PWM operation, I _{OUT} = 200mA		20					
00.	Power-save mode output ripple voltage	TPS61253 TPS61256	PFM operation, I _{OUT} = 1mA		50		mVpk			
	Standby mode output ripple voltage			80			IIIVPK			

Copyright © 2011–2016, Texas Instruments Incorporated

Electrical Characteristics (continued)

Minimum and maximum values are at V_{IN} = 2.3V to 5.5V, EN = 1.8V, T_A = -40°C to 85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at V_{IN} = 3.6V, EN = 1.8V, T_A = 25°C (unless otherwise noted).


	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SWITCH						
_	High-side MOSFET on resistance	1		170			
r _{DS(on)}	Low-side MOSFET on resistance				100		mΩ
I _{lkg}	Reverse leakage current into VOI	JT	EN = GND, BP = GND			3.5	μΑ
I _{LIM}	Switch valley current limit	TPS61253 TPS61258 TPS61259 TPS612592	EN = V _{IN} , BP = GND. Open Loop	3300	3620	3900	mA
		TPS61254 TPS61256 TPS61257	EN = V _{IN} , BP = GND. Open Loop	1900	2150	2400	
	Pre-charge mode current limit (linear mode)		EN = GND, BP = V _{IN}	165	215	265	mA
	Overtemperature protection				140		°C
	Overtemperature hysteresis				20		°C
OSCILL	ATOR						
fosc	Oscillator frequency		V _{IN} = 3.6V V _{OUT} = 4.5V		3.5		MHz
TIMING						•	
		TPS6125x	BP = GND, I _{OUT} = 0mA. Time from active EN to start switching		70		μs
Start-up time		TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592	BP = GND, I _{OUT} = 0mA. Time from active EN to V _{OUT}		400		μs



7.6 Typical Characteristics

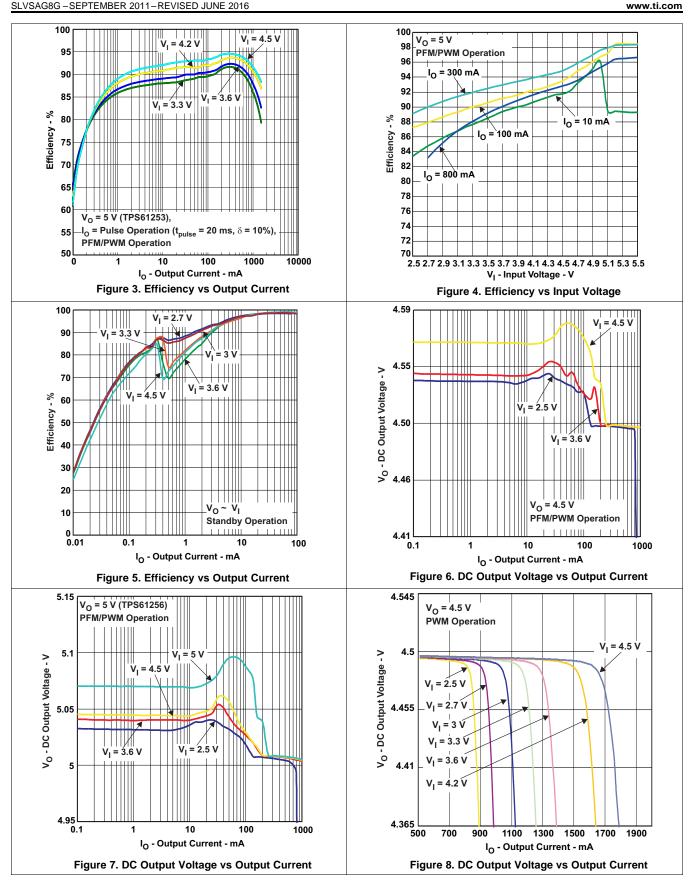
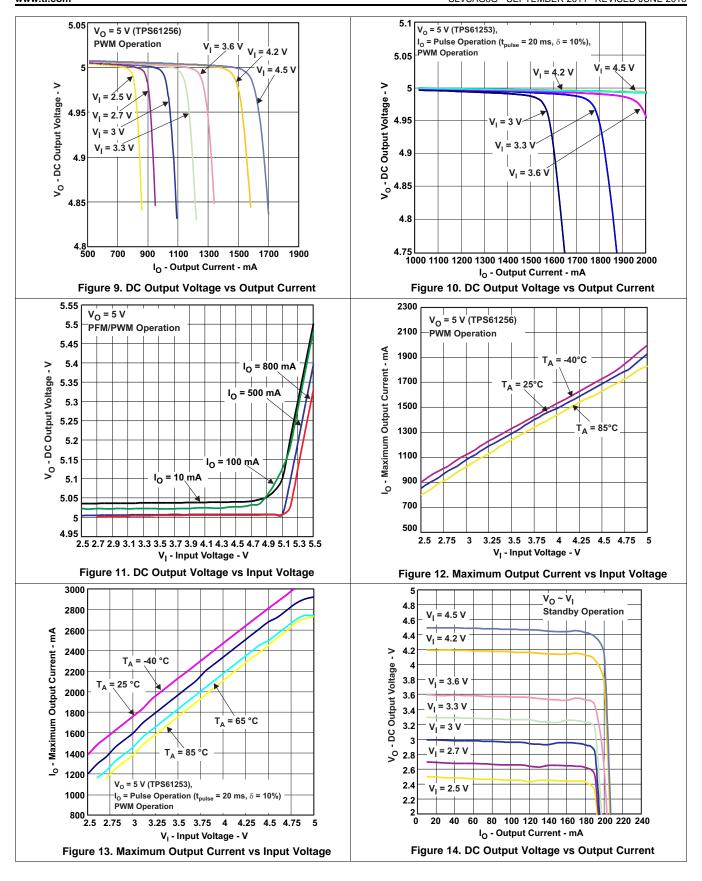
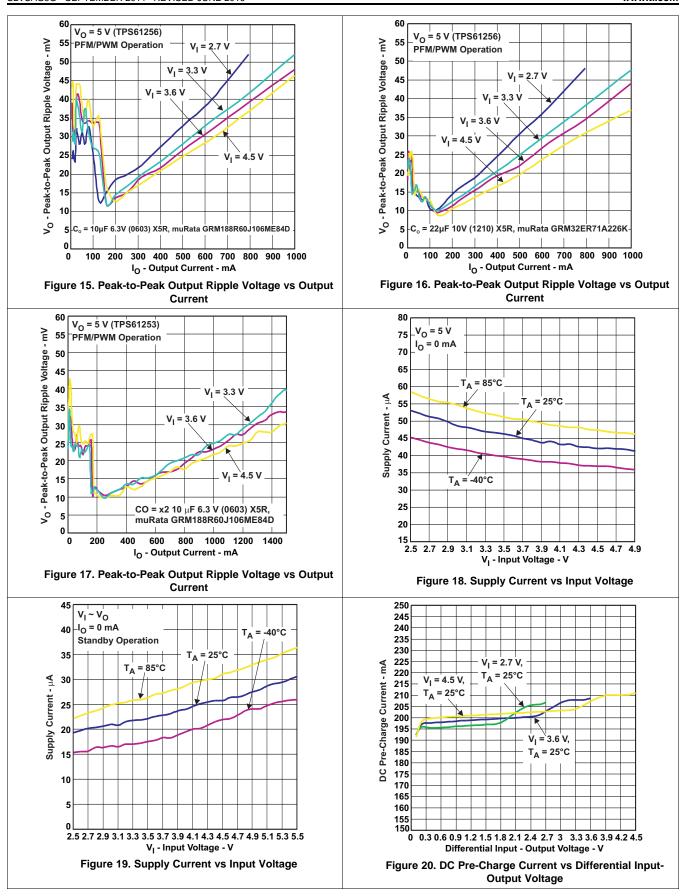
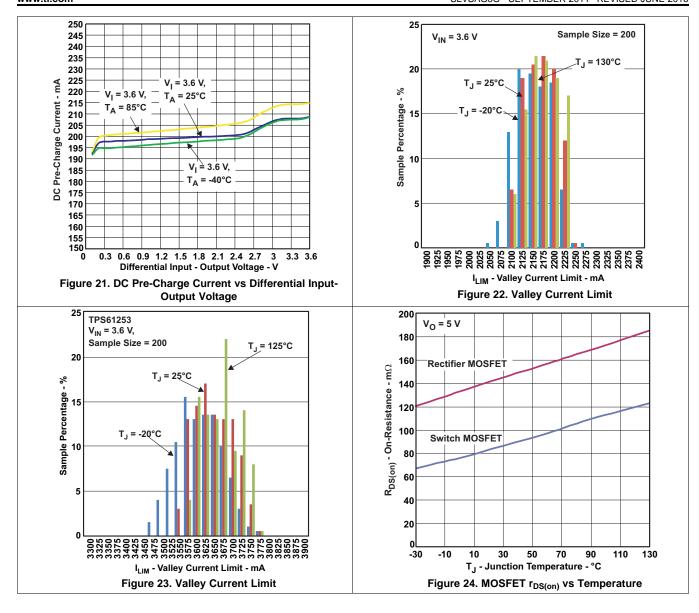

