SMJ320C30KGDB FLOATING-POINT DIGITAL SIGNAL PROCESSOR KNOWN GOOD DIE

SGUS019D - NOVEMBER 1995 - REVISED JANUARY 2007

- Military Operating Temperature Range -55°C to 125°C, QML Processing
- Fast Instruction Cycle Time of 50 ns and 40 ns
- Two 1K-Word × 32-Bit Single-Cycle Dual-Access On-Chip RAM Blocks
- 32-Bit Instruction and Data Words, 24-Bit Addresses
- Integer, Floating-Point, and Logical Operations
- 40- or 32-Bit Floating-Point/Integer Multiplier and Arithmetic Logic Unit (ALU)
- 24 × 24-Bit Integer Multiplier, 32-Bit Product
- 32 × 32-Bit Floating-Point Multiplier, 40-Bit Product
- Parallel ALU and Multiplier Execution in a Single Cycle
- 32-Bit Barrel Shifter
- Eight Extended-Precision Registers (Accumulators)
- Circular and Bit-Reversed Addressing Capabilities
- Two Independent Bidirectional Serial Ports With Support for 8-, 16-, 24-, or 32-Bit Transfers

- Two 32-Bit Timers With Control and Counter Registers
- Validated Ada Compiler
- 64-Word × 32-Bit Instruction Cache
- On-Chip Direct Memory Access (DMA) Controller for Concurrent I/O and CPU Operation
- One 4K × 32-Bit Single-Cycle Dual-Access On-Chip ROM Block
- Two 32-Bit External Ports (24- and 13-Bit Addresses)
- Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
- Zero-Overhead Loops With Single-Cycle Branches
- Interlocked Instructions for Multiprocessing Support
- Two- and Three-Operand Instructions
- Conditional Calls and Returns
- Block-Repeat Capability
- Fabricated Using Enhanced Performance Implanted CMOS (EPIC[™]) Technology by Texas Instruments

description

The SMJ320C30KGDB digital signal processor (DSP) is a high-performance, 32-bit floating-point processor manufactured in 0.72-μm, double-level metal CMOS technology.

The SMJ320C30KGDB internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 50 million floating-point operations per second (MFLOPS). The SMJ320C30KGDB optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.

The SMJ320C30KGDB can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of these features.

The large address space, multiprocessor interface, internally and externally generated wait states, two external interface ports, two timers, two serial ports, and multiple interrupt structure enhanced general-purpose applications. The SMJ320C30KGDB supports a wide variety of system applications from host processor to dedicated coprocessor.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2007, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

description (Continued)

High-level language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

For additional information when designing for cold temperature operation, please see Texas Instruments application report 320C3x, 320C4x and 320MCM42x Power-up Sensitivity at Cold Temperature, literature number SGUA001.

known good die (KGD) technology

KGD options are available for use in multichip modules and chip-on-board (COB) applications. The current verification technology that supports KGD requirements for the SMJ320C30KGDB is a hot chuck probe process. This process uses standard probed product that is tested in wafer form at speed and elevated temperature to full data sheet specifications. Each individual die is then sawed, inspected, and packaged for shipment.

electrical specifications

For electrical and timing specifications, see the *SMJ320C30 Digital Signal Processor* data sheet, literature number SGUS014.

Figure 1. SMJ320C30KGDB Device Nomenclature

JEDEC STANDARD

- Die thickness is approximately 15 mils ±1 mil.
- Backside surface finish is silicon.
- Maximum allowable die junction operating temperature is 175°C.
- Glassivation material is compressive nitride.
- Bond pad metal is composed of copper-doped aluminum.
- Percent defective allowed for burned-in die is 5%.
- Life test data is available.
- Configuration control notification
- Group A attribute summary is available (SMJ only).
- Suggested die-attach material is Silverglass (QMI 3555).
- Suggested bond wire size is 1.25 mil.
- ESD rating is Class II.
- Minimum allowable peak process temperature for die attach is 325°C (for QMI 3555).
- Saw kerf is dependent on blade size used.
- Die backside potential is grounded.

SMJ320C30KGDB FLOATING-POINT DIGITAL SIGNAL PROCESSOR KNOWN GOOD DIE

SGUS019D - NOVEMBER 1995 - REVISED JANUARY 2007

SMJ320C30KGDB (rev 7.x) known good die pad information

Figure 2 shows the SMJ320C30KGDB die-numbering format. See Table 1 for SMJ320C30KGDB die pad information.

ure 2. '320C30KGD Die-Numbering For (See Table 1)

Table 1 provides a reference for the following:

- The 'C30 signal identities in relation to the pad numbers
- The 'C30 X,Y coordinates, where bond pad 52 serves as the origin (0,0)

In addition, significant specifications include:

- X,Y coordinate data is in microns.
- Coordinate origin is at (0,0) (center of bond pad 52).
- The active silicon dimensions are 7779.60 $\mu m \times$ 9453.10 μm (306.28 mils \times 372.17 mils).
- The die size is approximately 7950.20 μ m \times 9779.00 μ m (313.00 mils \times 385.00 mils).
- Bond pad dimensions are 103.50 μ m \times 103.50 μ m (4.07 mils \times 4.07 mils).

