

ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

2.3V 至 20V, 750mA 低压降电压稳压器

查询样片: TPS7A4501-SP

特性

- 符合 QMLV, SMD 5962-12224
- 针对快速瞬态响应进行了优化
- 输出电流: 750mA
- 高输出电压精度:在 25°C 时为 1%(典型值)
- 压降电压: 300mV
- 低噪声: Vout = 5V 时为 50µV_{RMS}(10Hz 至 100kHz)
- 高纹波抑制: 1KHz 时为 68dB
- 1mA 静态电流
- 无需保护二极管
- 压降中的受控静态电流
- 2.3V 到 20V 的宽输入电压 (Vin)
- 1.21V 至 20V 的可调节输出范围
- 关断时静态电流小于 1µA
- 与陶瓷输出电容器一起工作时保持稳定
- 反向电池保护
- 反向电流保护

应用范围

- TPS7A4501-SP: 抗辐射应用
- 射频 (RF) 组件压控稳压器 (VCO),接收器,模数 转换器 (ADC),放大器
- 时钟分配
- 洁净模拟电源需求
- TPS7A4501-SP 在军用温度范围(-55℃至 125℃)内可用
- 可提供工程评估 (/EM) 样品 (1)
- (1) 这些部件只用于工程评估。它们的加工工艺为非兼容流程(例如,无预烧过程等)并且只在 25℃ 的温度额定值下测试。这些部件不适合于品质检定、生产、辐射测试或飞行使用。不担保在整个军用额定温度范围(-55℃ 至 125℃)内或使用寿命内的器件性能。

说明

TPS7A4501 是一款针对快速瞬态响应而进行优化的低压降 (LDO) 稳压器。此器件在压降为 300mV 时可提供 750mA 的输出电流。运行静态电流为 1mA,在关断时下降到少于 1µA。静态电流受到很好的控制;与很多其他 稳压器一同工作时一样,它在压降时不上升。除了快速瞬态响应,TPS7A4501 稳压器具有极低的输出噪声,这使 得它非常适合于灵敏 RF 电源应用。

输出电压范围为 1.21V 至 20V。TPS7A4501 在使用低至 10μF 的输出电容器时保持稳定。 与其它稳压器一同使 用时的常见情况一样,在无需额外等效串联电阻 (ESR)的前提下可使用小型陶瓷电容器。 内部保护电路包括反向 电池保护、电流限制、热限制和反向电流保护。 此器件可被用作一个基准电压为 1.21V 的可调器件。 TPS7A4501 稳压器采用 10 引脚 GDFP (U) 封装。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS7A4501-SP

DIE THICKNESS

15 mils.

BOND PAD

THICKNESS

1627 nm

ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

BACKSIDE FINISH

www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

BOND PAD

METALLIZATION COMPOSITION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Silicon with backgrind Floating TiW/AlCu2

BARE DIE INFORMATION

BACKSIDE

POTENTIAL

DESCRIPTION	PAD NUMBER	X MIN	Y MIN	X MAX	Y MAX
SHDN	1	1729.25	55.5	1879.25	205.5
IN	2	1037.25	875	1187.25	1025
IN	3	1460.75	1255.5	1610.75	1405.5
IN	4	1037.75	1384.5	1187.75	1534.5
OUT	5	774.25	1634.75	924.25	1784.75
OUT	6	675.25	1166	825.25	1316
OUT	7	345.5	1299.25	495.5	1449.25
SENSE/ADJ	8	55.5	213	205.5	363
GND	9	244	17.5	394	167.5

(1) Substrate is not to be connected.

ZHCSBZ8A - DECEMBER 2013 - REVISED JANUARY 2014

www.ti.com.cn

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating junction temperature range (unless otherwise noted)

	IN	-22 V to 22 V
	OUT	–22 V to 22 V
Input voltage range, V _{IN}	Input-to-output differential ⁽²⁾	–22 V to 22 V
	ADJ	-7 V to 7 V
	SHDN	-22 V to 22 V
Maximum lead temperature (10-s soldering time), T _{lead}		260°C
Maximum operating junction temperature, T _J		150°C
Storage temperature range, T _{stg}		–65°C to 150°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Absolute maximum input-to-output differential voltage cannot be achieved with all combinations of rated IN pin and OUT pin voltages. With the IN pin at 22 V, the OUT pin may not be pulled below 0 V. The total measured voltage from IN to OUT can not exceed ±22 V.

RECOMMENDED OPERATING CONDITIONS

over operating junction temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
T _J Operating junction temperature	-55	125	°C

THERMAL INFORMATION

		TPS7A4501-SP		
	THERMAL METRIC	U	UNITS	
		10 PINS		
θ _{JA}	Junction-to-ambient thermal resistance ⁽¹⁾	86.6	°C/W	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance ⁽²⁾	10.3	°C/W	
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾	35.6	°C/W	
ΨJT	Junction-to-top characterization parameter ⁽⁴⁾	31.7	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter ⁽⁵⁾	53.5	°C/W	

(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(2) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(4) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(5) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

ZHCSBZ8A-DECEMBER 2013-REVISED JANUARY 2014

www.ti.com.cn

ELECTRICAL CHARACTERISTICS

Over operating junction temperature range $T_1 = -55^{\circ}C$ to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TJ	MIN	TYP ⁽¹⁾	MAX	UNIT	
	Minimum instanting (2) (3)	I _{LOAD} = 500 mA	25°C		1.9	2.3	V	
V _{IN}	Minimum input voltage ^{(2) (3)}	I _{LOAD} = 750 mA	Full range		2.1	2.5	v	
		V _{IN} = 2.21 V, I _{LOAD} = 1 mA	1.196	1.21	1.224			
V _{ADJ}	ADJ pin voltage ^{(2) (4)}	1.174	1.21	1.246	V			
	Line regulation ⁽²⁾		Full range		1.5	4.5	mV	
	Load regulation ⁽²⁾	V _{IN} = 2.5 V,	25°C		2	8	~\/	
	Load regulation ⁽²⁾			18	mV			
			25°C		0.02	0.05		
		I _{LOAD} = 1 mA	Full range			0.07		
			25°C		0.085	0.10		
.,	Dropout voltage ⁽⁵⁾ (6)	I _{LOAD} = 100 mA	Full range			0.13	.,	
V _{DO}	$V_{OUT} = 2.4 V$		25°C		0.17	0.21	V	
		I _{LOAD} = 500 mA	Full range			0.27		
			25°C		0.20	0.27		
		I _{LOAD} = 750 mA			0.33			
		I _{LOAD} = 0 mA	Full range		1	1.5		
		I _{LOAD} = 1 mA	Full range		1.1	1.6		
I _{GND}	GND pin current ^{(6) (7)} V _{IN} = 2.5 V	I _{LOAD} = 100 mA	Full range		3.3	7		
	VIN - 2.3 V	I _{LOAD} = 500 mA	Full range		15	30		
		I _{LOAD} = 750 mA	Full range		28	45		
e _N	Output voltage noise	$\begin{array}{l} C_{OUT}=22 \ \mu\text{F}, \ \text{I}_{LOAD}=750 \ \text{mA}, \ \text{V}_{\text{IN}}=7 \ \text{V}, \ \text{V}_{OUT}=\\ 5 \ \text{V}\\ B_{W}=10 \ \text{Hz} \ \text{to} \ 100 \ \text{kHz} \end{array}$	25°C		50		μV _{RMS}	
I _{ADJ}	ADJ pin bias current ^{(2) (8)}		25°C		3	7	μA	
		V _{OUT} = OFF to ON	Full range		0.9	2		
	Shutdown threshold	V _{OUT} = ON to OFF	Full range	0.15	0.75		V	
		$V \overline{SHDN} = 0 V$	25°C		0.01	1		
I SHDN	SHDN pin current	$V \overline{SHDN} = 20 V$	25°C		3	20	μA	
	Quiescent current in shutdown	25°C		0.01	1	μA		
	Ripple rejection ⁽⁹⁾	$ \begin{array}{l} V_{\text{IN}}-V_{\text{OUT}}=1.5 \text{ V (avg)}, V_{\text{RIPPLE}}=0.5 \text{ V}_{\text{P.P}}, \\ f_{\text{RIPPLE}}=120 \text{ Hz}, \text{ I}_{\text{LOAD}}=0.75 \text{ A} \end{array} $	25°C	60	68		dB	
	Current limit ⁽⁹⁾	V _{IN} = 7 V, V _{OUT} = 0 V	25°C	1.7	1.9		^	
ILIMIT		V _{IN} = 2.5 V	Full range	1.6	1.9		A	
IIL	Input reverse leakage current	V _{IN} = -20 V, V _{OUT} = 0 V	Full range			300	μA	
I _{RO}	Reverse output current ⁽¹⁰⁾	V _{OUT} = 1.21 V, V _{IN} < 1.21 V	25°C		300	500	μA	

Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the (1) application and configuration and may vary over time. Typical values are not ensured on production material.

The TPS7A4501 is tested and specified for these conditions with the ADJ pin connected to the OUT pin. (2)

Dropout voltages are limited by the minimum input voltage specification under some output voltage/load conditions. (3) Operating conditions are limited by maximum junction temperature. The regulated output voltage specification does not apply for all (4) possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be limited. When operating at maximum output current, the input voltage range must be limited.

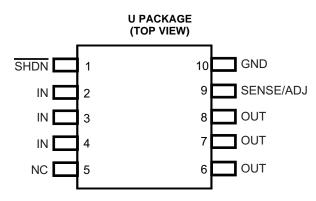
Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In (5) dropout, the output voltage is equal to: $V_{IN} - V_{DROPOUT}$. To satisfy requirements for minimum input voltage, the TPS7A4501 is tested and specified for these conditions with an external resistor

(6)divider (two 4.12-kΩ resistors) for an output voltage of 2.4 V. The external resistor divider adds a 300-μA DC load on the output.

GND pin current is tested with VIN = 2.5 V and a current source load. The GND pin current decreases at higher input voltages. (7)

ADJ pin bias current flows into the ADJ pin. (8)

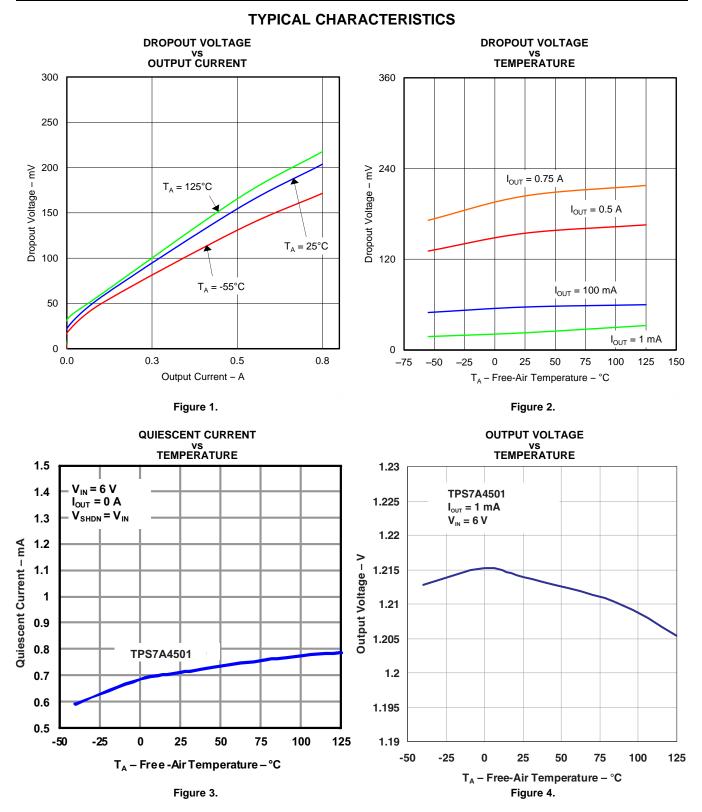
Specification is guaranteed by characterization for KGD and is not tested in production. (9)


(10) Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current flows into the OUT pin and out the GND pin.

www.ti.com.cn

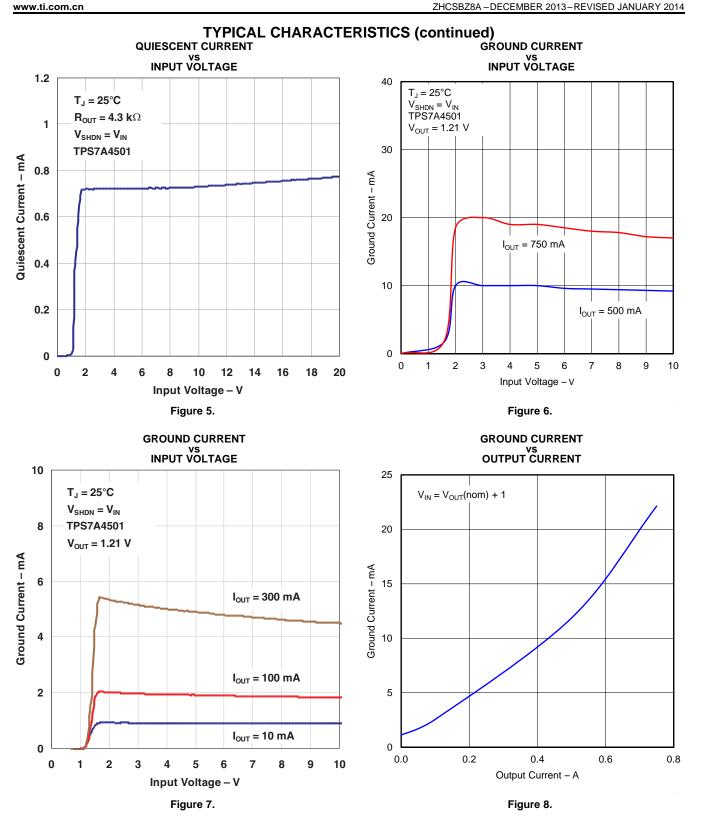
ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

DEVICE INFORMATION

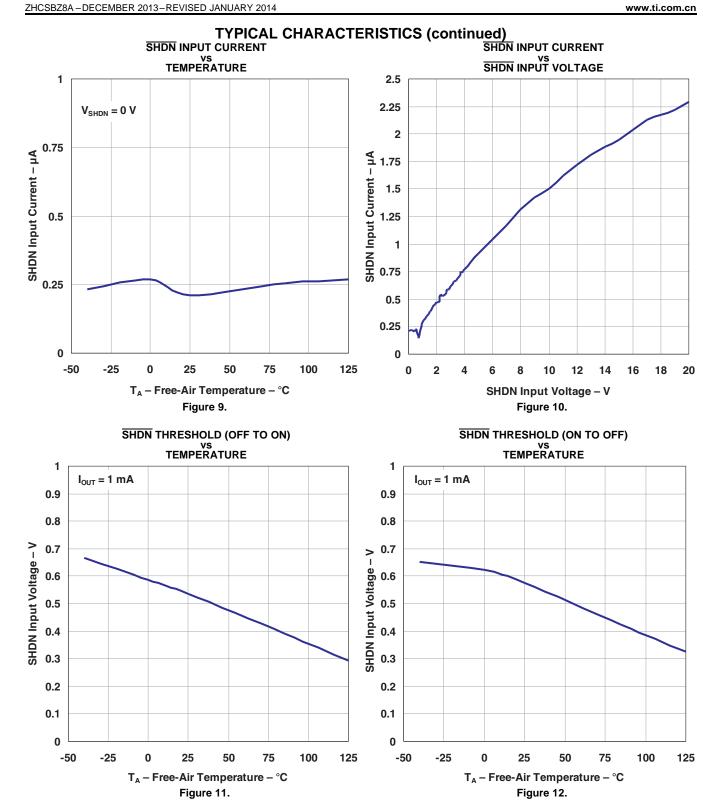


TERMINAL FUNCTIONS

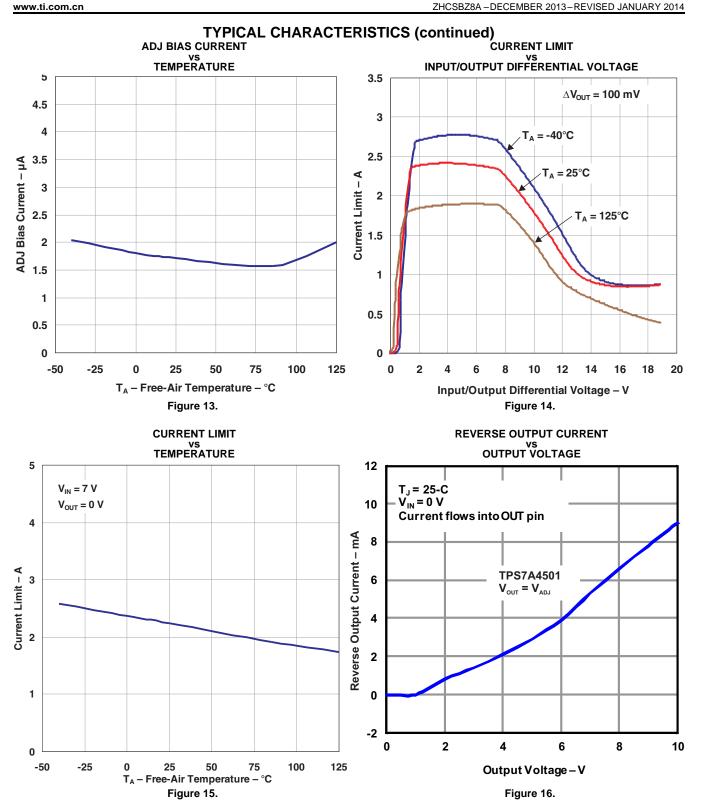
PIN		DESCRIPTION						
NO.	NAME	DESCRIPTION						
1	SHDN	Shutdown. SHDN is used to put the TPS7A4501 regulator into a low-power shutdown state. The output is off when SHDN is pulled low. SHDNcan be driven by 5-V logic, 3-V logic or open-collector logic with a pullup resistor. The pullup resistor is required to supply the pullup current of the open-collector gate, normally several microamperes, and SHDN current, typically 3 μ A. If unused, SHDN must be connected to V _{IN} . The device is in the low-power shutdown state if SHDN is not connected.						
2, 3, 4	IN	Input. Power is supplied to the device through IN. A bypass capacitor is required on this pin if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in battery-powered circuits. A bypass capacitor (ceramic) in the range of 1 μ F to 10 μ F is sufficient. The TPS7A4501 regulator is designed to withstand reverse voltages on IN with respect to ground and on OUT. In the case of a reverse input, which can happen if a battery is plugged in backwards, the device acts as if there is a diode in series with its input. There is no reverse current flow into the regulator, and no reverse voltage appears at the load. The device protects both itself and the load.						
5	NC	This pin is not connected to any internal circuitry. It can be left floating or tied to VIN or GND.						
6, 7, 8	OUT	Output. The output supplies power to the load. A minimum output capacitor (ceramic) of 10 μ F is required to prevent oscillations. Larger output capacitors are required for applications with large transient loads to limit peak voltage transients.						
9	ADJ	Adjust. This is the input to the error amplifier. ADJ is internally clamped to ± 7 V. It has a bias current of 3 μ A that flows into the pin. ADJ voltage is 1.21 V referenced to ground, and the output voltage range is 1.21 V to 20 V.						
10	GND	Ground.						


ZHCSBZ8A-DECEMBER 2013-REVISED JANUARY 2014

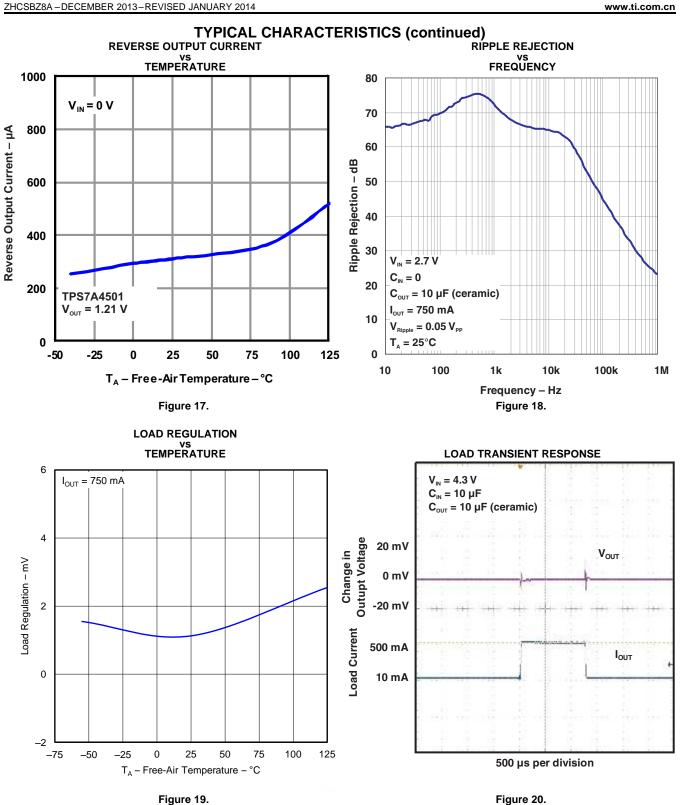
www.ti.com.cn



ZHCSBZ8A - DECEMBER 2013 - REVISED JANUARY 2014


ÈXAS NSTRUMENTS

ZHCSBZ8A-DECEMBER 2013-REVISED JANUARY 2014



ZHCSBZ8A - DECEMBER 2013 - REVISED JANUARY 2014

Texas NSTRUMENTS

ZHCSBZ8A-DECEMBER 2013-REVISED JANUARY 2014

www.ti.com.cn

ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

APPLICATION INFORMATION

The TPS7A4501 is a 750-mA low-dropout regulator optimized for fast transient response. The device is capable of supplying 750 mA at a dropout voltage of 300 mV. The low operating quiescent current (1 mA) drops to less than 1 μ A in shutdown. In addition to the low quiescent current, the TPS7A4501 regulator incorporates several protection features that makes it ideal for use in battery-powered systems. The device is protected against both reverse input and reverse

output voltages. In battery-backup applications where the output can be held up by a backup battery when the input is pulled to ground, the TPS7A4501 acts as if it has a diode in series with its output and prevents reverse current flow. Additionally, in dual-supply applications where the regulator load is returned to a negative supply, the output can be pulled below ground by as much as (20 V - VIN) and still allow the device to start and operate.

Typical Applications

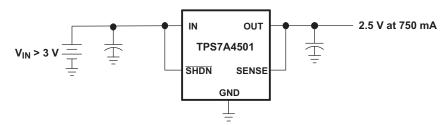


Figure 22. 3.3 V to 2.5 V Regulator

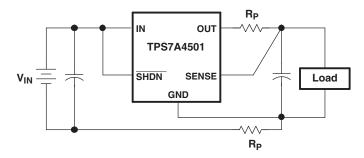
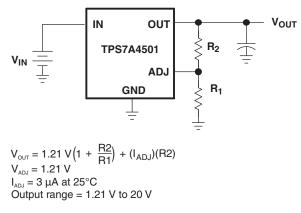



Figure 23. Kelvin Sense Connection

ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

Adjustable Operation

The adjustable TPS7A4501 has an output voltage range of 1.21 V to 20 V. The output voltage is set by the ratio of two external resistors as shown in Figure 24. The device maintains the voltage at the ADJ pin at 1.21 V referenced to ground. The current in R1 is then equal to (1.21 V/R1), and the current in R2 is the current in R1 plus the ADJ pin bias current. The ADJ pin bias current, 3 μ A at 25°C, flows through R2 into the ADJ pin. The output voltage can be calculated using the formula shown in Figure 24. The value of R1 should be less than 4.17 k Ω to minimize errors in the output voltage caused by the ADJ pin bias current. Note that in shutdown the output is turned off, and the divider current is zero.

Figure 24. Adjustable Operation

The adjustable device is tested and specified with the ADJ pin tied to the OUT pin for an output voltage of 1.21 V. Specifications for output voltages greater than 1.21 V are proportional to the ratio of the desired output voltage to 1.21 V: $V_{OUT}/1.21$ V. For example, load regulation for an output current change of 1 mA to 1.5 A is -3 mV (typ) at $V_{OUT} = 1.21$ V. At $V_{OUT} = 5$ V, load regulation is:

(5 V/1.21 V)(-3 mV) = -12.4 mV

Compensation

TPS7A4501 is internally compensated, however, a lead network using C_3 can be implemented to boost the phase margin as well as reduce output noise.

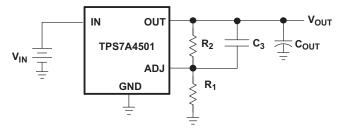


Figure 25. Compensation

 R_1 bottom resistor, R_2 top resistor form the output voltage divider network. C_3 across R_2 adds a lead network.

For R₁ = 3.2 k Ω and R₂ = 10 k Ω V_{OUT} is set at 5 V and C₃ = 470 pF.

Zero and pole can be calculated as shown below.

$$f_{z2} = \frac{1}{2 \bullet \pi \bullet R_2 \bullet C_3} \tag{1}$$

$$f_{z2} = 33.863 \text{ kHz}$$

$$R_{1p} = \frac{R_1 \bullet R_2}{R_1 + R_2}$$
(2)

 $R_{1p} = 2.424 \ k\Omega$

$$f_{p2} = \frac{1}{2 \bullet \pi \bullet R_{1p} \bullet C_3} \tag{3}$$

f_{p2} = 139.684 kHz

Output Capacitance and Transient Response

The TPS7A4501 regulator is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability, most notably with small capacitors. A minimum output capacitor of 10 μ F with an ESR of 3 Ω or less is recommended to prevent oscillations. Larger values of output capacitance can decrease the peak deviations and provide improved transient response for larger load current changes. Bypass capacitors, used to decouple individual components powered by the TPS7A4501, increase the effective output capacitor value.

Extra consideration must be given to the use of capacitors. Ceramic capacitors ceramic are manufactured with a variety of dielectrics, each with different behavior over temperature and applied voltage. The most common dielectric used for harsh environment is X7R. Ceramic capacitors loose capacitance when DC bias is applied across the capacitor. This capacitance loss is due to the polarization of the ceramic material. The capacitance loss is not permanent: after a large DC bias has been applied, reducing the DC bias will reduce the degree of polarization and capacitance will increase. DC bias effects vary dramatically with voltage rating, case size, capacitor value, and capacitor manufacturer. Since a capacitor could lose more than 50% of its capacitance with DC bias voltages near the voltage rating of the capacitor, it is important to consider DC bias when selecting a ceramic capacitor for an application.

www.ti.com.cn

ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

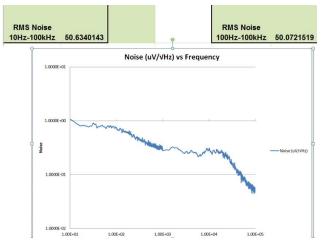
Ceramic capacitors dielectric also change over the temperature range. For example X7R, first two letters X denotes lower temperature range -55° C whereas 7 denotes higher temperature range 125° C and R denotes capacitance variation over the temperature range ($\pm 15^{\circ}$). For harsh environment applications minimum dielectric thickness must be 1mil for 100V DC rated capacitor and 0.8mil for 50V DC rated capacitors.

Voltage and temperature coefficients are not the only sources of problems. Some ceramic capacitors have a piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress, similar to the way a piezoelectric accelerometer or microphone works. For a ceramic capacitor the stress can be induced by vibrations in the system or thermal transients.

Tantalum capacitors can provide higher capacitance per unit volume. Tantalum capacitors can be either manganese dioxide (MNO2) based capacitors where cathode is MN02 or polymer. MN02 based tantalum capacitors will exhibit high ESR as compared to polymer based tantalum capacitors. MN02 based tantalum capacitors require in excess of 60% voltage derating. Thus a 10V rated capacitor can only be used for 3.3V application. Whereas polymer based capacitors only require 10% voltage derating. Paralleling ceramic and tantalum capacitors will provide optimum balance between capacitance and ESR.

Table 2 highlights some of the capacitors used in the device.

Overload Recovery


Like many IC power regulators, the TPS7A4501 has safe operating area protection. The safe area protection decreases the current limit as input-tooutput voltage increases and keeps the power transistor inside a safe operating region for all values of input-to-output voltage. The protection is designed to provide some output current at all values of inputto-output voltage up to the device breakdown.


When power is first turned on, as the input voltage rises, the output follows the input, allowing the regulator to start up into very heavy loads. During start up, as the input voltage is rising, the input-tooutput voltage differential is small, allowing the regulator to supply large output currents. With a high input voltage, a problem can occur wherein removal of an output short does not allow the output voltage to recover. Other regulators also exhibit this phenomenon, so it is not unique to the TPS7A4501. The problem occurs with a heavy output load when the input voltage is high and the output voltage is low. Common situations occur immediately after the removal of a short circuit or when the shutdown pin is pulled high after the input voltage has already been turned on. The load line for such a load may intersect the output current curve at two points. If this happens, there are two stable output operating points for the regulator. With this double intersection, the input power supply may need to be cycled down to zero and brought up again to make the output recover.

Output Voltage Noise

The TPS7A4501 regulator has been designed to provide low output voltage noise over the 10-Hz to 100-kHz bandwidth while operating at full load. Output voltage noise is typically 50 uV/ \sqrt{Hz} over this frequency bandwidth for the TPS7A4501. For higher output voltages (generated by using a resistor divider), the output voltage noise is gained up accordingly.

Higher values of output voltage noise may be measured when care is not exercised with regard to circuit layout and testing. Crosstalk from nearby traces can induce unwanted noise onto the output of the TPS7A4501. Power-supply ripple rejection must also be considered; the TPS7A4501 regulator does not have unlimited power-supply rejection and passes a small portion of the input noise through to the output.

Copyright © 2013–2014. Texas Instruments Incorporated

ZHCSBZ8A-DECEMBER 2013-REVISED JANUARY 2014

NSTRUMENTS

FXAS

Capacitor Part Number	Capacitor Details Type Vendor (Capacitor, Voltage, ESR)	Туре	Vendor		
T493X226M025AH6x20	22 μF, 25 V, 35 mΩ	Tantalum - MnO2	Kemet		
T525D476M016ATE035	47 μF, 10 V, 35 mΩ	Tantalum - Polymer	Kemet		
T525D107M010ATE025	100 μF, 10 V, 25 mΩ	Tantalum - Polymer	Kemet		
T541X337M010AH6720	330 μF, 10 V, 6 mΩ	Tantalum - Polymer	Kemet		
T525D227M010ATE025	220 μF, 10 V, 25 mΩ	Tantalum - Polymer	Kemet		
T495X107K016ATE100	100 μF, 16 V, 100 mΩ	Tantalum - MnO2	Kemet		
CWR29FK227JTHC	220 μF, 10 V, 180 mΩ	Tantalum - MnO2	AVX		
THJE107K016AJH	100 μF, 16 V, 58 mΩ	Tantalum	AVX		
THJE227K010AJH	220 μF, 10 V, 40 mΩ	Tantalum	AVX		
SR2225X7R335K1P5#M123	3.3 μF, 25 V, 10 mΩ	Ceramic	Presidio Components Inc.		

Table 2. TPS7A4501-SP Capacitors

Thermal Considerations

The power handling capability of the device is limited by the maximum rated junction temperature (125°C). The power dissipated by the device is made up of two components:

- 1. Output current multiplied by the input/output voltage differential: $I_{OUT}(V_{IN} V_{OUT})$
- 2. GND pin current multiplied by the input voltage: $I_{\text{GND}}V_{\text{IN}}.$

The GND pin current can be found using the GND Pin Current graphs in *Typical Characteristics*. Power dissipation is equal to the sum of the two components listed above.

Calculating Junction Temperature

Example: Given an output voltage of 3.3 V, an input voltage range of 4 V to 6 V, an output current range of 0 mA to 500 mA, and a maximum case temperature of 50° C, what is the maximum junction temperature?

The power dissipated by the device is equal to:

 $I_{OUT(MAX)}(V_{IN(MAX)} - V_{OUT}) + I_{GND}(V_{IN(MAX)})$

where,

 $I_{OUT(MAX)} = 500 \text{ mA}$

 $V_{IN(MAX)} = 6 V$

 I_{GND} at (I_{OUT} = 500 mA, V_{IN} = 6 V) = 10 mA

So,

 $P = 500 \text{ mA} \times (6 \text{ V} - 3.3 \text{ V}) + 10 \text{ mA} \times 6 \text{ V} = 1.41 \text{ W}$

Using a U package, the thermal resistance is about 10.3°C/W. So the junction temperature rise above case is approximately equal to:

1.41 W × 10.3°C/W = 14.5°C

The TPS7A4501 regulators have internal thermal limiting designed to protect the device during overload conditions. For continuous normal conditions, the maximum junction temperature rating of 125°C must not be exceeded. It is important to give careful consideration to all sources of thermal resistance from junction to ambient. Additional heat sources mounted nearby must also be considered.

For surface-mount devices, heat sinking is accomplished by using the heat-spreading capabilities of the PC board and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by power devices.

The maximum junction temperature is then be equal to the maximum junction-temperature rise above case plus the maximum case temperature or:

 $T_{JMAX} = 50^{\circ}C + 14.5^{\circ}C = 64.5^{\circ}C$

Protection Features

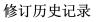
The TPS7A4501 regulator incorporates several protection features which makes it ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the device is protected against reverse input voltages, reverse output voltages and reverse voltages from output to input.

Current limit protection and thermal overload protection are intended to protect the device against current overload conditions at the output of the device. For normal operation, the junction temperature should not exceed 125°C.

www.ti.com.cn

ZHCSBZ8A – DECEMBER 2013 – REVISED JANUARY 2014

The input of the device withstands reverse voltages of 20 V. Current flow into the device is limited to less than 1 mA (typically less than 100 μ A), and no negative voltage appears at the output. The device protects both itself and the load. This provides protection against batteries that can be plugged in backward.


The output of the TPS7A4501 can be pulled below ground without damaging the device. If the input is left open circuit or grounded, the output can be pulled below ground by 20 V. The output acts like an open circuit; no current flows out of the pin. If the input is powered by a voltage source, the output sources the short-circuit current of the device and protects itself by thermal limiting. In this case, grounding the SHDN pin turns off the device and stops the output from sourcing the short-circuit current.

The ADJ pin of the adjustable device can be pulled above or below ground by as much as 7 V without damaging the device. If the input is left open circuit or grounded, the ADJ pin acts like an open circuit when pulled below ground and like a large resistor (typically 5 k Ω) in series with a diode when pulled above ground.

In situations where the ADJ pin is connected to a resistor divider that would pull the ADJ pin above its 7-V clamp voltage if the output is pulled high, the ADJ pin input current must be limited to less than 5 mA. For example, a resistor divider is used to provide a regulated 1.5-V output from the 1.21-V reference when the output is forced to 20 V. The top resistor of the resistor divider must be chosen to limit the current into the ADJ pin to less than 5 mA when the ADJ pin is at 7 V. The 13-V difference between OUT and ADJ divided by the 5-mA maximum current into the ADJ pin yields a minimum top resistor value of 2.6 k Ω .

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage, or is left open circuit.