Table 1. Table of Graphs

			FIGURE
η	Efficiency	vs Output current	Figure 1, Figure 2, Figure 3, Figure 5
		vs Input voltage	Figure 4
Vo	DC output voltage	vs Output current	Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 14
		vs Input voltage	Figure 11
Io	Maximum output current	vs Input voltage	Figure 12, Figure 13
ΔV _O	Peak-to-peak output ripple voltage	vs Output current	Figure 15, Figure 16, Figure 17
Icc	Supply current	vs Input voltage	Figure 18, Figure 19
	DC pre-charge current	vs Differential input-output voltage	Figure 20, Figure 21
I _{LIM}	Valley current limit	vs Temperature	Figure 22, Figure 23
r _{DS(on)}	MOSFET r _{DS(on)}	vs Temperature	Figure 24







8 Parameter Measurement Information

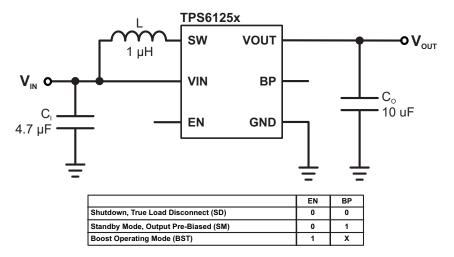
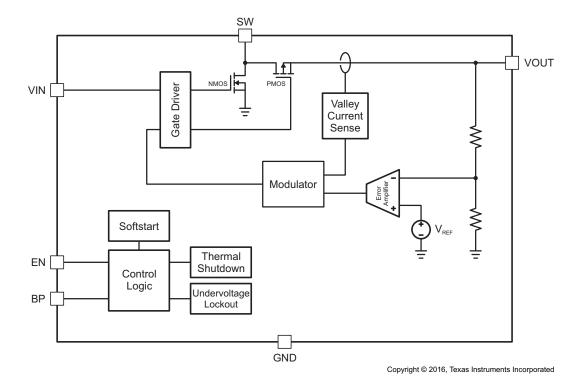


Figure 25. Parameter Measurement Schematic

9 Detailed Description

9.1 Overview

The TPS6125x synchronous step-up converter typically operates at a quasi-constant 3.5-MHz frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS6125x converter operates in power-save mode with pulse frequency modulation (PFM).


During PWM operation, the converter uses a novel quasi-constant on-time valley current mode control scheme to achieve excellent line/load regulation and allows the use of a small ceramic inductor and capacitors. Based on the V_{IN}/V_{OUT} ratio, a simple circuit predicts the required on-time.

At the beginning of the switching cycle, the low-side N-MOS switch is turned-on and the inductor current ramps up to a peak current that is defined by the on-time and the inductance. In the second phase, once the on-timer has expired, the rectifier is turned-on and the inductor current decays to a preset valley current threshold. Finally, the switching cycle repeats by setting the on timer again and activating the low-side N-MOS switch.

In general, a dc/dc step-up converter can only operate in "true" boost mode, i.e. the output "boosted" by a certain amount above the input voltage. The TPS6125x device operates differently as it can smoothly transition in and out of zero duty cycle operation. Therefore the output can be kept as close as possible to its regulation limits even though the converter is subject to an input voltage that tends to be excessive. In this operation mode, the output current capability of the regulator is limited to ca. 150mA. Refer to Figure 11 for further details.

The current mode architecture with adaptive slope compensation provides excellent transient load response, requiring minimal output filtering. Internal soft-start and loop compensation simplifies the design process while minimizing the number of external components.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Current Limit Operation

The TPS6125x device employs a valley current limit sensing scheme. Current limit detection occurs during the off-time by sensing of the voltage drop across the synchronous rectifier.

The output voltage is reduced as the power stage of the device operates in a constant current mode. The maximum continuous output current (I_{OUT(CL)}), before entering current limit (CL) operation, can be defined by Equation 1.

$$I_{OUT(CL)} = (1 - D) \cdot (I_{VALLEY} + \frac{1}{2} \Delta I_L)$$
(1)

The duty cycle (D) can be estimated by Equation 2

$$D = 1 - \frac{V_{IN} \cdot \eta}{V_{OUT}}$$
 (2)

and the peak-to-peak current ripple (ΔI_L) is calculated by Equation 3

$$\Delta I_{L} = \frac{V_{IN}}{L} \cdot \frac{D}{f} \tag{3}$$

The output current, $I_{OUT(DC)}$, is the average of the rectifier ripple current waveform. When the load current is increased such that the lower peak is above the current limit threshold, the off-time is increased to allow the current to decrease to this threshold before the next on-time begins (so called frequency fold-back mechanism). When the current limit is reached the output voltage decreases during further load increase.

Figure 26 illustrates the inductor and rectifier current waveforms during current limit operation.

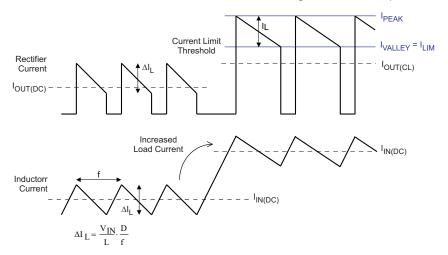


Figure 26. Inductor/Rectifier Currents in Current Limit Operation

9.3.2 Enable

The TPS6125x device starts operation when EN is set high and starts up with the soft-start sequence. For proper operation, the EN pin must be terminated and must not be left floating.

Pulling the EN and BP pins low forces the device in shutdown, with a shutdown current of typically 1 μ A. In this mode, true load disconnect between the battery and load prevents current flow from V_{IN} to V_{OUT} , as well as reverse flow from V_{OUT} to V_{IN} .

Pulling the EN pin low and the BP pin high forces the device in standby mode, refer to the *Standby Mode* section for more details.

Feature Description (continued)

9.3.3 Load Disconnect and Reverse Current Protection

Regular boost converters do not disconnect the load from the input supply and therefore a connected battery will be discharged during shutdown. The advantage of TPS6125x is that this converter disconnects the output from the input of the power supply when it is disabled (so called true shutdown mode). In case of a connected battery it prevents it from being discharged during shutdown of the converter.

9.3.4 Softstart

The TPS6125x device has an internal softstart circuit that limits the inrush current during start-up. The first step in the start-up cycle is the pre-charge phase. During pre-charge, the rectifying switch is turned on until the output capacitor is charged to a value close to the input voltage. The rectifying switch is current limited (approximately 200 mA) during this phase. This mechanism is used to limit the output current under short-circuit condition.

Once the output capacitor has been biased to the input voltage, the converter starts switching. The soft-start system progressively increases the on-time as a function of the input-to-output voltage ratio. As soon as the output voltage is reached, the regulation loop takes control and full current operation is permitted.

9.3.5 Undervoltage Lockout

The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and the battery from excessive discharge. It disables the output stage of the converter once the falling V_{IN} trips the under-voltage lockout threshold V_{UVLO} which is typically 2.0V. The device starts operation once the rising V_{IN} trips V_{UVLO} threshold plus its hysteresis of 100 mV at typically 2.1 V.

9.3.6 Thermal Regulation

The TPS6125x device contains a thermal regulation loop that monitors the die temperature during the pre-charge phase. If the die temperature rises to high values of about 110 °C, the device automatically reduces the current to prevent the die temperature from increasing further. Once the die temperature drops about 10 °C below the threshold, the device will automatically increase the current to the target value. This function also reduces the current during a short-circuit condition.

9.3.7 Thermal Shutdown

As soon as the junction temperature, T_J , exceeds 140°C (typ.) the device goes into thermal shutdown. In this mode, the high-side and low-side MOSFETs are turned-off. When the junction temperature falls below the thermal shutdown minus its hysteresis, the device continuous the operation.

9.4 Device Functional Modes

9.4.1 Power Save Mode

The TPS6125x integrates a power save mode to improve efficiency at light load. In power save mode the converter only operates when the output voltage trips below a set threshold voltage.

It ramps up the output voltage with several pulses and goes into power save mode once the output voltage exceeds the set threshold voltage.

The PFM mode is left and PWM mode entered in case the output current can not longer be supported in PFM mode.

Copyright © 2011–2016, Texas Instruments Incorporated

Device Functional Modes (continued)

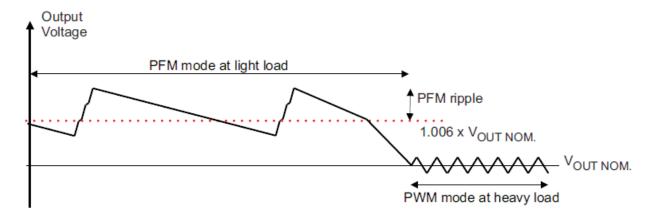


Figure 27. Power Save

9.4.2 Standby Mode

The TPS6125x device is able to maintain its output biased at the input voltage level. In so called standby mode (EN = 0, BP = 1), the synchronous rectifier is current limited to ca. 150mA allowing an external load (e.g. audio amplifier) to be powered with a restricted supply. The output voltage is slightly reduced due to voltage drop across the rectifier MOSFET and the inductor DC resistance. The device consumes only a standby current of 21 μ A (typ).

Table 2. Operating Mode Control

OPERATING MODE	EN	ВР
Shutdown, True Load Disconnect (SD)	0	0
Standby Mode, Output Pre-Biased (SM)	0	1
Poset Operating Mode (PCT)	1	0
Boost Operating Mode (BST)	1	1

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

With a wide input voltage range of 2.3 V to 5.5 V, the TPS6125x supports applications powered by Li-Ion batteries with extended voltage range. Intended for low-power applications, it supports up to 800-mA load current from a battery discharged as low as 2.65 V and allows the use of low cost chip inductor and capacitors. Different fixed voltage output versions are available from 3.15 V to 5.0 V. The TPS6125x offers a very small solution size due to minimum amount of external components. It allows the use of small inductors and input capacitors to achieve a small solution size. During shutdown, the load is completely disconnected from the battery.

10.2 Typical Application

This section details an application with TPS61256 to output fixed 5.0 V.

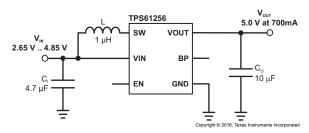


Figure 28. Smallest Solution Size Application

10.2.1 Design Requirements

In this example, TPS61256 is used to design a 5-V power supply with up to 700-mA output current capability. The TPS61256 can be powered by one-cell Li-ion battery, and in this example the input voltage range is from 2.65 V to 4.85 V.

10.2.2 Detailed Design Procedure

Table 3. List of Components

REFERENCE	DESCRIPTION	PART NUMBER, MANUFACTURER (1)
L ⁽²⁾	1.0 μH, 1.8 A, 48 mΩ, 3.2 x 2.5 x 1.0mm max. height	LQM32PN1R0MG0, muRata
L ⁽³⁾	1.0 μH, 3.7 A, 37 mΩ, 3.2 x 2.5 x 1.2mm max. height	DFE322512C, TOKO
C _I	4.7 μF, 6.3 V, 0402, X5R ceramic	GRM155R60J475M, muRata
Co	10 μF, 6.3 V, 0603, X5R ceramic	GRM188R60J106ME84, muRata

- (1) See Third-Party Products Discalimer
- (2) Inductor used to characterize TPS61254YFF, TPS61255YFF, TPS61256YFF and TPS61257YFF devices.
- (3) Inductor used to characterize TPS61253YFF, TPS61258YFF and TPS61259YFF devices.

10.2.2.1 Inductor Selection

A boost converter normally requires two main passive components for storing energy during the conversion, an inductor and an output capacitor. It is advisable to select an inductor with a saturation current rating higher than the possible peak current flowing through the power switches.

The inductor peak current varies as a function of the load, the input and output voltages and can be estimated using Equation 4.

Copyright © 2011–2016, Texas Instruments Incorporated

$$I_{L(PEAK)} = \frac{V_{IN} \cdot D}{2 \cdot f \cdot L} + \frac{I_{OUT}}{(1-D) \cdot \eta} \quad \text{with} \quad D = 1 - \frac{V_{IN} \cdot \eta}{V_{OUT}}$$
(4)

Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the converter. This could eventually harm the device and reduce its reliability.

When selecting the inductor, as well as the inductance, parameters of importance are: maximum current rating, series resistance, and operating temperature. The inductor DC current rating should be greater (by some margin) than the maximum input average current, refer to Equation 5 and Current Limit Operation section for more details.

$$I_{L(DC)} = \frac{V_{OUT}}{V_{IN}} \cdot \frac{1}{\eta} \cdot I_{OUT}$$
 (5)

The TPS6125x series of step-up converters have been optimized to operate with a effective inductance in the range of 0.7 μ H to 2.9 μ H and with output capacitors in the range of 10 μ F to 47 μ F. The internal compensation is optimized for an output filter of L = 1 μ H and C_O = 10 μ F. Larger or smaller inductor values can be used to optimize the performance of the device for specific operating conditions. For more details, see the *Checking Loop Stability* section.

