

LM101AQML Operational Amplifiers

Check for Samples: LM101AQML

FEATURES

- Available with Radiation Guarantee
- Offset Voltage 3 mV Maximum Over Temperature
- Input Current 100 nA Maximum Over Temperature

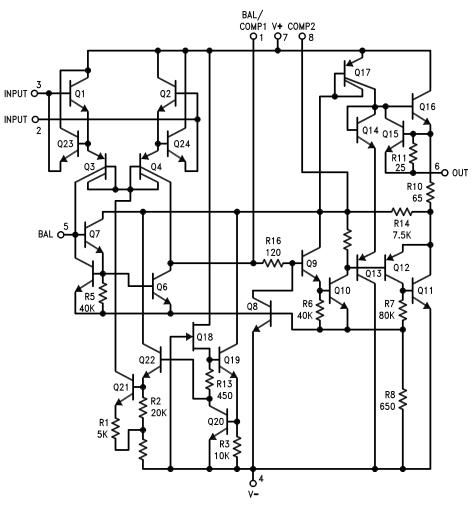
- Offset Current 20 nA Maximum Over Temperature
- Ensured Drift Characteristics
- Offsets Specified Over Entire Common Mode and Supply Voltage Ranges
- Slew Rate of 10 V/µS as a Summing Amplifier

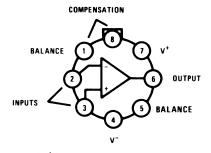
DESCRIPTION

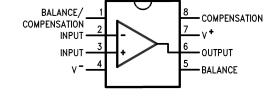
The LM101A is a general purpose operational amplifier which features improved performance over industry standards such as the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Specified drift characteristics
- Offsets ensured over entire common mode and supply voltage ranges
- Slew rate of 10V/µs as a summing amplifier
 - This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.
 - In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.

M


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.


Schematic

Pin connections shown are for 8-pin packages.

Connection Diagrams

Note: Pin 4 connected to case.

Figure 1. TO Package (Top View) See Package Number LMC0008C

Figure 2. CDIP Package (Top View) See Package Number NAB0008A

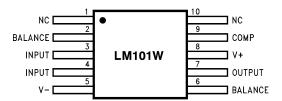
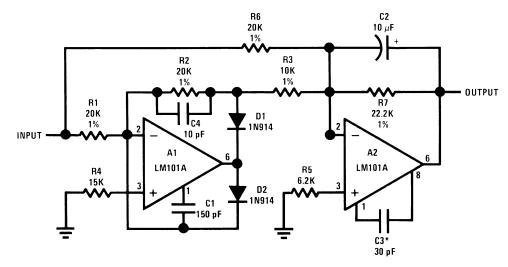



Figure 3. CLGA Package (Top View) See Package Number NAD0010A

Fast AC/DC Converter

Note: Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage				±22V
Differential Input Voltage				±30V
Input Voltage (2)				±15V
Output Short Circuit Duratio	n			Continuous
Operating Ambient Temp. R	Range			-55°C ≤ T _A ≤ +125°C
T _J Max	150°C			
Power Dissipation at $T_A = 2$	5°C ⁽³⁾	LMC-Package	(Still Air)	750 mW
			(500 LF / Min Air Flow)	1200 mW
		NAB-Package	(Still Air)	1000 mW
			(500 LF / Min Air Flow)	1500 mW
		NAD-Package	(Still Air)	500mW
			(500 LF / Min Air Flow)	800mW
Thermal Resistance	θ_{JA}	LMC-Package	(Still Air)	165°C/W
			(500 LF / Min Air Flow)	89°C/W
		NAB-Package	(Still Air)	128°C/W
			(500 LF / Min Air Flow)	75°C/W
		NAD-Package	(Still Air)	233°C/W
			(500 LF / Min Air Flow)	155°C/W
	θ _{JC} (Typical)	LMC-Package		39°C/W
		NAB-Package		26°C/W
		NAD-Package		26°C/W
Storage Temperature Rang	-65°C ≤ T _A ≤ +150°C			
Lead Temperature (Solderin	ng, 10 sec.)			300°C
ESD Tolerance ⁽⁴⁾				3000V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but do no ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
- The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A) / \theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

 (4) Human body model, 100 pF discharged through 1.5 k Ω .