SMJ320C30KGDB **FLOATING-POINT DIGITAL SIGNAL PROCESSOR** KNOWN GOOD DIE SGUS019D – NOVEMBER 1995 – REVISED JANUARY 2007

PAD	NAME	X-COORDINATE	Y-COORDINATE	PAD PITCH
1	DVss		617.99	127
2	Vss		745.13	124
3	Vss		869.15	117
4	Vss		986.15	139
5	X2/CLKIN		1125.31	147
6	X1		1272.26	205
7	VSUBS		1476.77	669
8	EMU5		2146.17	137
9	XRDY		2283.29	137
10	MSTRB		2420.42	117
11	IOSTRB		2537.42	117
12	XR/W		2654.42	117
13	HOLDA		2771.42	137
14	HOLD		2908.54	137
15	DVDD		3045.67	117
16	DVDD		3162.67	137
17	RDY		3299.79	137
18	STRB		3436.91	117
19	R/W		3553.91	137
20	RESET		3691.04	137
21	XF1		3828.16	117
22	XF0		3945.16	117
23	IACK		4062.16	137
24	INT0		4199.29	137
25	V _{DD}	6770 42	4336.41	117
26	V _{DD}	0770.43	4453.41	121
27	V _{SS}		4574.47	125
28	VSS		4699.42	139
29	INT1		4838.57	150
30	INT2		4988.49	157
31	INT3		5145.74	150
32	RSV0		5295.34	150
33	RSV1		5444.95	150
34	RSV2		5594.55	150
35	RSV3		5744.15	150
36	RSV4		5893.76	143
37	RSV5		6037.12	117
38	RSV6		6154.12	117
39	RSV7		6271.12	117
40	RSV8		6388.12	117
41	RSV9		6505.12	117
42	RSV10		6622.12	117
43	DR1		6739.12	117
44	FSR1		6856.12	273
45	CLKR1		7129.12	136
46	CLKX1		7264.84	136
47	FSX1		7400.56	136
48	DX1		7536.28	136
49	VSS		7672.00	136
50	Vss		7807.88	

Table 1. 320C30KGD Die Pad Information

SMJ320C30KGDB FLOATING-POINT DIGITAL SIGNAL PROCESSOR KNOWN GOOD DIE SGUS019D – NOVEMBER 1995 – REVISED JANUARY 2007

PAD	NAME	X-COORDINATE	Y-COORDINATE	PAD PITCH
51	DVpp	6437.26		117
52	DVDD	6320.26		117
53		6203.26		117
57	ESRO	6086.26		117
55		5060.20		117
55	CLKXO	5852.26		117
50	CLIXO	5725.20		117
57	F3AU	5755.20		117
50		5010.20		117
59		5301.20		117
61	EMUG	5304.20		102
62		5207.20		123
62		5144.02		117
64	XD1 XD2	5027.02		117
64 05		4910.02		117
60	DVDD	4793.02		117
00	DADD	4676.02		117
67	XD3	4559.02		117
68	XD4	4442.02		117
69	XD5	4325.02		117
70	XD6	4208.02		117
/1	XD7	4091.02		117
72	XD8	3974.02		117
73	XD9	3857.02		117
74	XD10	3740.02		117
75	VDD	3623.02	8228.77	117
76	VDD	3506.02		121
//	DVSS	3385.43		121
78	VSS	3264.07		117
79	VSS	3147.07		117
80	XD11	3030.07		117
81	XD12	2913.07		117
82	XD13	2796.07		117
83	XD14	2679.07		117
84	XD15	2562.07		117
85	XD16	2445.07		117
86	XD17	2328.07		117
87	XD18	2211.07		117
88	XD19	2094.07		117
89	XD20	1977.07		117
90	XD21	1860.07		117
91	XD22	1743.07		117
92	XD23	1626.07		117
93	XD24	1509.07		117
94	XD25	1392.07		117
95	XD26	1275.07		117
96	XD27	1158.07		117
97	XD28	1041.07		117
98	XD29	924.07		117
99	XD30	807.07		121
100	DVDD	686.17		117
101	DVDD	569.17		342
102	VSS	227.21		