In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e. quality factor) and to a smaller extent by the inductor DCR value. To achieve high efficiency operation, care should be taken in selecting inductors featuring a quality factor above 25 at the switching frequency. Increasing the inductor value produces lower RMS currents, but degrades transient response. For a given physical inductor size, increased inductance usually results in an inductor with lower saturation current.

The total losses of the coil consist of both the losses in the DC resistance, $R_{(DC)}$, and the following frequency-dependent components:

- The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)
- Additional losses in the conductor from the skin effect (current displacement at high frequencies)
- Magnetic field losses of the neighboring windings (proximity effect)
- Radiation losses

The following inductor series from different suppliers have been used with the TPS6125x converters.

MANUFACTURER (1) **SERIES DIMENSIONS** (in mm) HITACHI METALS KSLI-322512BL1-1R0 3.2 x 2.5 x 1.2 max, height LQM32PN1R0MG0 3.2 x 2.5 x 1.0 max. height **MURATA** 2.5 x 2.0 x 1.0 max. height LQM2HPN1R0MG0 LQM21PN1R5MC0 2.0 x 1.2 x 0.55 max height DFE322512C-1R0 3.2 x 2.5 x 1.2 max. height TOKO MDT2012-CLR1R0AM 2.0 x 1.2 x 0.58 max height

Table 4. List of Inductors

(1) See Third-Party Products Disclaimer

10.2.2.2 Output Capacitor

For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can not be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is highly recommended. This small capacitor should be placed as close as possible to the V_{OUT} and GND pins of the IC. To get an estimate of the recommended minimum output capacitance, Equation 6 can be used.

$$C_{MIN} = \frac{I_{OUT} \cdot (V_{OUT} - V_{IN})}{f \cdot \Delta V \cdot V_{OUT}}$$
(6)

Where f is the switching frequency which is 3.5 MHz (typ.) and ΔV is the maximum allowed output ripple.

20

With a chosen ripple voltage of 20mV, a minimum effective capacitance of 9µF is needed. The total ripple is larger due to the ESR of the output capacitor. This additional component of the ripple can be calculated using Equation 7

$$V_{\rm ESR} = I_{\rm OUT} \bullet R_{\rm ESR} \tag{7}$$

An MLCC capacitor with twice the value of the calculated minimum should be used due to DC bias effects. This is required to maintain control loop stability. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistive at high frequencies. There are no additional requirements regarding minimum ESR. Larger capacitors cause lower output voltage ripple as well as lower output voltage drop during load transients but the total output capacitance value should not exceed ca. $50\mu F$.

DC bias effect: high cap. ceramic capacitors exhibit DC bias effects, which have a strong influence on the device's effective capacitance. Therefore the right capacitor value has to be chosen very carefully. Package size and voltage rating in combination with material are responsible for differences between the rated capacitor value and it's effective capacitance. For instance, a $10-\mu F$ X5R 6.3-V 0603 MLCC capacitor would typically show an effective capacitance of less than $4 \mu F$ (under 5 V bias condition, high temperature).

In applications featuring high pulsed load currents (e.g. TPS61253 based solution) it is recommended to run the converter with a reasonable amount of effective output capacitance, for instance x2 10-µF X5R 6.3-V 0603 MLCC capacitors connected in parallel.

10.2.2.3 Input Capacitor

Multilayer ceramic capacitors are an excellent choice for input decoupling of the step-up converter as they have extremely low ESR and are available in small footprints. Input capacitors should be located as close as possible to the device. While a 4.7-µF input capacitor is sufficient for most applications, larger values may be used to reduce input current ripple without limitations.

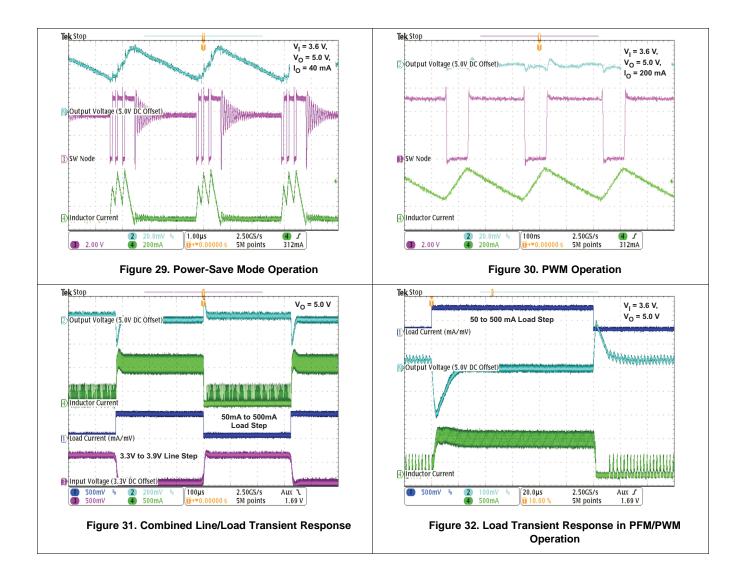
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even damage the part. Additional "bulk" capacitance (electrolytic or tantalum) should in this circumstance be placed between C_1 and the power source lead to reduce ringing that can occur between the inductance of the power source leads and C_1 .

10.2.2.4 Checking Loop Stability

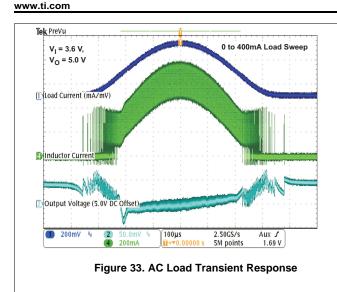
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:

- Switching node, SW
- Inductor current, I₁
- Output ripple voltage, V_{OUT(AC)}

These are the basic signals that need to be measured when evaluating a switching converter. When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the regulation loop may be unstable. This is often a result of board layout and/or L-C combination.


As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply all of the current required by the load. V_{OUT} immediately shifts by an amount equal to $\Delta I_{(LOAD)}$ x ESR, where ESR is the effective series resistance of C_{OUT} . $\Delta I_{(LOAD)}$ begins to charge or discharge C_{OUT} generating a feedback error signal used by the regulator to return V_{OUT} to its steady-state value. The results are most easily interpreted when the device operates in PWM mode.

During this recovery time, V_{OUT} can be monitored for settling time, overshoot or ringing that helps judge the converter's stability. Without any ringing, the loop has usually more than 45° of phase margin. Because the damping factor of the circuitry is directly related to several resistive parameters (e.g., MOSFET $r_{DS(on)}$) that are temperature dependant, the loop stability analysis has to be done over the input voltage range, load current range, and temperature range.



10.2.3 Application Curves

	FIGURE
PFM operation	Figure 29
PWM operation	Figure 30
Combined line/load transient response	Figure 31
Load transient response	Figure 32, Figure 34
AC load transient response	Figure 33, Figure 35
Start-up	Figure 36, Figure 37

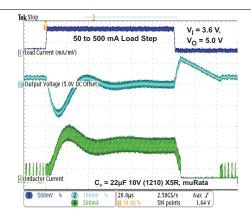
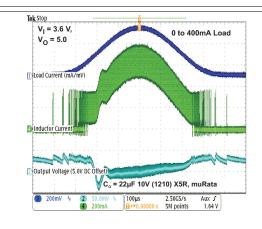



Figure 34. Load Transient Response in PFM/PWM Operation

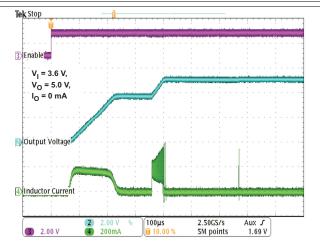


Figure 35. AC Load Transient Response

Figure 36. Start-Up

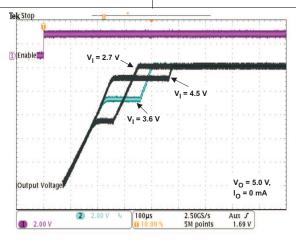


Figure 37. Start-Up

10.3 System Examples



Figure 38. "Boosted" Stereo Audio Power Supply

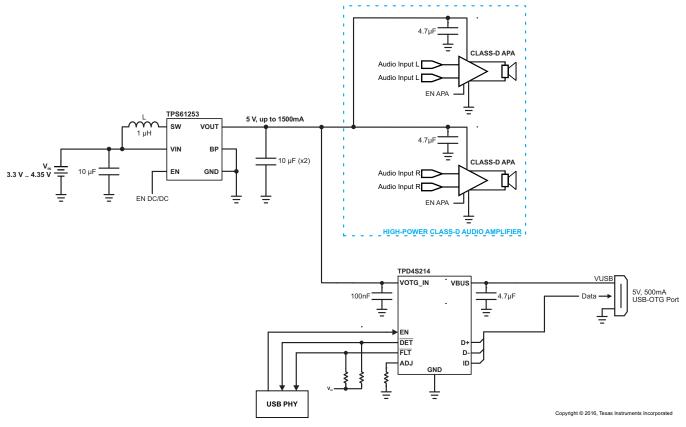


Figure 39. Single Cell Li-lon Power Solution for Tablet PCs Featuring "Boosted" Audio Power Supply and USB-OTG I/F

System Examples (continued)

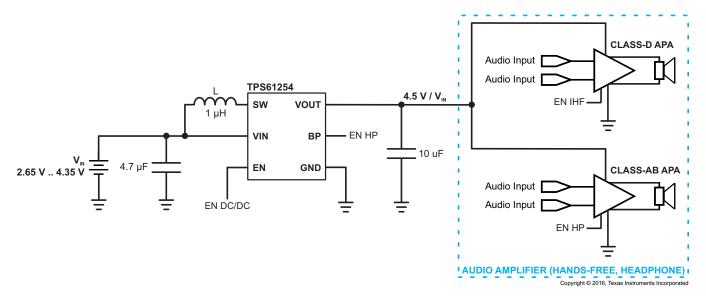


Figure 40. Combined Audio Amplifier Power Supply

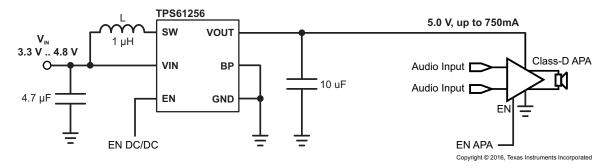


Figure 41. "Boosted" Audio Power Supply

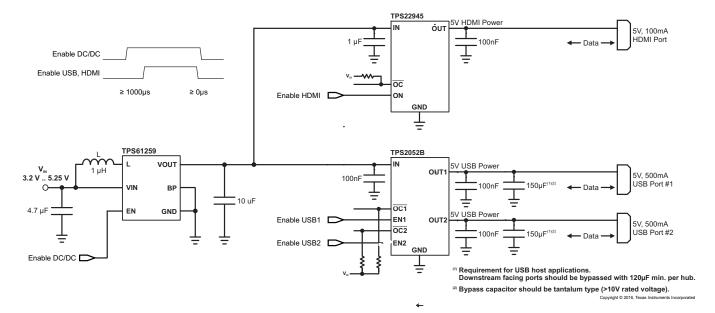


Figure 42. Single Cell Li-lon Power Solution for Tablet PCs Featuring x2 USB Host Ports, HDMI I/F

11 Power Supply Recommendations

The power supply can be three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-Polymer battery. The input supply should be well regulated with the rating of TPS6125x. If the input supply is located more than a few inches from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 µF is a typical choice.

12 Layout

12.1 Layout Guidelines

For all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to the ground pins of the IC.

12.2 Layout Example

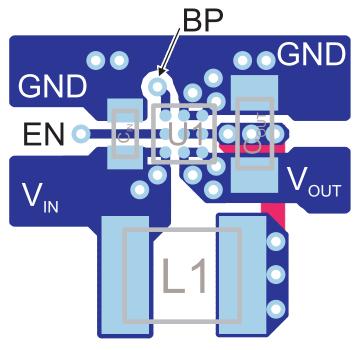


Figure 43. Suggested Layout (Top)

12.3 Thermal Considerations

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are listed below:

- Improving the power dissipation capability of the PCB design
- Improving the thermal coupling of the component to the PCB
- Introducing airflow in the system

As power demand in portable designs is more and more important, designers must figure the best trade-off between efficiency, power dissipation and solution size. Due to integration and miniaturization, junction temperature can increase significantly which could lead to bad application behaviors (i.e. premature thermal shutdown or worst case reduce device reliability).

Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists (e.g. TPS61253 or TPS61259 based solutions), special care must be paid to thermal dissipation issues in board design. The device operating junction temperature (T_J) should be kept below 125°C.

13 Device and Documentation Support

13.1 Device Support

13.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

TECHNICAL SUPPORT & TOOLS & PRODUCT FOLDER **PARTS SAMPLE & BUY SOFTWARE DOCUMENTS** COMMUNITY TPS61253 Click here Click here Click here Click here Click here TPS61254 Click here Click here Click here Click here Click here TPS61256 Click here Click here Click here Click here Click here TPS61258 Click here Click here Click here Click here Click here TPS61259 Click here Click here Click here Click here Click here TPS612592 Click here Click here Click here Click here Click here

Table 5. Related Links

13.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates — go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button to register and receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

13.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

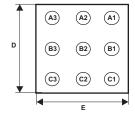
13.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.



14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

14.1 Package Summary

Chip Scale Package (Bottom View)

Chip Scale Package (Top View)

Code:

- YM 2 digit date code
- S assembly site code
- CC chip code (see ordering table)
- LLLL lot trace code

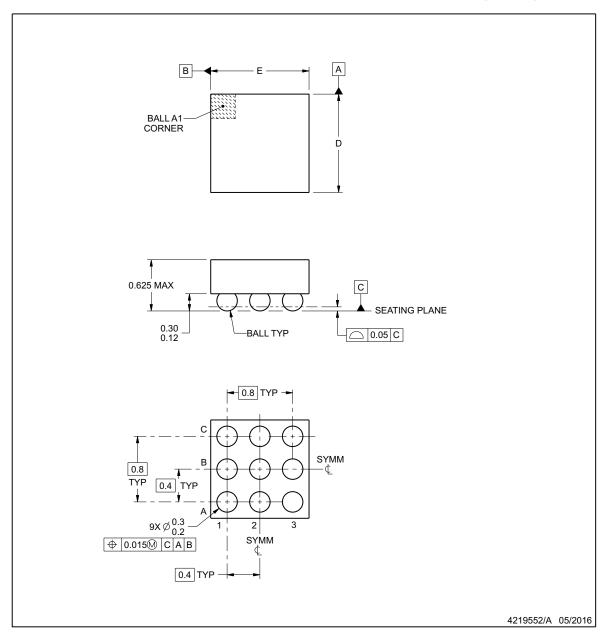
14.1.1 Package Dimensions

The dimensions for the YFF-9 package are shown in Table 6. See the package drawing at the end of this data sheet.

Table 6. YFF-9 Package Dimensions

PACKAGED DEVICES	D	E		
TPS6125xYFF	max = 1.236mm; min = 1.176 mm	max = 1.336 mm, min = 1.276 mm		

YFF0009



PACKAGE OUTLINE

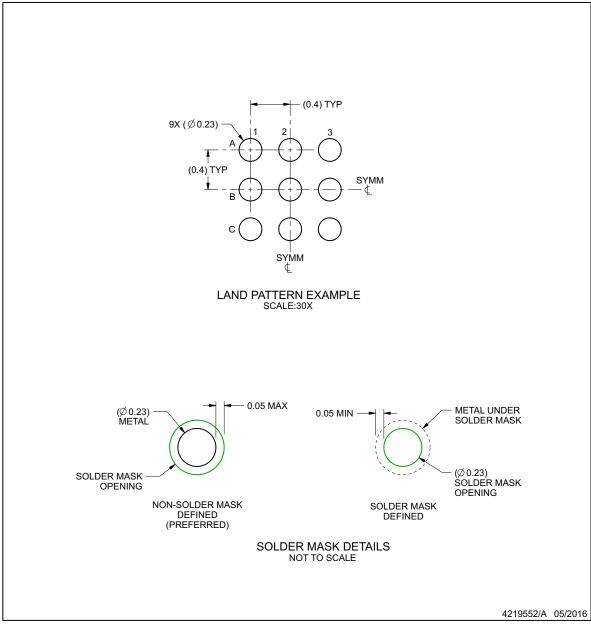
DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.

www.ti.com



EXAMPLE BOARD LAYOUT

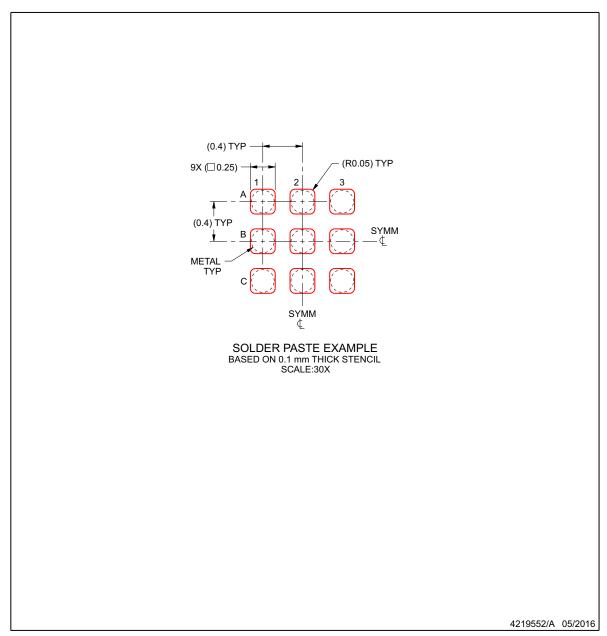
YFF0009

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



EXAMPLE STENCIL DESIGN

YFF0009

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

www.ti.com

9-Jun-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS61253YFFR	ACTIVE	DSBGA	YFF	9	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	SBF	Samples
TPS61253YFFT	ACTIVE	DSBGA	YFF	9	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	SBF	Samples
TPS61254YFFR	ACTIVE	DSBGA	YFF	9	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	QWR	Sample
TPS61254YFFT	ACTIVE	DSBGA	YFF	9	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	QWR	Sample
TPS61256YFFR	ACTIVE	DSBGA	YFF	9	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	RAV	Sample
TPS61256YFFT	ACTIVE	DSBGA	YFF	9	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	RAV	Sample
TPS61258YFFR	ACTIVE	DSBGA	YFF	9	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	SAZ	Sample
TPS61258YFFT	ACTIVE	DSBGA	YFF	9	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	SAZ	Sample
TPS612592YFFR	ACTIVE	DSBGA	YFF	9	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	14A	Sample
TPS612592YFFT	ACTIVE	DSBGA	YFF	9	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	14A	Sample
TPS61259YFFR	ACTIVE	DSBGA	YFF	9	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	SAY	Sample
TPS61259YFFT	ACTIVE	DSBGA	YFF	9	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	SAY	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

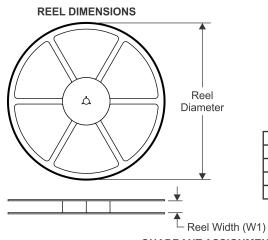
PACKAGE OPTION ADDENDUM

9-Jun-2016

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

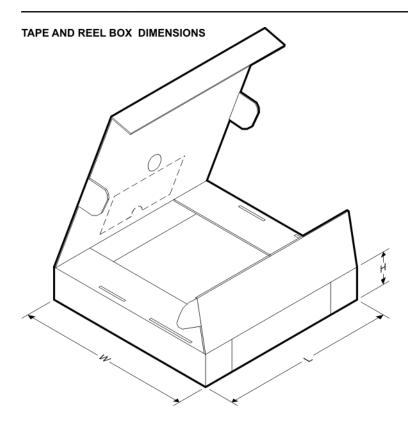
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jun-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

*All dimensions are nominal	1	1	_	1	1							_
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS61253YFFR	DSBGA	YFF	9	3000	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61253YFFT	DSBGA	YFF	9	250	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61254YFFR	DSBGA	YFF	9	3000	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61254YFFT	DSBGA	YFF	9	250	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61256YFFR	DSBGA	YFF	9	3000	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61256YFFT	DSBGA	YFF	9	250	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61258YFFR	DSBGA	YFF	9	3000	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61258YFFT	DSBGA	YFF	9	250	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS612592YFFR	DSBGA	YFF	9	3000	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS612592YFFT	DSBGA	YFF	9	250	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1
TPS61259YFFT	DSBGA	YFF	9	250	180.0	8.4	1.41	1.31	0.69	2.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jun-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS61253YFFR	DSBGA	YFF	9	3000	182.0	182.0	20.0
TPS61253YFFT	DSBGA	YFF	9	250	182.0	182.0	20.0
TPS61254YFFR	DSBGA	YFF	9	3000	182.0	182.0	20.0
TPS61254YFFT	DSBGA	YFF	9	250	182.0	182.0	20.0
TPS61256YFFR	DSBGA	YFF	9	3000	182.0	182.0	20.0
TPS61256YFFT	DSBGA	YFF	9	250	182.0	182.0	20.0
TPS61258YFFR	DSBGA	YFF	9	3000	182.0	182.0	20.0
TPS61258YFFT	DSBGA	YFF	9	250	182.0	182.0	20.0
TPS612592YFFR	DSBGA	YFF	9	3000	182.0	182.0	20.0
TPS612592YFFT	DSBGA	YFF	9	250	182.0	182.0	20.0
TPS61259YFFT	DSBGA	YFF	9	250	182.0	182.0	20.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.