When the IN pin of the TPS7A4501 is forced below the OUT pin or the OUT pin is pulled above the IN pin, input current typically drops to less than 2 μ A. This can happen if the input of the device is connected to a discharged (low voltage) battery and the output is held up by either a backup battery or a second regulator circuit. The state of the SHDN pin has no effect on the reverse output current when the output is pulled above the input. ZHCSBZ8A – DECEMBER 2013–REVISED JANUARY 2014

Changes from Original (December 2013) to Revision A

• Changed 产品状态从产品预览改为生产数据	1
---------------------------	---

Page

www.ti.com.cn

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-1222402V9A	ACTIVE	XCEPT	KGD	0	100	TBD	Call TI	N / A for Pkg Type	-55 to 125		Samples
5962-1222402VHA	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	-55 to 125	1222402VHA 7A4501-SP	Samples
5962R1222403V9A	ACTIVE	XCEPT	KGD	0	50	TBD	Call TI	Call TI	-25 to 125		Samples
5962R1222403VXC	ACTIVE	CFP	HKU	10	1	TBD	Call TI	Call TI	-55 to 125	R1222403VXC 7A4501-RHA	Samples
TPS7A4501HKU/EM	ACTIVE	CFP	HKU	10	1	TBD	AU	N / A for Pkg Type	25 Only	7A4501HKU/EM EVAL ONLY	Samples
TPS7A4501U/EM	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	25 Only	7A4501U/EM EVAL ONLY	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

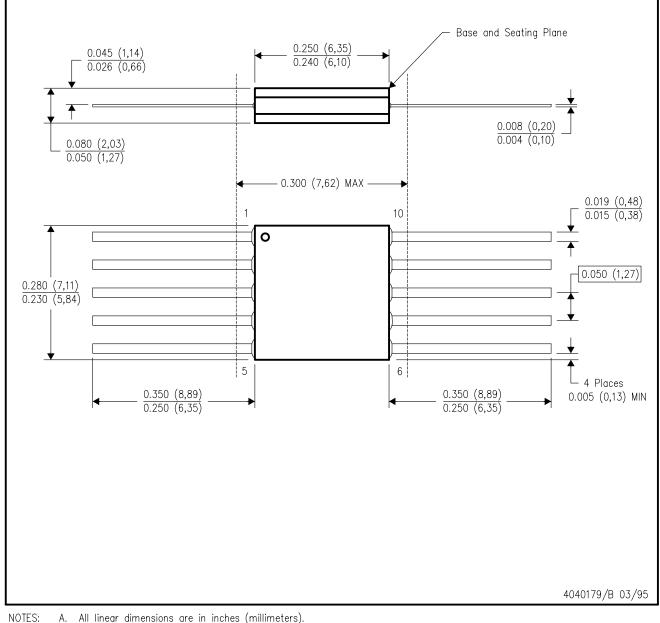
25-Apr-2017

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS7A4501-SP :

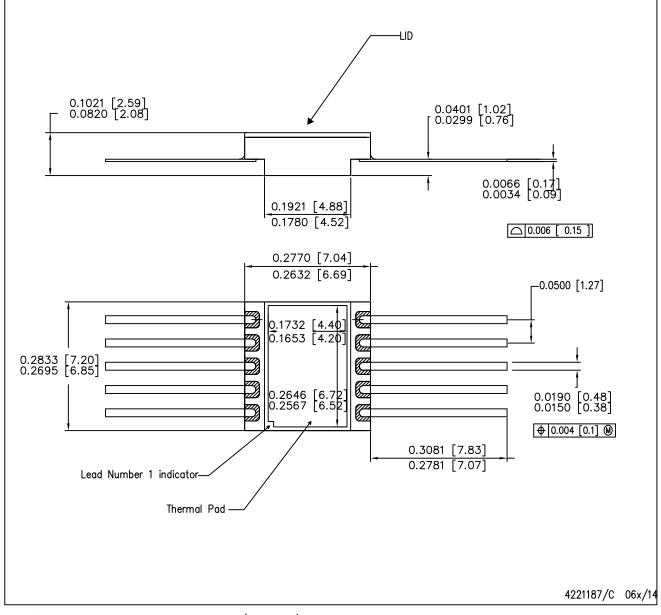

- Catalog: TPS7A4501
- Military: TPS7A4501M

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK



- Α. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. Β.
 - This package can be hermetically sealed with a ceramic lid using glass frit. C.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

HKU (R-CDFP-F10)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This drawing does not comply with Mil Std 1835. Do not use this package for compliant product.
 - D. The terminals will be gold plated.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员(总称"设计人员")理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且 应全权 负责并确保 应用的安全性,及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计 人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1)预见故障的危险后果,(2)监视故障及其后 果,以及 (3)降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前,将彻底测试该等 应用 和 该等应用中所用 TI 产品的 功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI 资 源"),旨在帮助设计人员开发整合了 TI 产品的 应用,如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、 访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。

TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。 TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时,才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或 其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限 于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务 的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权 的许可。

TI 资源系"按原样"提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡 发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或 与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关 的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔 偿,TI 概不负责。

除 TI 己明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的 应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将 任何 TI 产品用于关乎性命的医疗设备,除非己由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是 指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设 备)。此类设备包括但不限于,美国食品药品监督管理局认定为 Ⅲ 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的 所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的 应用选择适合的产品,并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。 设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

> 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2017 德州仪器半导体技术(上海)有限公司