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55

Product Folder Links: LM101AQML

LM101A 883 Electrical Characteristics DC Parameters

The following conditions apply to all parameters, unless otherwise specified V_{CC} = $\pm 20 \text{V}, \, V_{CM} \!\!= 0 \text{V}$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage	$V_{CM} = -15V$, $R_S = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
		$V_{CM} = 15V$, $R_S = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
		$R_S = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
		$V_{CC} = \pm 5V$, $R_S = 50\Omega$		-2.0	2.0	mV	1
				-3.0	3.0	mV	2, 3
I_{IO}	Input Offset Current	V _{CM} = -15V		-10	10	nA	1
				-20	20	nA	2, 3
		V _{CM} = 15V		-10	10	nA	1
				-20	20	nA	2, 3
				-10	10	nA	1
				-20	20	nA	2, 3
		$V_{CC} = \pm 5V$		-10	10	nA	1
				-20	20	nA	2, 3
±l _{IB}	Input Bias Current	V _{CM} = -15V		1.0	75	nA	1
				1.0	100	nA	2, 3
		V _{CM} = 15V		1.0	75	nA	1
				1.0	100	nA •	2, 3
				1.0	75	nA .	1
				1.0	100	nA_	2, 3
		$V_{CC} = \pm 5V$		1.0	75	nA	1
PSRR+	Power Supply Rejection Ratio	$+V_{CC}$ = +20V and +5V, $-V_{CC}$ =-20V, R_S =50 Ω		1.0	100	nA dB	2, 3
PSRR-	Power Supply Rejection Ratio	$+V_{CC} = +20V$, $-V_{CC} = -20V$ and $-5V$, $R_S = 50\Omega$		80		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	$-15V \le V_{CM} \le 15V$, $R_S = 50\Omega$		80		dB	1, 2, 3
I _{CC}	Supply Current	7 C			3.0	mA	1
00					2.5	mA	2
					3.5	mA	3
+V _{IO} Adj	Input Offset Voltage Adjust			4.0		mV	1, 2, 3
-V _{IO} Adj	Input Offset Voltage Adjust				-4.0	mV	1, 2, 3
+l _{OS}	Short Circuit Current			-45	-7.0	mA	1, 2, 3
-l _{os}	Short Circuit Current			7.0	45	mA	1, 2, 3
V _I	Input Voltage Range	V _{CC} = ±20V	See ⁽¹⁾	-15	15	V	1, 2, 3
+A _{VS}	Large Signal Gain	$V_{CC} = \pm 15V$, $R_S = 0$, $R_L = 2K\Omega$, V_O		50		V/mV	4
		=10V		25		V/mV	5, 6
-A _{VS}	Large Signal Gain	$V_{CC} = \pm 15V, R_S = 0, R_L = 2K\Omega, V_O$		50		V/mV	4
-		=-10V		25		V/mV	5, 6
R _I	Input Resistance		See ⁽²⁾	1.5		ΜΩ	4
			see ⁽²⁾	0.5		ΜΩ	5, 6

Product Folder Links: LM101AQML

⁽¹⁾ Parameter specified by the input conditions of several DC parameters

⁽²⁾ Parameter specified by design, not tested.

LM101A 883 Electrical Characteristics DC Parameters (continued)

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC} = \pm 20V$, $V_{CM} = 0V$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
+V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$		16		V	4, 5, 6
		$R_L = 2K\Omega$		15		V	4, 5, 6
		$R_L = 10K\Omega$, $V_{CC} = \pm 15V$		12		V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CC} = \pm 15V$		10		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$			-16	V	4, 5, 6
		$R_L = 2K\Omega$			-15	V	4, 5, 6
		$R_L = 10K\Omega$, $V_{CC} = \pm 15V$			-12	V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CC} = \pm 15V$			-10	V	4, 5, 6

LM101A 883 Electrical Characteristics AC Parameters

The following conditions apply to all parameters, unless otherwise specified

 $V_{CC}=\pm 20V,~R_L=2K\Omega,~A_V=1$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
+SR	Slew Rate	$V_I = -5V$ to $5V$			0.2	V/µS	7
-SR	Slew Rate	V _I = 5V to -5V			0.2	V/µS	7
G _{BW}	Gain Bandwidth	$V_I = 50 \text{mV}_{RMS}, f = 20 \text{KHz}$			0.25	MHz	7

LM101A QML and RH Electrical Characteristics⁽¹⁾ DC Parameters

The following conditions apply to all parameters, unless otherwise specified V_{CC} = ±20V, V_{CM} = 0V, R_S = 50 Ω

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V_{IO}	Input Offset Voltage	$+V_{CC} = 35V, -V_{CC} = -5V,$		-2.0	+2.0	mV	1
		V _{CM} = -15V		-3.0	+3.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-2.0	+2.0	mV	1
		V _{CM} = +15V		-3.0	+3.0	mV	2, 3
		$V_{CM} = 0V$		-2.0	+2.0	mV	1
				-3.0	+3.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -5V,$		-2.0	+2.0	mV	1
		$V_{CM} = 0V$		-3.0	+3.0	mV	2, 3
I _{IO}	Input Offset Current	+V _{CC} = 35V, -V _{CC} = -5V,		-10	+10	nA	1, 2
		$V_{CM} = -15V$, $R_S = 100K\Omega$		-20	+20	nA	3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-10	+10	nA	1, 2
		$V_{CM} = +15V$, $R_S = 100K\Omega$		-20	+20	nA	3
		$V_{CM} = 0V$, $R_S = 100K\Omega$		-10	+10	nA	1, 2
				-20	+20	nA	3
		$+V_{CC} = 5V$, $-V_{CC} = -5V$, $V_{CM} = 0V$, $R_S = 100KΩ$		-10	+10	nA	1, 2
		$V_{CM} = 0V, R_S = 100K\Omega$		-20	+20	nA	3

⁽¹⁾ Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are specified only for the conditions as specified in Mil-Std-883, Method 1019

LM101A QML and RH Electrical Characteristics⁽¹⁾ DC Parameters (continued)

The following conditions apply to all parameters, unless otherwise specified $V_{CC} = \pm 20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
±l _{IB}	Input Bias Current	+V _{CC} = 35V, -V _{CC} = -5V,		-0.1	75	nA	1, 2
		$V_{CM} = -15V$, $R_S = 100K\Omega$		-0.1	100	nA	3
		+V _{CC} = 5V, -V _{CC} = -35V,		-0.1	75	nA	1, 2
		$V_{CM} = +15V$, $R_S = 100K\Omega$		-0.1	100	nA	3
		$V_{CM} = 0V, R_S = 100K\Omega$		-0.1	75	nA	1, 2
				-0.1	100	nA	3
		+V _{CC} = 5V, -V _{CC} = -5V,		-0.1	75	nA	1, 2
		$V_{CM} = 0V, R_S = 100K\Omega$		-0.1	100	nA	3
+PSRR	Power Supply Rejection Ratio	+V _{CC} = 10V, -V _{CC} = -20V		-50	+50	μV/V	1
				-100	+100	μV/V	2, 3
-PSRR	Power Supply Rejection Ratio	+V _{CC} = 20V, -V _{CC} = -10V		-50	+50	μV/V	1
				-100	+100	μV/V	2, 3
CMRR	Common Mode Rejection Ratio	$V_{CC} = \pm 35V \text{ to } \pm 5V, V_{CM} = \pm 15V$		80		dB	1, 2, 3
+V _{IO} Adj	Adjustment for Input Offset Voltage			4.0		mV	1, 2, 3
-V _{IO} Adj	Adjustment for Input Offset Voltage				-4.0	mV	1, 2, 3
+l _{OS}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ t \le 25mS, $V_{CM} = -15V$		-60		mA	1, 2, 3
-l _{OS}	Output Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ t \le 25mS, $V_{CM} = +15V$			+60	mA	1, 2, 3
I _{CC}	Power Supply Current	+V _{CC} = 15V, -V _{CC} = -15V			3.0	mA	1
					2.32	mA	2
					3.5	mA	3
ΔV _{IO} / ΔΤ	Temperature Coefficient of Input	-55°C ≤ T _A ≤ +25°C	See (2)	-18	+18	μV/°C	2
	Offset Voltage	+25°C ≤ T _A ≤ +125°C	See ⁽²⁾	-15	+15	uV/°C	3
Δ I _{IO} / ΔΤ	Temperature Coefficient of Input	-55°C ≤ T _A ≤ +25°C	See ⁽²⁾	-200	+200	pA/°C	2
	Offset Current	+25°C ≤ T _A ≤ +125°C	See ⁽²⁾	-100	+100	pA/°C	3
-A _{VS}	Large Signal (Open Loop) Voltage	$R_L = 2K\Omega$, $V_O = -15V$	See (3)	50		V/mV	4
	Gain		See ⁽³⁾	25		V/mV	5, 6
		$R_L = 10K\Omega, V_O = -15V$	See ⁽³⁾	50		V/mV	4
			See ⁽³⁾	25		V/mV	5, 6
+A _{VS}	Large Signal (Open Loop) Voltage	$R_L = 2K\Omega$, $V_O = +15V$	See ⁽³⁾	50		V/mV	4
	Gain		See ⁽³⁾	25		V/mV	5, 6
		$R_{L} = 10K\Omega, V_{O} = +15V$	See ⁽³⁾	50		V/mV	4
			See ⁽³⁾	25		V/mV	5, 6
A _{VS}	Large Signal (Open Loop) Voltage Gain	$V_{CC} = \pm 5V, R_L = 2K\Omega,$ $V_{\Omega} = \pm 2V$	See ⁽³⁾	10		V/mV	4,5, 6
		$V_{CC} = \pm 5V$, $R_L = 10K\Omega$, $V_O = \pm 2V$	See ⁽³⁾	10		V/mV	4,5, 6
+V _{OP}	Output Voltage Swing	$R_L = 10K\Omega, V_{CM} = -20V$		+16		V	4,5, 6
-		$RL = 2K\Omega$, $V_{CM} = -20V$		+15		V	4,5, 6
-V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$, $V_{CM} = 20V$			-16	V	4,5, 6
		$R_L = 2K\Omega$, $V_{CM} = 20V$			-15	V	4,5, 6

⁽²⁾ Calculated parameter(3) Datalog reading of K = V/mV.

LM101A QM and RH Electrical Characteristics AC Parameters

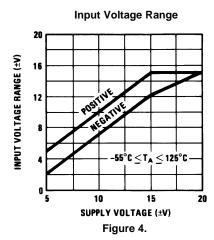
The following conditions apply to all parameters, unless otherwise specified

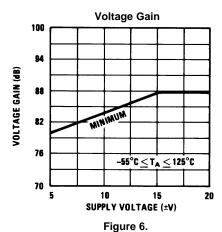
 $V_{CC} = \pm 20V, V_{CM} = 0V, R_S = 50\Omega$

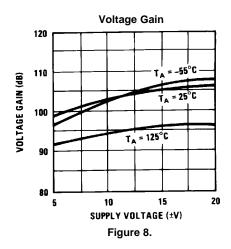
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
+SR	Slew Rate	$A_V = 1$, $V_I = -5V$ to $+5V$		0.3		V/µS	7, 8A
				0.2		V/µS	8B
-SR	Slew Rate	$A_V = 1$, $V_I = +5V$ to -5V		0.3		V/µS	7, 8A
				0.2		V/µS	8B
TR_{TR}	Rise Time	$A_V = 1, V_I = 50 \text{mV}$			800	nS	7, 8A, 8B
TR _{OS}	Overshoot	$A_V = 1, V_I = 50 \text{mV}$			25	%	7
					35	%	8A, 8B
NI _{BB}	Noise Broadband	BW = 10Hz to 5KHz, $R_S = 0\Omega$			15	μV_{RMS}	7
NI _{PC}	Noise Popcorn	BW = 10Hz to 5KHz, $R_S = 100K\Omega$			80	μV _{PK}	7

LM101A QM and RH Electrical Characteristics DC Parameters Drift Values

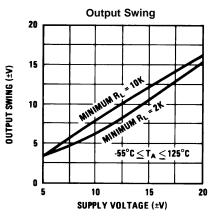
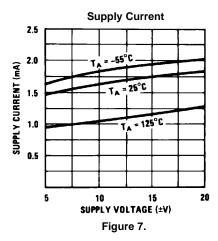
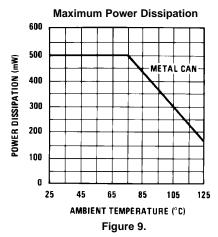
The following conditions apply to all parameters, unless otherwise specified

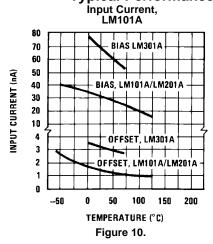

 $V_{CC}=\pm 20V,\ V_{CM}=0V,\ R_S=50\Omega$

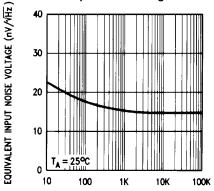

Delta calculations performed on QMLV devices at group B, Subgroup 5 only.


Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V_{IO}	Input Offset Voltage	$V_{CM} = 0V$		-0.5	0.5	mV	1
± I _{IB}	Input Bias Current	$V_{CM} = 0V$, $R_S = 100K\Omega$		-7.5	7.5	nA	1

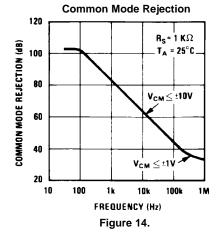
Typical Performance Characteristics LM101A


Figure 5.



Typical Performance Characteristics



40 30

Input Noise Voltage

FREQUENCY (Hz) Figure 12.

LM101A (continued)

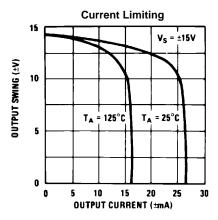


Figure 11.

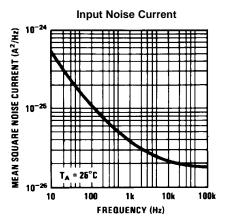


Figure 13.

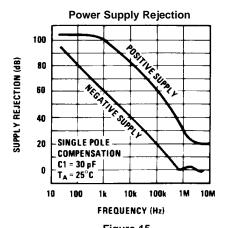
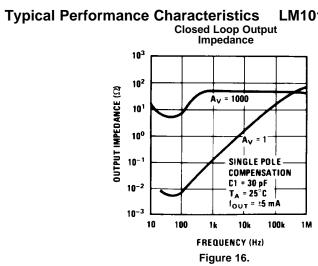
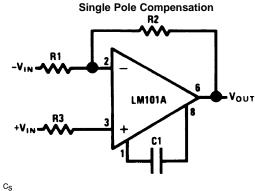
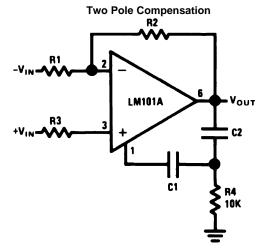



Figure 15.

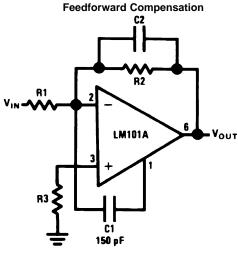

LM101A (continued)


Typical Performance Characteristics for Various Compensation Circuits

Pin connections shown are for 8-pin packages.

 $C1 \geq \frac{R1 \; C_S}{R1 \; + \; R2}$

C_S= 30 pF



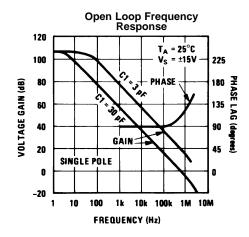
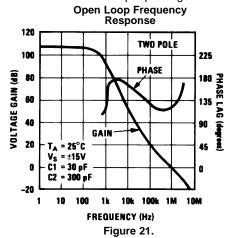
 $C1 \ge \frac{R1 C_S}{R1 + R3}$

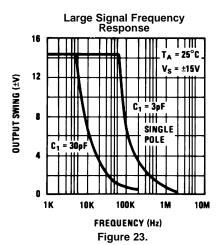
 $C_S = 30 \text{ pF}$ C2 = 10 C1

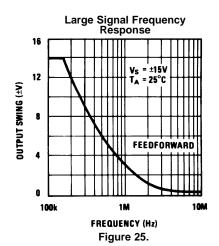
Figure 17.

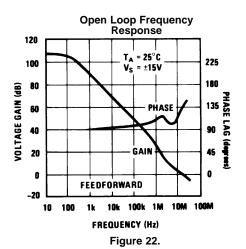
 $C2 = \frac{1}{2\pi f_0 R2}$ $f_0 = 3 MHz$

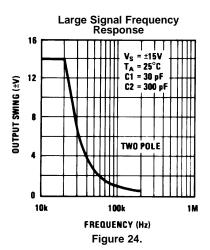
Figure 19.

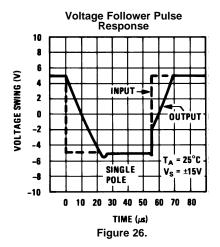



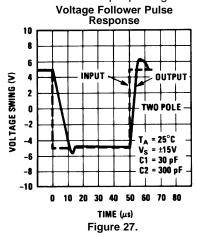

Figure 20.

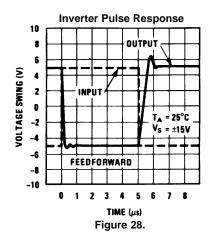



Typical Performance Characteristics for Various Compensation Circuits (continued)


Pin connections shown are for 8-pin packages.

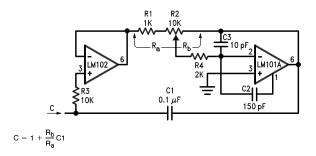


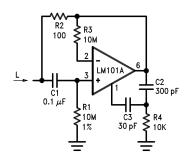




Typical Performance Characteristics for Various Compensation Circuits (continued)

Pin connections shown are for 8-pin packages.




TYPICAL APPLICATIONS

Pin connections shown are for 8-pin packages.

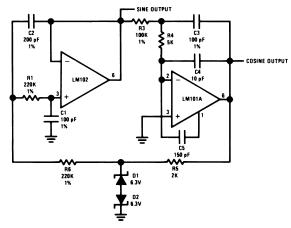

†May be zero or equal to parallel combination of R1 and R2 for minimum offset.

Figure 29. Variable Capacitance Multiplier

 $L \approx R1 R2 C1$ $R_S = R2$ $R_P = R1$

Figure 30. Inverting Amplifier with Balancing Circuit

 $f_0 = 10 \text{ kHz}$

Figure 31. Simulated Inductor

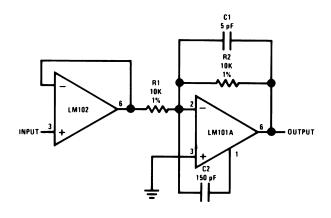
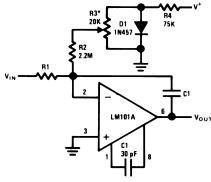



Figure 33. Fast Inverting Amplifier with High Input Impedance

Figure 32. Sine Wave Oscillator

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over -55°C to +125°C temperature range.

Figure 34. Integrator with Bias Current Compensation

Application Hints

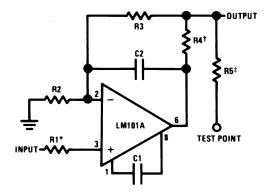


Figure 35. Protecting Against Gross Fault Conditions

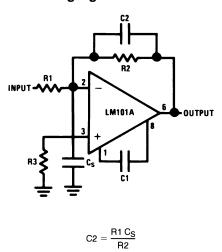


Figure 36. Compensating for Stray Input Capacitances or Large Feedback Resistor

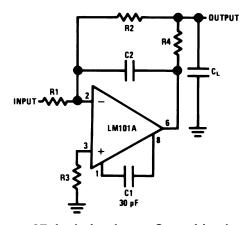


Figure 37. Isolating Large Capacitive Loads

^{*}Protects input

[†]Protects output

[‡]Protects output—not needed when R4 is used.

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA. This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than 0.1 μ F) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.

The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifer drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed—even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V⁺ and V⁻ will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 $k\Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF. If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.

Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

Typical Applications

Pin connections shown are for 8-pin packages.

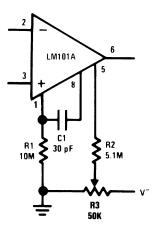
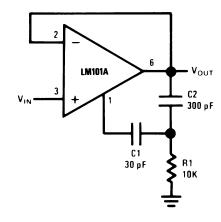
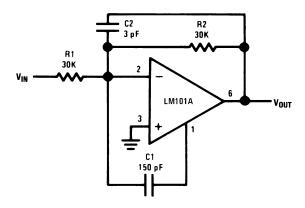
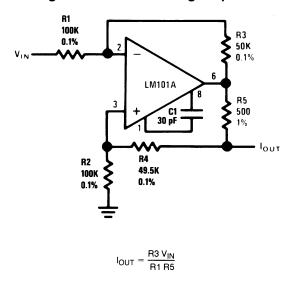



Figure 38. Standard Compensation and Offset Balancing Circuit



Power Bandwidth: 15 kHz

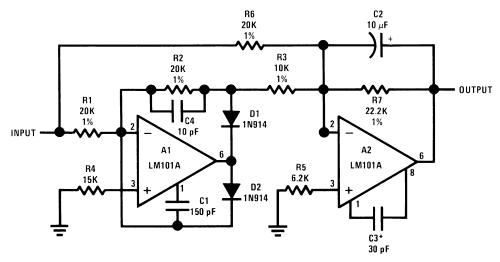
Slew Rate: 1V/µs


Figure 39. Fast Voltage Follower

Power Bandwidth: 250 kHz Small Signal Bandwiidth: 3.5 MHz

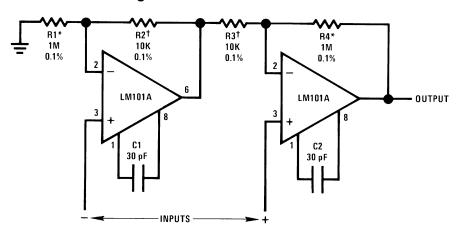
Slew Rate: 10V/µs

Figure 40. Fast Summing Amplifier



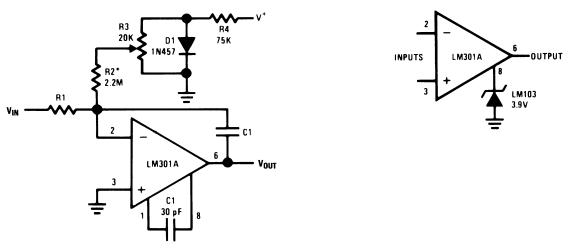
R1 = R2

Figure 41. Bilateral Current Source


R3 = R4 + R5

Note: Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Figure 42. Fast AC/DC Converter


R1 = R4; R2 = R3

$$A_V = 1 + \frac{R1}{R2}$$

Figure 43. Instrumentation Amplifier

^{*,†} Matching determines CMRR.

*Adjust for zero integrator drift. Current drift typically 0.1 nA/°C over 0°C to +70°C temperature range.

Figure 44. Integrator with Bias Current Compensation

Figure 45. Voltage Comparator for Driving RTL Logic or High Current Driver

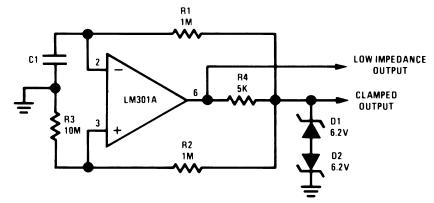
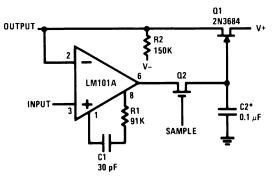
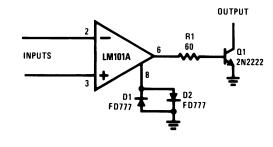




Figure 46. Low Frequency Square Wave Generator

*Polycarbonate-dielectric capacitor

Figure 47. Low Drift Sample and Hold

Figure 48. Voltage Comparator for Driving DTL or TTL Integrated Circuits

REVISION HISTORY SECTION

Date Released	Revision	Section	Originator	Changes
01/05/06	A	New Release to corporate format	L. Lytle	2 MDS datasheets converted into one Corp. datasheet format. MNLM101A-X Rev 0A0 and MRLM101A-X-RH rev 1C2 MDS datasheets will be archived.
03/20/13	А	All	-	Changed layout of National Data Sheet to TI format

Product Folder Links: LM101AQML

28-Jul-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962L9951501VGA	ACTIVE	TO-99	LMC	8	20	TBD	Call TI	Call TI	-55 to 125	LM101AHLQMLV 5962L9951501VGA Q ACO 5962L9951501VGA Q >T	Samples
5962L9951501VPA	ACTIVE	CDIP	NAB	8	40	TBD	Call TI	Call TI	-55 to 125	LM101AJLQMLV 5962L99515 01VPA Q ACO 01VPA Q >T	Samples
LM101 MDR	ACTIVE	DIESALE	Υ	0	40	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LM101A MD8	ACTIVE	DIESALE	Υ	0	400	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LM101AH/883	ACTIVE	TO-99	LMC	8	20	TBD	Call TI	Call TI	-55 to 125	LM101AH/883 Q ACO LM101AH/883 Q >T	Samples
LM101AHLQMLV	ACTIVE	TO-99	LMC	8	20	TBD	Call TI	Call TI	-55 to 125	LM101AHLQMLV 5962L9951501VGA Q ACO 5962L9951501VGA Q >T	Samples
LM101AJ/883	ACTIVE	CDIP	NAB	8	40	TBD	Call TI	Call TI	-55 to 125	(LF412MJ, LM101AJ) /883 Q ACO /883 Q >T	Samples
LM101AJLQMLV	ACTIVE	CDIP	NAB	8	40	TBD	Call TI	Call TI	-55 to 125	LM101AJLQMLV 5962L99515 01VPA Q ACO 01VPA Q >T	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

28-Jul-2017

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

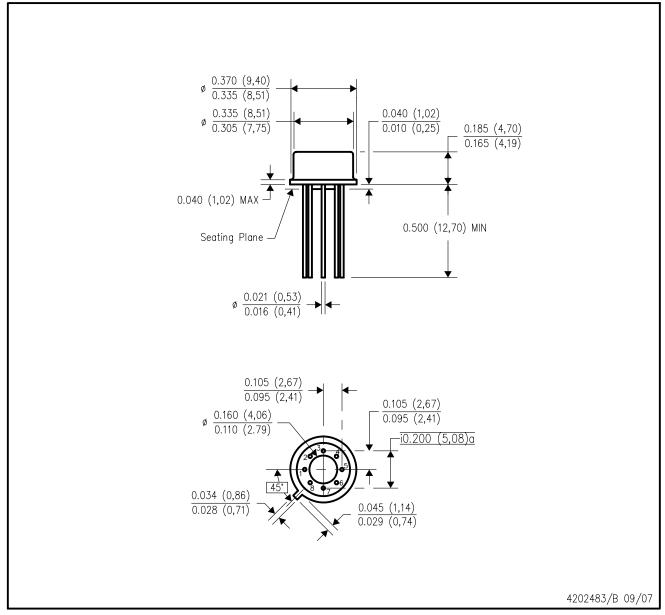
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM101AQML, LM101AQML-SP:

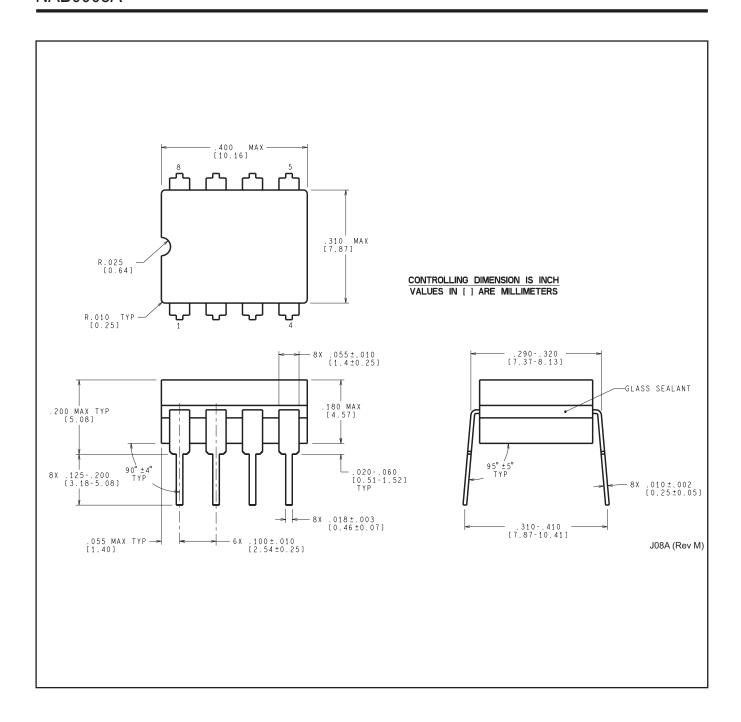
Military: LM101AQML


Space: LM101AQML-SP

NOTE: Qualified Version Definitions:

- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

LMC (O-MBCY-W8)


METAL CYLINDRICAL PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-002/TO-99.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.