Table 1. 320C30KGD Die Pad Information (Continued)

SMJ320C30KGDB FLOATING-POINT DIGITAL SIGNAL PROCESSOR

KNOWN GOOD DIE SGUS019D – NOVEMBER 1995 – REVISED JANUARY 2007

PAD	NAME	X-COORDINATE	Y-COORDINATE	PAD PITCH
103	Vee		7575 75	117
104	VSS VSS		7458 59	117
105	Vee		7341 59	173
106	XD31		7168 43	142
107	A23		7026.47	148
108	A22		6878.27	129
109	A21		6748 79	217
110	A20		6531.95	117
111	A19		6414 95	117
112	A18		6297 95	148
113	A17		6149 75	117
114	A16		6032 75	117
115	A15		5915 75	148
116	A14		5767 55	117
117	DVpp		5650 55	117
118	DVDD		5533 55	167
110	Δ13		5366.63	129
120	Δ12		5237 15	120
120	Δ11		5107.67	120
121	A10		4978 19	120
122	Δο		4848 71	120
124	48		4710 23	142
124	Δ7		4719.23	142
120	A6		4317.27	1/2
120	Vaa		4400.27	142
127	VDD VDD	227.21	4310.31	125
120	VDD DV/cc	227.21	4201.31	125
120	DV55		2050 78	120
130	V 55		3813.03	136
122	A3 A4		3677.15	130
122	A4 A2		35/1/3	130
124	A3 A2		3405 71	130
134	A2 A1		3260.00	130
135	A0		3209.99	156
127	EMUO		2079 /2	176
120			2970.43	176
120	EMU2		2602.40	170
140	EMU2		2470.65	156
140			2470.05	176
141			2314.01	127
1/2	VA12		2001 71	120
143	XA12 XA11		1872.23	129
144	XA11 XA10		1072.23	129
146	χρα		1613 27	129
1/7	χχο γλο		1/82 70	123
1/10	ΛΛΟ ΥΛ7		135/ 21	129
140			1004.01	129 211
149	Vee		1014 00	120
150	VSS Vcc		88/ 75	129
152	VSS Vcc		755 27	120
152	V SS		625 / 8	625
100	* 55	1	020.40	020

Table 1. 320C30KGD Die Pad Information (Continued)

SMJ320C30KGDB FLOATING-POINT DIGITAL SIGNAL PROCESSOR KNOWN GOOD DIE SGUS019D – NOVEMBER 1995 – REVISED JANUARY 2007

PAD	NAME	X-COORDINATE	Y-COORDINATE	PAD PITCH
154	DVpp	560 17		117
154	DVDD	686.17		117
155	DVDD XA5	902 17		117
150	XAJ XAJ	020.17		117
157	XA4 XA2	920.17		117
150	XAS	1037.17		117
109	XAZ XA1	1104.17		117
160	XAI	1271.17		117
101	D24	1300.17		123
162	D31	1511.41		117
163	D30	1628.41		117
104	D29	1745.41		117
100	D26	1002.41		117
100	D27	1979.41		117
167	D26	2096.41		117
168	DVDD	2213.41		117
169	DVDD	2330.41		117
170	D25	2447.41		117
171	D24	2564.41		117
172	D23	2681.41		117
173	D22	2798.41		117
174	D21	2915.41		117
175	D20	3032.41		117
176	D19	3149.41		117
177	D18	3266.41		117
178	VDD	3383.41		117
179	VDD	3500.41	227.21	118
180	DVSS	3618.50		124
181	VSS	3742.21		117
182	VSS	3859.21		117
183	D17	3976.21		117
184	D16	4093.21		117
185	D15	4210.21		117
186	D14	4327.21		117
187	D13	4444.21		117
188	D12	4561.21		117
189	D11	4678.21		117
190	D10	4795.21		117
191	D9	4912.21		117
192	D8	5029.21		117
193	D7	5146.21		117
194	D6	5263.21		117
195	D5	5380.21		117
196	D4	5497.21		117
197	D3	5014.21		117
198	D2	5/31.21		117
199		5048.21		117
200		0900.21		117
201	H1 U2	6100.04		117
202	пэ DV	6216.21		117
203		6422.24		117
204	DDAA	0433.21		

Table 1. 320C30KGD Die Pad Information (Continued)

20-Jul-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-9052604Q9B	LIFEBUY	XCEPT	KGD	0	36	TBD	Call TI	N / A for Pkg Type	-55 to 125		
SMJ320C30KGDM40C	LIFEBUY	XCEPT	KGD	0	36	TBD	Call TI	N / A for Pkg Type	-55 to 125		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated