

ADS8339

ZHCSCX4A -JUNE 2014-REVISED OCTOBER 2014

ADS8339 16 位、250kSPS 串行接口微功耗微型 SAR 模数转换器

特性

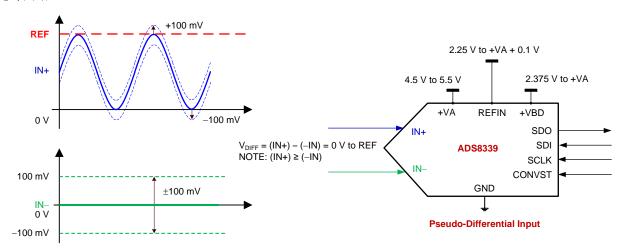
- 采样率: 250kHz
- 16 位分辨率
- 全速状态下零延迟
- 单极单端输入范围:
 - 0V 至 V_{ref}
- SPI™ 兼容串口,具有菊花链选项
- 使用内部时钟进行转换
- 出色的性能:
 - 输入为 10kHz 时, 信噪比 (SNR) 典型值为 93.6dB
 - 输入为 10kHz 时,总谐波失真 (THD) 典型值为 -106dB
 - ±2.0 最低有效位 (LSB) 最大积分非线性 (INL)
 - ±1.0 LSB 最大微分非线性 (DNL)
- 低功耗:
 - 250kSPS 时为 17.5mW (典型值)
- 功率可根据速度进行线性缩放:
 - 25kSPS 时为 1.75mW
- 断电状态下的功耗:
 - 0.25µW(典型值)
- 封装: 超薄小外形尺寸封装 (VSSOP)-10

2 应用

- 电池供电类设备
- 数据采集系统
- 仪表和过程控制
- 医用电子产品
- 光纤网络

3 说明

ADS8339 是一款 16 位、250kSPS 模数转换器 (ADC)。 该器件的外部工作基准电压为 2.25V 至 5.5V。 此器件包括一个基于电容器且具有内置采样保 持电路的逐次逼近寄存器 (SAR) ADC。


此器件还包括一个 25MHz 串行外设接口 (SPI) 兼容串 口。 该接口设计用于支持菊花链或级联多个器件。 此 外, 忙闲指示器可轻松实现与数字主机的同步。 该器 件的单极单端输入范围支持的输入电压摆幅为 0V 至 V_{ref}

该器件已经过优化, 可实现低功耗运行以及根据速度直 接调节功耗。这一特性使得该器件对低速应用尤为实 用。 ADS8339 采用 VSSOP-10 封装。

器件信息(1)

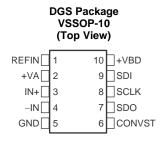
部件号	封装	封装尺寸 (标称值)
ADS8339	VSSOP (10)	3.00mm x 3.00mm

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

Changes from Original (June 2014) to Revision A

Page

1 2 3 4 5 6 7	特性	录 10	9.1 Overview	
	7.1 Absolute Maximum Ratings 4 7.2 Handling Ratings 4 7.3 Recommended Operating Conditions 4 7.4 Thermal Information 5 7.5 Electrical Characteristics 5 7.6 Timing Requirements 7 7.7 Typical Characteristics 8	11 12 13	Power-Supply Recommendations Layout 12.1 Layout Guidelines 12.2 Layout Example 器件和文档支持 13.1 文档支持 13.2 商标	
9	Parametric Measurement Information	14	13.3 静电放电警告	33 33



5 Device Family⁽¹⁾

SAMPLING RATE	16-BIT, SINGLE-ENDED	16-BIT, DIFFERENTIAL	18-BIT, DIFFERENTIAL
100 kSPS	ADS8866	ADS8867	ADS8887
250 kSPS	ADS8339	_	_
400 kSPS	ADS8864	ADS8865	ADS8885
500 kSPS	ADS8319	ADS8318	_
680 kSPS	ADS8862	ADS8863	ADS8883
1 MSPS	ADS8860	ADS8861	ADS8881

⁽¹⁾ All devices are pin-to-pin compatible. The ADS8339, ADS8319, and ADS8318 require a 4.5-V to 5.5-V analog supply. The remaining devices use a 2.7-V to 3.6-V analog supply.

6 Pin Configuration and Functions

Pin Functions

Р	IN	FUNCTION	DECORPORTION
NO.	NAME	FUNCTION	DESCRIPTION
1	REFIN	Input	Reference (positive) input. Decouple to GND with a 0.1-µF bypass capacitor and a 10-µF storage capacitor.
2	+VA	Supply	Analog power supply. Decouple with the GND pin.
3	+IN	Input	Noninverting analog signal input
4	-IN	Input	Inverting analog signal input. Note that this input has a limited range of ±0.1 V and is typically grounded at the input decoupling capacitor.
5	GND	Supply	Device ground. Note that this pin is a common ground pin for both the analog power supply (+VA) and digital I/O supply (+VBD).
6	CONVST	Input	Convert input. CONVST also functions as the $\overline{\text{CS}}$ input in 3-wire interface mode. Refer to the Description and Timing Diagrams sections for more details.
7	SDO	Output	Serial data output
8	SCLK	Input	Serial I/O clock input. Data (on the SDO output) are synchronized with this clock.
9	SDI	Input	Serial data input. The SDI level at the start of a conversion selects the mode of operation (such as \overline{CS} or daisy-chain mode). SDI also serves as the \overline{CS} input in 4-wire interface mode. Refer to the <i>Description</i> and <i>Timing Diagrams</i> sections for more details.
10	+VBD	Supply	Digital I/O power supply. Decouple with the GND pin.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	Voltage	-0.3	+VA + 0.3	V
+IN, -IN input	Momentary current ⁽²⁾		130	mA
	Continuous current		±10	mA
+VA to GND		-0.3	7	V
+VBD to GND		-0.3	7	V
Digital input voltage to GND		-0.3	+VBD + 0.3	V
Digital output voltage to G	ND	-0.3	+VBD + 0.3	
Tomporoturo	Operating free-air range, T _A	-40	85	°C
Temperature	Junction, T _J max		150	°C
V(CCOD ==== -===	Power dissipation		$(T_J max - T_A) / \theta_{JA}$	°C
VSSOP package	θ _{JA} thermal impedance		121.1	°C/W
Maximum VSSOP reflow t	emperature ⁽³⁾		260	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Limit the duration for this current to less than 10 ms.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-65	150	ů
V _(ESD) Ele	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-1000 1000		
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-250	250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{+VA}	Analog power-supply voltage	4.5	5.0	5.5	V
V_{+VBD}	Digital I/O-supply voltage	2.375	3.3	5.5	V
V _{ref}	Reference voltage	2.25	4.096	$V_{+VA} + 0.1$	V
f _(SCLK)	SCLK frequency			25	MHz
T _A	Operating temperature range	-40		85	°C

⁽³⁾ The device is rated at MSL2, 260°C, as per the JSTD-020 specification.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information

		ADS8339	
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	UNIT
		10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	121.1	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	29.4	
$R_{\theta JB}$	Junction-to-board thermal resistance	32.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.7	C/VV
ΨЈВ	Junction-to-board characterization parameter	31.5	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

All minimum and maximum specifications are at $T_A = -40^{\circ}\text{C}$ to 85°C, +VA = 5 V, +VBD = 5 V to 2.375 V, $V_{ref} = 4$ V, and $f_{sample} = 250$ kHz, unless otherwise noted. Typical specifications are at $T_A = 25^{\circ}\text{C}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG	SINPUT					
	Full-scale input span ⁽¹⁾	+IN - (-IN)	0		V_{ref}	V
	0 " ' '	+IN	-0.1		V _{ref} + 0.1	V
	Operating input range	-IN	-0.1		0.1	V
Ci	Input capacitance			59		pF
	Input leakage current	During acquisition		1000		рА
SYSTEM	PERFORMANCE					
	Resolution			16		Bits
NMC	No missing codes		16			Bits
INL	Integral linearity (2)		-2.0	±1.2	2.0	LSB ⁽³⁾
DNL	Differential linearity	At 16-bit level	-0.99	±0.65	1.0	LSB
Eo	Offset error ⁽⁴⁾		-1.5	±0.3	1.5	mV
E _G	Gain error		-0.03	±0.0045	0.03	%FSR
CMRR	Common-mode rejection ratio	With common-mode input signal = 200 mV _{PP} at 250 kHz		78		dB
PSRR	Power-supply rejection ratio	At FFF0h output code		80		dB
	Transition noise			0.5		LSB
SAMPLIN	NG DYNAMICS					
t _{cnv}	Conversion time		500 ⁽⁵⁾		3300	ns
t _{acq}	Acquisition time		700			ns
	Maximum throughput rate with or without latency				0.25	MHz
	Aperture delay			2.5		ns
	Aperture jitter, RMS			6		ps
	Step response	Settling to 16-bit accuracy		600		ns
	Overvoltage recovery	Settling to 16-bit accuracy		600		ns

- (1) Ideal input span, does not include gain or offset error.
- (2) This parameter is the endpoint INL, not best-fit INL.
- (3) LSB = least significant bit.
- (4) Measured relative to actual measured reference.
- (5) Refer to the CS Mode for a 3-Wire Interface section in the Device Functional Modes.

Electrical Characteristics (continued)

All minimum and maximum specifications are at $T_A = -40$ °C to 85°C, +VA = 5 V, +VBD = 5 V to 2.375 V, $V_{ref} = 4$ V, and $f_{sample} = 250$ kHz, unless otherwise noted. Typical specifications are at $T_A = 25$ °C.

	PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DYNAMI	C CHARACTERISTICS			,			
TUD	T (11)	(6)	$V_{IN} = 0.4$ dB below f_S at 1 kHz, $V_{ref} = 5$ V		-111		dB
THD	Total harmonic distortion	on ^(o)	$V_{IN} = 0.4$ dB below f_S at 10 kHz, $V_{ref} = 5$ V		-106		dB
CNID	Cirrol to mains anti-		$V_{IN} = 0.4$ dB below f_S at 1 kHz, $V_{ref} = 5$ V		93.9		dB
SNR	Signal-to-noise ratio		$V_{IN} = 0.4$ dB below f_S at 10 kHz, $V_{ref} = 5$ V		93.6		dB
SINAD	Circulta raisa y diata	-4!	$V_{IN} = 0.4$ dB below f_S at 1 kHz, $V_{ref} = 5$ V		93.8		dB
SINAD	Signal-to-noise + disto	ntion	V_{IN} = 0.4 dB below f _S at 10 kHz, V_{ref} = 5 V		93.4		dB
CEDD	0		$V_{IN} = 0.4$ dB below f_S at 1 kHz, $V_{ref} = 5$ V		113		dB
SFDR	Spurious-free dynamic	range	V_{IN} = 0.4 dB below f _S at 10 kHz, V_{ref} = 5 V		107		dB
	-3-dB small-signal bar	ndwidth			15		MHz
EXTERN	AL REFERENCE INPUT						
V _{ref}	Input range			2.25	4.096	VA + 0.1	V
	Reference input current ⁽⁷⁾		During conversion		75		μA
POWER-	SUPPLY REQUIREMENT	S				*	
	D	+VBD		2.375	3.3	5.5	V
	Power-supply voltage	+VA		4.5	5	5.5	V
I _{CC}	Supply current	+VA	250-kHz sample rate		3.5	4.0	mA
P _{VA}	Power dissipation		+VA = 5 V, 250-kHz sample rate		17.5	20.0	mW
IVA _{pd}	Device power-down cu	ırrent ⁽⁸⁾	+VA = 5 V		50	300	nA
LOGIC F	AMILY CMOS						
V _{IH}	High-level input voltage	е	I _{IH} = 5 μA	0.7 × VBD		VBD + 0.3	V
V _{IL}	Low-level input voltage		$I_{IL} = 5 \mu A$	-0.3		0.3 × VBD	V
V _{OH}	High-level output voltage		I _{OH} = 2 TTL loads	VBD - 0.3		V_{BD}	V
V _{OL}	Low-level output voltage	је	I _{OL} = 2 TTL loads	0		0.4	V
TEMPER	ATURE RANGE			·			
T _A	Operating free-air temp	perature		-40		85	°C
			+				

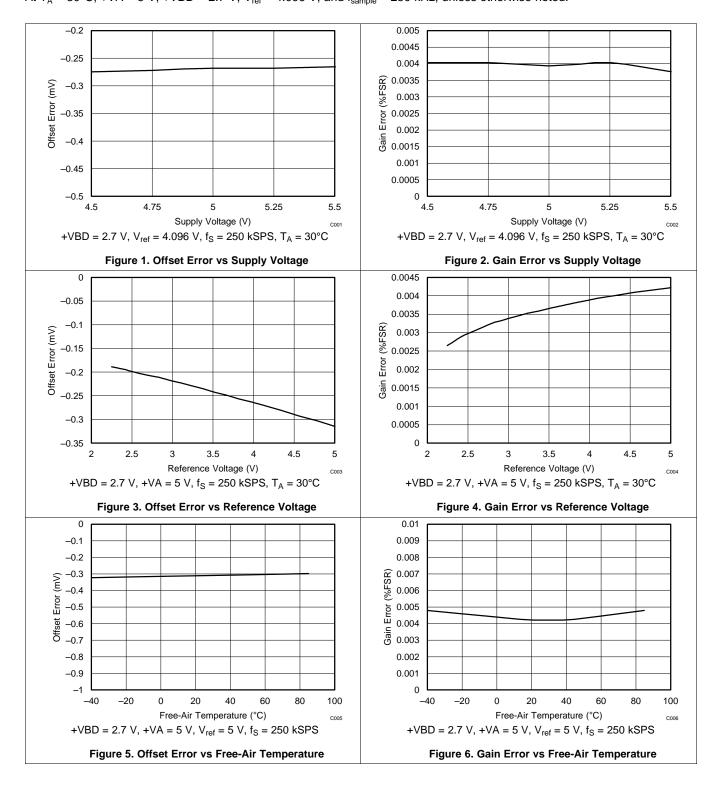
⁶⁾ Calculated on the first nine harmonics of the input frequency.

⁽⁷⁾ Can vary by ±20%.

⁽⁸⁾ The device automatically enters a power-down state at the end of every conversion and remains in a power-down state as long as the device is in an acquisition phase.

7.6 Timing Requirements

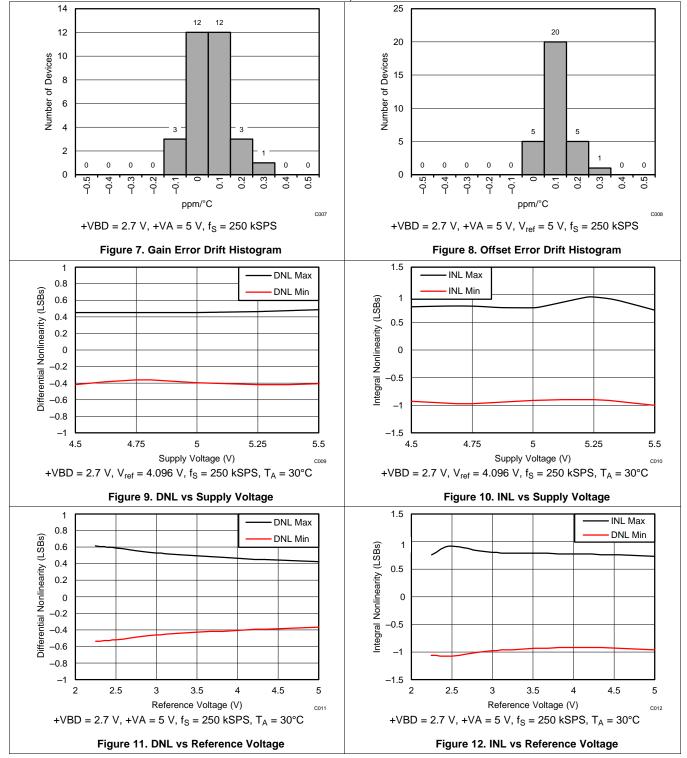
All specifications are at $T_A = -40^{\circ}\text{C}$ to 85°C, +VA = 5 V, and 5.5 V > +VBD \geq 2.375 V, unless otherwise noted.


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SAMP	LING AND CONVERSION					
t _{acq}	Acquisition time (see Figure 47, Figure 49, Figure 50, Figure 53)		700			ns
t _{cnv}	Conversion time (see Figure 47, Figure 49, Figure 50, Figure 53)		500 ⁽¹⁾		3300	ns
t _{cyc}	Time between conversions (see Figure 47, Figure 49, Figure 50, Figure 53)		4000			ns
t ₁	Pulse duration, CONVST high (see Figure 47, Figure 49)		10			ns
t ₆	Pulse duration, CONVST low (see Figure 50, Figure 53, Figure 55)		20			ns
INPUT	S AND OUTPUTS (I/O)					
t _{clk}	SCLK period (see Figure 47, Figure 49, Figure 50, Figure 53, Figure 55, Figure 57)		40.0			ns
t _{clkl}	SCLK low time (see Figure 47, Figure 49, Figure 50, Figure 53, Figure 55, Figure 57)		0.45		0.55	t _{clk}
t _{clkh}	SCLK high time (see Figure 47, Figure 49, Figure 50, Figure 53, Figure 55, Figure 57)		0.45		0.55	t _{clk}
t ₂	SCLK falling edge to data remains valid (see Figure 47, Figure 49, Figure 50, Figure 53, Figure 55, Figure 57)		5			ns
	SCLK falling edge to next data valid delay (see Figure 47,	5.5 V ≥ +VBD ≥ 4.5 V			16	ns
t ₃	Figure 49, Figure 50, Figure 53, Figure 55, Figure 57)	4.5 V > +VBD ≥ 2.375 V			24	ns
	CONVST or SDI low to MSB valid	5.5 V ≥ +VBD ≥ 4.5 V			15	ns
t _{en}	(see Figure 47, Figure 50)	4.5 V > +VBD ≥ 2.375 V			22	ns
	CONVST or SDI high or last SCLK falling edge to SDO	5.5 V ≥ +VBD ≥ 4.5 V			12	ns
t _{dis}	3-state (CS mode) (see Figure 47, Figure 49, Figure 50, Figure 53)	4.5 V > +VBD ≥ 2.375 V			15	ns
t ₄	SDI valid setup time to CONVST rising edge (see Figure 50, Figure 53)		5			ns
t ₅	SDI valid hold time from CONVST rising edge (see Figure 50, Figure 53)		5			ns
t ₇	SCLK valid setup time to CONVST rising edge (see Figure 55)		5			ns
t ₈	SCLK valid hold time from CONVST rising edge (see Figure 55)		5			ns

⁽¹⁾ Refer to the $\overline{\text{CS}}$ Mode for a 3-Wire Interface subsection in the Device Functional Modes section.

TEXAS INSTRUMENTS

7.7 Typical Characteristics


At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.

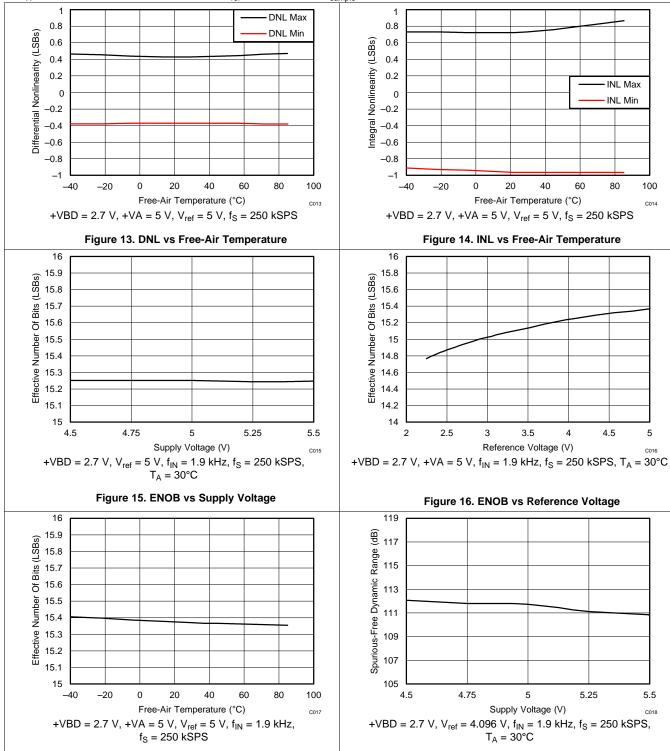
Typical Characteristics (continued)

At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.

TEXAS INSTRUMENTS

Typical Characteristics (continued)

At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.



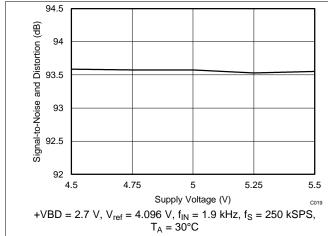

Figure 17. ENOB vs Free-Air Temperature

Figure 18. SFDR vs Supply Voltage

Typical Characteristics (continued)

At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.

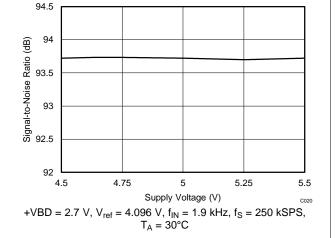
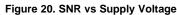
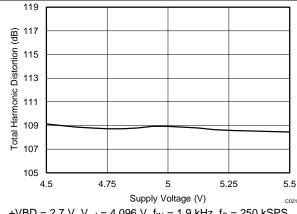
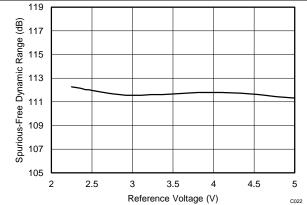





Figure 19. SINAD vs Supply Voltage

+VBD = 2.7 V, V_{ref} = 4.096 V, f_{IN} = 1.9 kHz, f_{S} = 250 kSPS, T_{A} = 30°C

+VBD = 2.7 V, +VA = 5 V, f_{IN} = 1.9 kHz, f_{S} = 250 kSPS, T_{A} = 30°C

Figure 21. THD vs Supply Voltage

Figure 22. SFDR vs Reference Voltage

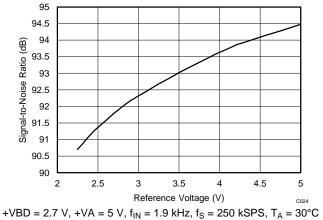
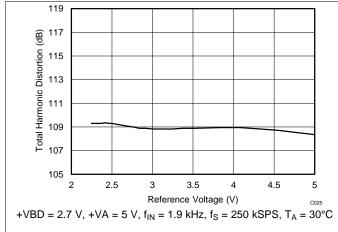



Figure 24. SNR vs Reference Voltage

TEXAS INSTRUMENTS

Typical Characteristics (continued)

At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.

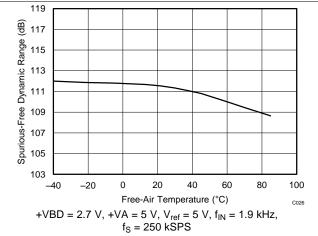
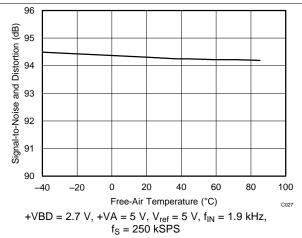



Figure 25. THD vs Reference Voltage

Figure 26. SFDR vs Free-Air Temperature

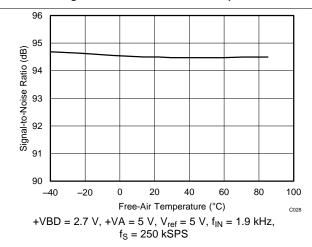
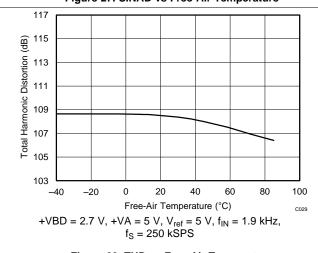
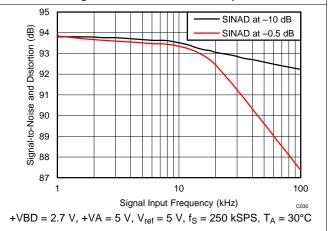
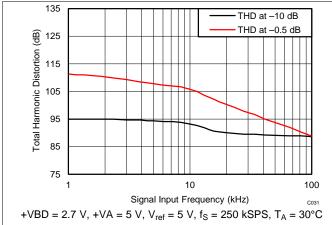
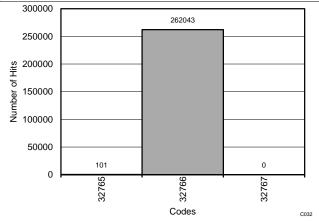



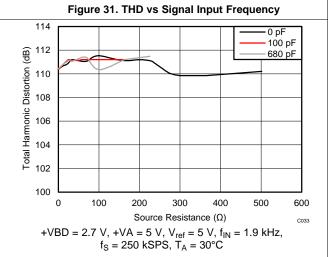
Figure 27. SINAD vs Free-Air Temperature

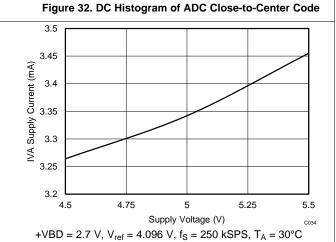
Figure 28. SNR vs Free-Air Temperature




Figure 29. THD vs Free-Air Temperature


Figure 30. SINAD vs Signal Input Frequency


Typical Characteristics (continued)


At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.

+VBD = 2.7 V, +VA = 5 V, V_{ref} = 5 V, f_S = 250 kSPS, T_A = 30°C

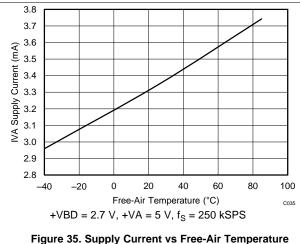
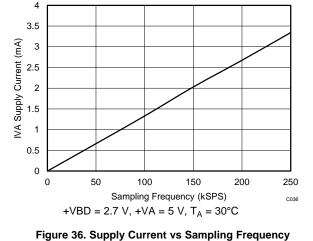
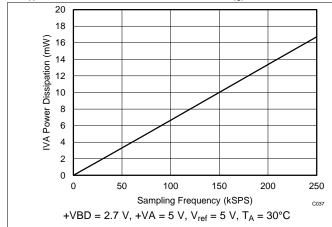




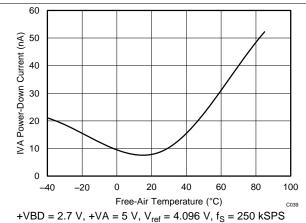
Figure 34. Supply Current vs Supply Voltage



NSTRUMENTS

Typical Characteristics (continued)

At $T_A = 30$ °C, +VA = 5 V, +VBD = 2.7 V, $V_{ref} = 4.096$ V, and $f_{sample} = 250$ kHz, unless otherwise noted.


14

(nA) 13 Current 12 11 Power-Down 10 9 8 7 ₹ 6 5 4.5 4.75 5.25 Supply Voltage (V) $+VBD = 2.7 \text{ V}, \text{ V}_{ref} = 4.096 \text{ V}, \text{ f}_{S} = 250 \text{ kSPS}, \text{ T}_{A} = 30^{\circ}\text{C}$

Figure 37. Power Dissipation vs Sampling Frequency

Figure 38. Power-Down Current vs Supply Voltage

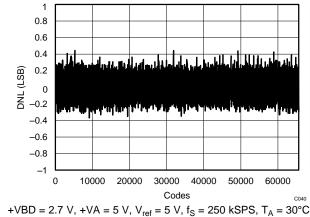


Figure 39. Power-Down Current vs Free-Air Temperature

Figure 40. DNL Error vs Output Code

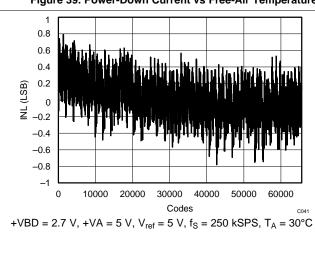


Figure 41. INL Error vs Output Code

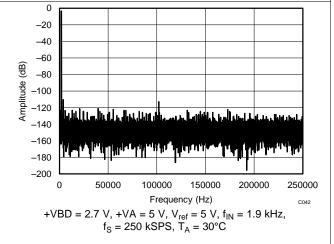


Figure 42. Signal Strength vs Frequency

8 Parametric Measurement Information

8.1 Timing Diagrams

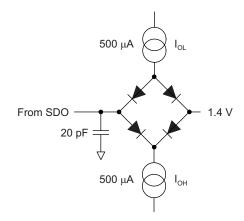


Figure 43. Digital Interface Timing Load Circuit

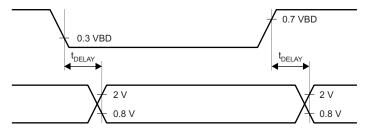
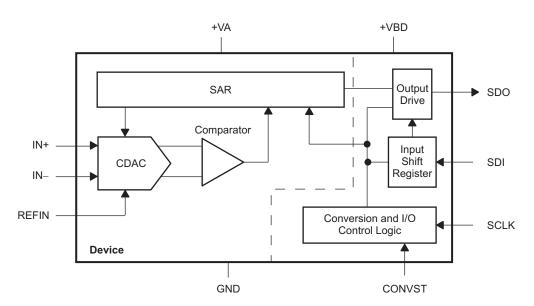


Figure 44. Timing Voltage Levels

9 Detailed Description

9.1 Overview


The ADS8339 is a 250-kSPS, low-power, successive-approximation register (SAR), analog-to-digital converter (ADC) that uses an external reference. The architecture is based on charge redistribution, which inherently includes a sample-and-hold function.

The ADS8339 is a single-channel device. The analog input is provided to two input pins: +IN and -IN, where -IN is a pseudo-differential input and has a limited range of ± 0.1 V. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both the +IN and -IN inputs are disconnected from any internal functions.

The device has an internal clock that is used to run the conversion. Therefore, the conversion requires a fixed amount of time. After a conversion is completed, the device reconnects the sampling capacitors to the +IN and -IN pins and the device is in the acquisition phase. During this phase, the device is powered down and conversion data can be read.

The device digital output is available in SPI-compatible format. The device easily interfaces with microprocessors, digital signal processors (DSPs), or field-programmable gate arrays (FPGAs).

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Analog Input

When the converter samples the input, the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array. The differential signal range is [(+IN) - (-IN)]. The voltage on +IN is limited between GND - 0.1 V and V_{ref} + 0.1 V and the voltage on -IN is limited between GND - 0.1 V to GND + 0.1 V. The input rejects any small signal that is common to both the +IN and -IN input.

The (peak) input current through the analog input depends upon a number of factors: sample rate, input voltage, and source impedance. The current into the device charges the internal capacitor array (as shown in Figure 45) during the sample period. When this capacitance is fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (59 pF) to a 18-bit settling level within the minimum acquisition time. When the converter goes into hold mode, the input impedance is greater than 1 G Ω .

Care must be taken regarding the absolute analog input voltage. To maintain linearity of the converter, the +IN input, -IN input, and span [+IN - (-IN)] must be within the limits specified. Outside of these ranges, the converter linearity may not meet specifications.

Care must also be taken to ensure that the output impedance of the sources driving the +IN input and the -IN input is matched. If this output impedance is not well matched, the two inputs can have different settling times. This mismatch may result in an offset error, gain error, and linearity error that changes with temperature and input voltage. Typically, the -IN input is grounded at the input decoupling capacitor.

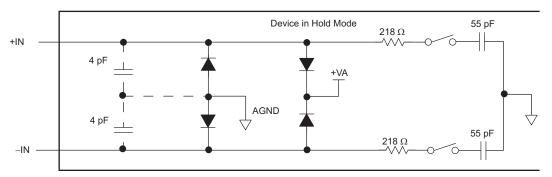


Figure 45. Input Equivalent Circuit

9.3.2 Power Saving

The device has an auto power-down feature. The device powers down at the end of every conversion. The input signal is acquired on sampling capacitors when the device is in power-down state. At the same time, the conversion results are available for reading. The device powers up automatically at the start of the conversion. The conversion runs on an internal clock and requires a fixed time. As a result, device power consumption is directly proportional to the speed of operation.

Feature Description (continued)

9.3.3 Digital Output

As discussed in the *Description* and *Timing Diagrams* sections, the device digital output is SPI-compatible. Table 1 lists the output codes corresponding to various analog input voltages.

Table 1. Output Codes

DESCRIPTION	ANALOG VALUE (V)	DIGITAL OUTPUT STRAIGHT BINARY		
		BINARY CODE	HEX CODE	
Full-scale range	V_{ref}	_	_	
Least significant bit (LSB)	V _{ref} / 65536	_	_	
Positive full-scale	+V _{ref} - 1 LSB	1111 1111 1111 1111	FFFF	
Mid-scale	V _{ref} / 2	1000 0000 0000 0000	8000	
Mid-scale – 1 LSB	V _{ref} / 2 – 1 LSB	0111 1111 1111 1111	7FFF	
Zero	0	0000 0000 0000 0000	0000	

9.3.4 SCLK Input

The device uses SCLK for the serial data output. Data are read after the conversion is complete and the device is in acquisition phase. A free-running SCLK can be used, but TI recommends stopping the clock during conversion time because the clock edges can couple with the internal analog circuit that, in turn, can affect the conversion results.

9.4 Device Functional Modes

The ADS8339 supports three interface options. Under each option, the device can be used with or without a busy indicator.

- 1. \overline{CS} mode for a 3-wire interface (with or without a busy indicator): This mode is useful for applications where a single ADS8339 device is connected to the digital host.
- 2. $\overline{\text{CS}}$ mode for a 4-wire interface (with or without a busy indicator): This mode can be used when more than one ADS8339 device is connected to the digital host on a common data bus.
- 3. Daisy-chain mode (with or without a busy indicator): This mode is provided to connect multiple ADS8339 devices in a chain (such as a shift register) and is useful when reducing the number of signal traces on the board or the component count.

The busy indicator is generated as the bit preceding the 16-bit serial data.

9.4.1 CS Mode for a 3-Wire Interface

CS mode is selected if SDI is high at the CONVST rising edge. As previously indicated, the device can be used without or with a busy indicator. This section discusses this interface and the two options in detail.

9.4.1.1 3-Wire CS Mode Without a Busy Indicator

In a 3-wire $\overline{\text{CS}}$ mode, SDI is permanently tied to +VBD, as shown in Figure 46. CONVST functions like $\overline{\text{CS}}$. As shown in Figure 47, the device samples the input signal and enters the conversion phase on the CONVST rising edge. SDO goes to 3-state at the same time. Conversion is done with the internal clock and continues regardless of the state of CONVST. As a result, CONVST (functioning as $\overline{\text{CS}}$) can be brought low after the start of the conversion to select other devices on the board.

CONVST must return to high before the minimum conversion time (t_{cnv_min} in the *Timing Requirements* table) elapses. A high level on CONVST at the end of the conversion ensures the device does not generate a busy indicator.

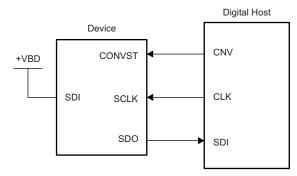


Figure 46. Connection Diagram: 3-Wire CS Mode without a Busy Indicator (SDI = 1)

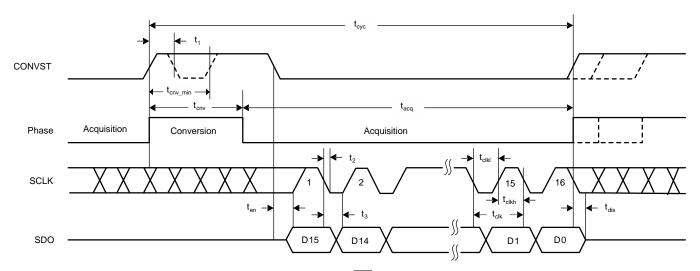


Figure 47. Interface Timing Diagram: 3-Wire CS Mode Without a Busy Indicator (SDI = 1)

When the conversion is complete, the device enters acquisition phase and powers down. On the CONVST falling edge, SDO comes out of 3-state and the device outputs the MSB of the data. Afterwards, the device outputs the next lower data bits on every subsequent SCLK falling edge. A minimum of 15 SCLK falling edges must occur during the low period of CONVST. SDO goes to 3-state after the 16th SCLK falling edge or when CONVST is high, whichever occurs first.

9.4.1.2 3-Wire CS Mode With a Busy Indicator

As stated in the 3-Wire \overline{CS} Mode Without a Busy Indicator section, SDI is permanently tied to +VBD, as shown in Figure 48. CONVST functions like \overline{CS} . As shown in Figure 49, the device samples the input signal and enters the conversion phase on the CONVST rising edge. SDO goes to 3-state at the same time. Conversion is done with the internal clock and continues regardless of the state of CONVST. As a result, CONVST (functioning as \overline{CS}) can be toggled after the start of the conversion to select other devices on the board.

CONVST must return to low before the minimum conversion time (t_{cnv_min} in the *Timing Requirements* table) elapses and remains low until the end of the maximum conversion time. Ā low level on the CONVST input at the end of a conversion ensures the device generates a busy indicator (low level on SDO). For fast settling, a 10-k Ω pull-up resistor tied to +VBD is recommended to provide the necessary current to drive SDO low.

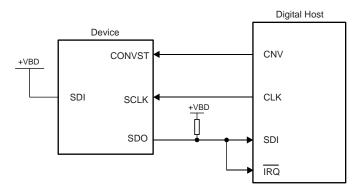


Figure 48. Connection Diagram: 3-Wire CS Mode With a Busy Indicator

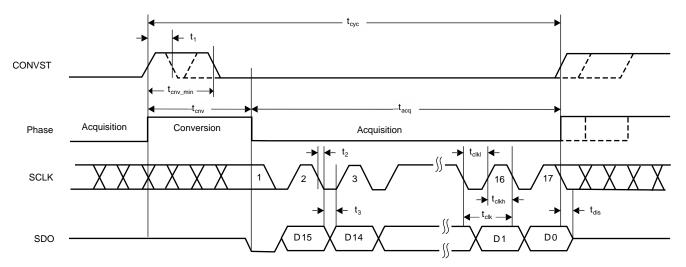


Figure 49. Interface Timing Diagram: 3-Wire CS Mode With a Busy Indicator (SDI = 1)

When the conversion is complete, the device enters acquisition phase, powers down, forces SDO out of 3-state, and outputs a busy indicator bit (low level). The device outputs the MSB of data on the first SCLK falling edge after the conversion is complete and continues to output the next lower data bits on every subsequent SCLK falling edge. A minimum of 16 SCLK falling edges must occur during the low period of CONVST. SDO goes to 3-state after the 17th SCLK falling edge or when CONVST is high, whichever occurs first.

9.4.2 CS Mode for a 4-Wire Interface

This interface is similar to the \overline{CS} mode for 3-wire interface except that SDI is controlled by the digital host. This section discusses in detail the interface option with and without a busy indicator.

9.4.2.1 4-Wire CS Mode Without a Busy Indicator

As mentioned previously, in order to select \overline{CS} mode, SDI must be high at the time of the CONVST rising edge. Unlike in the 3-wire interface option, SDI is controlled by the digital host and functions like \overline{CS} . As shown in Figure 50, SDI goes to a high level before the CONVST rising edge. When SDI is high, the CONVST rising edge selects \overline{CS} mode, forces SDO to 3-state, samples the input signal, and the device enters the conversion phase.

In the 4-wire interface option, CONVST must be at a high level from the start of the conversion until all data bits are read. Conversion is done with the internal clock and continues regardless of the state of SDI. As a result, SDI (functioning as \overline{CS}) can be brought low to select other devices on the board.

SDI must return to high before the minimum conversion time (t_{cnv min} in the *Timing Requirements* table) elapses.

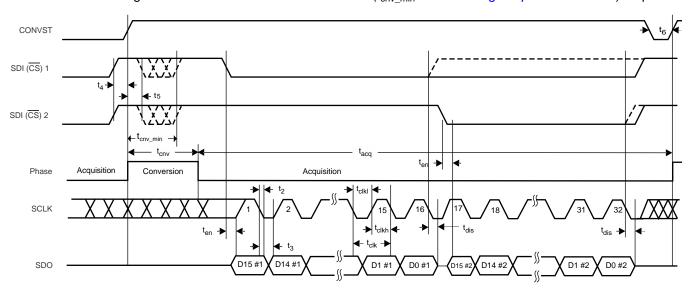


Figure 50. Interface Timing Diagram: 4-Wire CS Mode Without a Busy Indicator

When the conversion is complete, the device enters the acquisition phase and powers down. An SDI falling edge can occur after the maximum conversion time (t_{cnv} in the *Timing Requirements* table). Note that SDI must be high at the end of the conversion so that the device does not generate a busy indicator. The SDI falling edge brings SDO out of 3-state and the device outputs the MSB of the data. Subsequently, the device outputs the next lower data bits on every subsequent SCLK falling edge. SDO goes to 3-state after the 16th SCLK falling edge or when SDI (\overline{CS}) is high, whichever occurs first. As shown in Figure $\underline{51}$, multiple devices can be chained on the same data bus. In this case, the second device SDI (functioning as \overline{CS}) can go low after the first device data are read and the device 1 SDO is in 3-state.

Care must be taken so that CONVST and SDI are not both low at any time during the cycle.

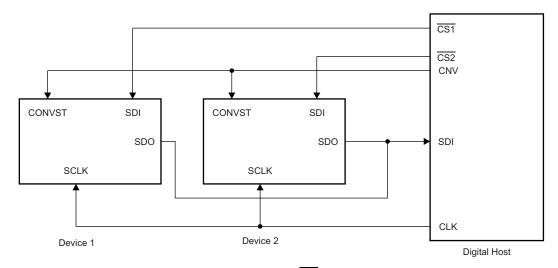


Figure 51. Connection Diagram: 4-Wire CS Mode Without a Busy Indicator

9.4.2.2 4-Wire CS Mode With a Busy Indicator

As mentioned previously, in order to select \overline{CS} mode, SDI must be high at the time of the CONVST rising edge. In this mode of operation, the connection is made as shown in Figure 52.

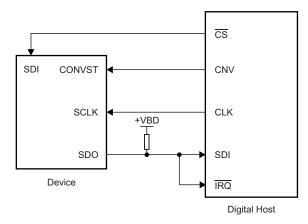


Figure 52. Connection Diagram: 4-Wire CS Mode With a Busy Indicator

Unlike in the 3-wire interface option, SDI is controlled by the digital host and functions like \overline{CS} . As shown in Figure 53, SDI goes to a high level before the CONVST rising edge. When SDI is high, the CONVST rising edge selects the \overline{CS} mode, forces SDO to 3-state, samples the input signal, and the device enters the conversion phase.

In the 4-wire interface option, CONVST must be at a high level from the start of the conversion until all data bits are read. Conversion is done with the internal clock and continues regardless of the state of SDI. As a result, SDI (functioning as \overline{CS}) can be toggled to select other devices on the board.

SDI must return low before the minimum conversion time (t_{cnv_min} in the *Timing Requirements* table) elapses and must remain low until the end of the maximum conversion time. A low level on the SDI input at the end of a conversion ensures the device generates a busy indicator (low on SDO). For fast settling, a 10-k Ω pull-up resistor tied to +VBD is recommended to provide the necessary current to drive SDO low.

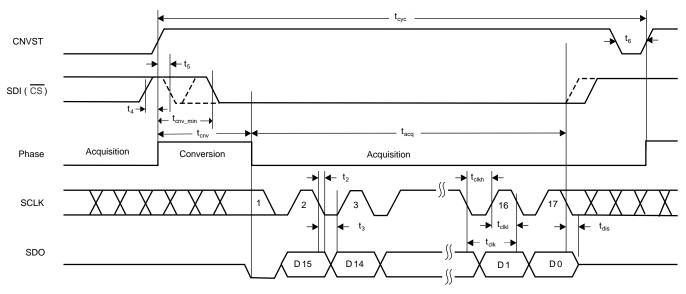


Figure 53. Interface Timing Diagram: 4-Wire CS Mode With a Busy Indicator

When the conversion is complete, the device enters acquisition phase, powers down, forces SDO out of 3-state, and outputs a busy indicator bit (low level). The device outputs the MSB of the data on the first SCLK falling edge after the conversion is complete and continues to output the next lower data bits on every subsequent SCLK falling edge. SDO goes to 3-state after the 17th SCLK falling edge or when SDI (CS) is high, whichever occurs first.

Care must be taken so that CONVST and SDI are not both low at any time during the cycle.

9.4.3 Daisy-Chain Mode

Daisy-chain mode is selected if SDI is low at the time of the CONVST rising edge. This mode is useful to reduce wiring and hardware requirements (such as digital isolators in applications where multiple ADC devices are used). In this mode, all devices are connected in a chain (the SDO of one device is connected to the SDI of the next device) and data transfer is analogous to a shift register.

As in $\overline{\text{CS}}$ mode, this mode offers operation with or without a busy indicator. This section discusses these interface options in detail.

9.4.3.1 Daisy-Chain Mode Without a Busy Indicator

A connection diagram for this mode is shown in Figure 54. The SDI for device 1 is tied to ground and the SDO of device 1 goes to the SDI of device 2, and so on. The SDO of the last device in the chain goes to the digital host. CONVST for all devices in the chain are tied together. There is no CS signal in this mode.

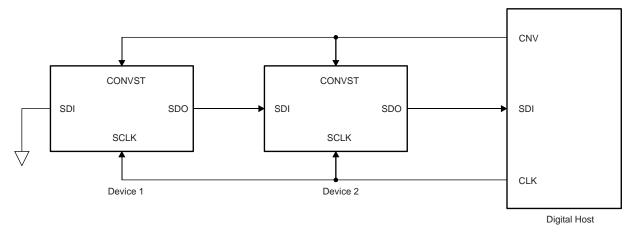


Figure 54. Connection Diagram: Daisy-Chain Mode Without a Busy Indicator (SDI = 0)

The device SDO is driven low when SDI low selects daisy-chain mode and the device samples the analog input and enters the conversion phase. SCLK must be low at the CONVST rising edge (as shown in Figure 55) so that the device does not generate a busy indicator at the end of the conversion. In this mode, CONVST remains high from the start of the conversion until all data bits are read. When started, the conversion continues regardless of the state of SCLK.

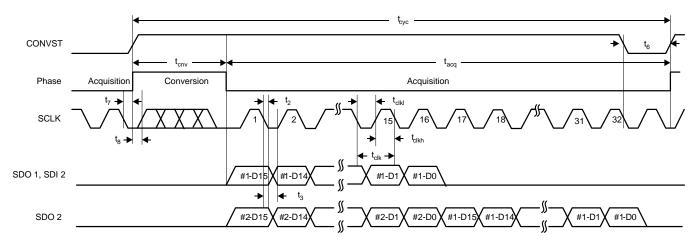


Figure 55. Interface Timing Diagram: Daisy-Chain Mode Without a Busy Indicator

At the end of the conversion, every device in the chain initiates an output of its conversion data starting with the MSB bit. Furthermore, the next lower data bit is output on every subsequent SCLK falling edge. While every device outputs its data on the SDO pin, each device also receives the previous device data on the SDI pin (other than device 1) and stores the data in the shift register. The device latches incoming data on every SCLK falling edge. The SDO of the first device in the chain goes low after the 16th SCLK falling edge. All subsequent devices in the chain output the stored data from the previous device in MSB-first format immediately following their own data word. 16 x N clocks must read data for N devices in the chain.

9.4.3.2 Daisy-Chain Mode With a Busy Indicator

A connection diagram for this mode is shown in Figure 56. The SDI for device 1 is wired to its CONVST and the CONVST for all devices in the chain are wired together. The SDO of device 1 goes to the SDI of device 2, and so on. The SDO of the last device in the chain goes to the digital host. There is no CS signal in this mode.

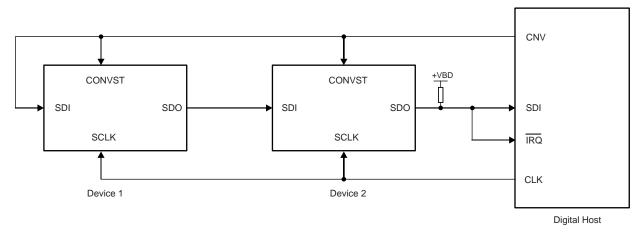


Figure 56. Connection Diagram: Daisy Chain Mode With a Busy Indicator (SDI = 0)

On the CONVST rising edge, all devices in the chain sample the analog input and enter the conversion phase. For the first device, SDI and CONVST are wired together and the setup time of SDI to the CONVST rising edge is adjusted so that the device still enters daisy-chain mode even though SDI and CONVST rise together. SCLK must be high at the CONVST rising edge (as shown in Figure 57) so that the device generates a busy indicator at the end of the conversion. In this mode, CONVST remains high from the start of the conversion until all data bits are read. When started, the conversion continues regardless of the state of SCLK.

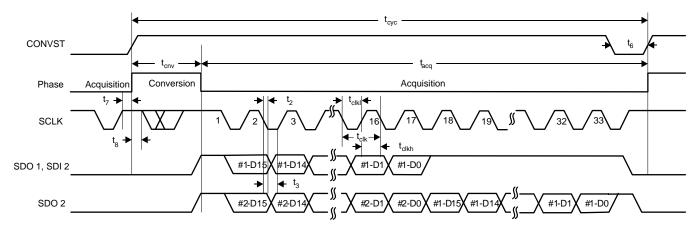


Figure 57. Interface Timing Diagram: Daisy Chain Mode With a Busy Indicator

At the end of the conversion, all devices in the chain generate busy indicators. On the first SCLK falling edge following the busy indicator bit, all devices in the chain output their conversion data starting with the MSB bit. Afterwards, the next lower data bit is output on every SCLK falling edge. While every device outputs its data on the SDO pin, each device also receives the previous device data on the SDI pin (except for device 1) and stores the data in the shift register. Each device latches incoming data on every SCLK falling edge. The SDO of the first device in the chain goes high after the 17th SCLK falling edge. All subsequent devices in the chain output the stored data from the pervious device in MSB-first format immediately following their own data word. $16 \times N + 1$ clock pulses are required to read data for N devices in the chain.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

To obtain the best performance from a high-precision successive approximation register (SAR) analog-to-digital converter (ADC), the reference driver and the input driver circuit must be optimized. This section details general principles for designing such drivers, followed by typical application circuits designed using the ADS8339.

10.1.1 ADC Reference Driver

A simplified circuit diagram for such a reference driver is shown in Figure 58. The external voltage reference must provide a low-noise, low-drift, highly-accurate voltage for the ADC reference input pin. The output broadband noise of most voltage references can be in the order of a few hundred μV_{RMS} , which degrades the conversion result. To prevent any noticeable degradation in the noise performance of the ADC, the noise from the voltage reference must be filtered. This filtering can be done by using a low-pass filter with a cutoff frequency of a few hundred hertz.

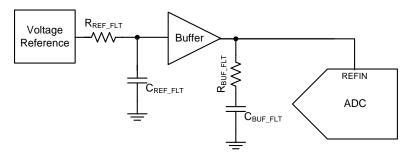


Figure 58. Reference Driver Schematic

During the conversion process, the ADS8339 switches binary-weighted capacitors onto the reference pin (REFIN). The switching frequency is proportional to the internal conversion clock frequency. The dynamic charge required by the capacitors is a function of the ADC input voltage and the reference voltage. Design the reference driver circuit such that the dynamic loading of the capacitors can be handled without degrading the noise and linearity performance of the ADC.

When the noise of the voltage reference is band-limited the next step is to design a reference buffer that can drive the dynamic load posed during the conversion cycle. The buffer must regulate the voltage at the REFIN pin of the device such that the reference voltage to the ADC stays within 1 LSB of an error at the start of each conversion. This condition necessitates the use of a large capacitor, C_{BUF_FLT} (as shown in Figure 58). The amplifier selected as the buffer must have very low offset, temperature drift, and output impedance to drive the internal binary-weighted capacitors at the REFIN pin of the ADC without any stability issues.

Application Information (continued)

10.1.1.1 Reference Driver Circuit

A more detailed circuit shows the schematic (as shown in Figure 59) of a complete reference driver circuit that generates 4.5 V dc using a single 5-V supply. This circuit can drive the reference pin of the ADS8339 at sampling rates of up to 250 kSPS. The 4.5-V reference voltage is generated using a high-precision, low-noise REF5045. The output broadband noise of the reference is further filtered using a low-pass filter with a 3-dB cutoff frequency of 16 Hz.

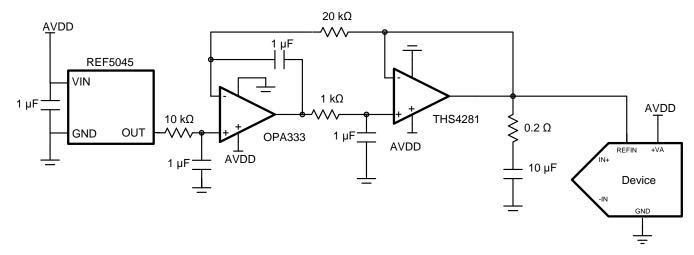


Figure 59. Reference Driver Circuit Schematic

The driver also includes a THS4281 and an OPA333. This composite architecture provides superior ac and dc performance at reduced power levels compared to a single high-performance amplifier.

The THS4281 is a high-bandwidth amplifier with very low output impedance of 1 Ω at a frequency of 1 MHz. The low output impedance makes the THS4281 a good choice for driving large capacitive loads. The high offset and drift specifications of the THS4281 are corrected using a dc-correcting amplifier (OPA333) inside the feedback loop. Thus, the composite scheme also inherits the extremely low offset and temperature drift specifications of the OPA333.

10.1.2 ADC Input Driver

The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and an RC filter. An amplifier is used for signal conditioning the input voltage. The low output impedance of the amplifier functions as a buffer between the signal source and the sampling capacitor input of the ADC. The RC filter functions as an antialiasing filter that band-limits the wideband noise contributed by the front-end circuit. The RC filter also helps attenuate the sampling capacitor charge injection from the switched-capacitor input stage of the ADC. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a high-precision, 16-bit ADC such as the ADS8339.

(2)

Application Information (continued)

10.1.2.1 Input Amplifier Selection

Selection criteria for the input amplifier is dependent on the input signal type as well as performance goals of the data acquisition system. Some key specifications to consider when selecting an amplifier to drive the inputs of the ADS8339 are:

• Small-signal bandwidth. The small-signal bandwidth of the input amplifier must be as high as possible for a given power budget. Higher bandwidth reduces the closed-loop output impedance of the amplifier, thus allowing the amplifier to more easily drive the RC filter (with low cutoff frequency) at the inputs of the ADC. Higher bandwidth also minimizes harmonic distortion at higher input frequencies. In order to maintain overall stability, the amplifier bandwidth must satisfy Equation 1:

$$Unity - Gain \ Bandwidth \ge 4 \times \left(\frac{1}{2\pi \times (R_{FLT} + R_{FLT}) \times C_{FLT}}\right)$$
(1)

Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in
the overall SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the
data acquisition system is not limited by the front-end circuit, keep the total noise contribution from the frontend circuit below 20% of the input-referred noise of the ADC. Noise from the input driver circuit gets bandlimited by the RC filter, as given in Equation 2.

$$N_G \times \sqrt{2} \times \sqrt{\left(\frac{V_{1\!\!\!/_{\!\!f}-AMP_PP}}{6.6}\right)^2 + e_{n_RMS}^2 \times \frac{\pi}{2} \times f_{-3dB}} \quad \leq \quad \frac{1}{5} \times \frac{V_{REF}}{\sqrt{2}} \times 10^{-\left(\frac{SNR(dB)}{20}\right)}$$

where:

- $V_{1/f AMP PP}$ is the peak-to-peak flicker noise in μV ,
- $e_{n,RMS}$ is the amplifier broadband noise density in nV/\sqrt{Hz} ,
- f_{-3dB} is the 3-dB bandwidth of the RC filter, and
- N_G is the noise gain of the front-end circuit, which is equal to 1 in a buffer configuration.
- Distortion. The ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of thumb, to ensure that the distortion performance of the data acquisition system is not limited by the front-end circuit, the distortion of the input driver must be at least 10 dB lower than the distortion of the ADC, as given in Equation 3.

$$THD_{AMP} \leq THD_{ADC} - 10 (dB)$$
(3)

Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal
must settle to a 16-bit accuracy level at the device inputs during the acquisition time. This condition is critical
in maintaining the overall linearity of the ADC. Typically, the amplifier data sheets specify the output settling
performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 16-bit accuracy.
Therefore, the settling behavior of the input driver must always be verified by TINA™-SPICE simulations
before selecting the amplifier.

10.1.2.2 Antialiasing Filter

Converting analog-to-digital signals requires sampling the input signal at a constant rate. Any frequency content in the input signal that is beyond half the sampling frequency is folded back into the low-frequency spectrum, which is undesirable. This process is called *aliasing*. An analog antialiasing filter must be used to remove the high-frequency component (beyond half the sampling frequency) from the input signal before being sampled by the ADC.

An antialiasing filter is designed as a low-pass, RC filter for which the 3-dB bandwidth is optimized based on specific application requirements. For dc signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow for accurate settling of the signal at the input of the ADC. For ac signals, keep the filter bandwidth as low as possible to band-limit the noise fed into the ADC, which improves the signal-to-noise ratio (SNR) performance of the system.

Application Information (continued)

The RC filter also helps absorb the sampling charge injection from the switched-capacitor input of the ADC. A filter capacitor, C_{FLT} , is connected across the inputs of the ADC (as shown in Figure 60). This capacitor helps absorb the sampling capacitor charge injection in addition to functioning as a charge bucket to quickly charge the internal sample-and-hold capacitors during the acquisition phase.

When selecting this capacitor, as a rule of thumb, the capacitor value must be at least 10 times the ADC sampling capacitor specified on the data sheet. The input sampling capacitance is approximately 59 pF for the ADS8339. The value of C_{FLT} must be greater than 590 pF. The capacitor must be a COG- or NPO-type because these capacitor types have a high-Q, low-temperature coefficient and stable electrical characteristics under varying voltages, frequency, and time.

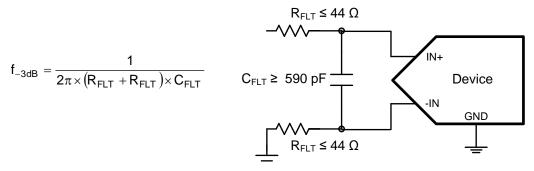


Figure 60. Antialiasing Filter

NOTE

Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier marginally unstable. To avoid stability issues, series isolation resistors (R_{FLT}) are used at the output of the amplifiers. A higher value of R_{FLT} is helpful from the amplifier stability perspective. Distortion increases with source impedance, input signal frequency, and input signal amplitude. The selection of R_{FLT} thus requires a balance between stability and distortion of the design.

TI recommends limiting the value of R_{FLT} to a maximum of 44 Ω in order to avoid any significant degradation in linearity performance for the ADS8339. The tolerance of resistors can be 1% because the differential capacitor at the input balances the effects resulting from resistor mismatch.

The input amplifier bandwidth must be much higher than the cutoff frequency of the antialiasing filter. TI strongly recommends running a SPICE simulation to confirm that the amplifier has more than 40° phase margin with the filter that is designed. Simulation is critical because some amplifiers may require more bandwidth than others to drive similar filters. If an amplifier has less than 40° phase margin with 44- Ω resistors, using a different amplifier with higher bandwidth or reducing the filter cutoff frequency with a larger differential capacitor is advisable.

10.2 Typical Application

This section describes a typical application circuit using the ADS8339. The circuit is optimized to derive the best ac performance. For simplicity, power-supply decoupling capacitors are not shown in these circuit diagrams.

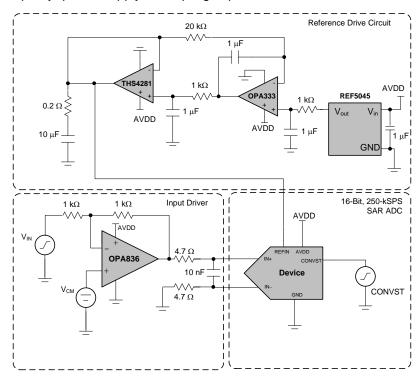


Figure 61. Single-Ended Input DAQ Circuit for Lowest Distortion and Noise at 250 kSPS

10.2.1 Design Requirements

The application circuit for the ADS8339 (as shown in Figure 61) is optimized for lowest distortion and noise for a 10-kHz input signal to achieve:

-106-dB THD and 93-dB SNR at a maximum specified throughput of 250 kSPS.

10.2.2 Detailed Design Procedure

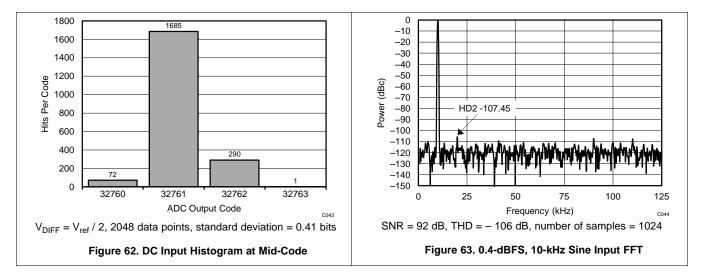
In the application circuit, the input signal is processed through a high-bandwidth, low-distortion, inverting amplifier and a low-pass RC filter before being fed to the ADC.

The reference driver circuit illustrated in Figure 59 generates 4.5 V dc using a single 5-V supply. This circuit is suitable to drive the reference at sampling rates of up to 250 kSPS. To keep the noise low, a high-precision REF5045 is used. The output broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 16 Hz.

The reference buffer is designed in a composite architecture to achieve superior dc and ac performance at reduced power consumption. The low output impedance makes the THS4281 a good choice for driving large capacitive loads that regulate the voltage at the reference input pin of the ADC. The high offset and drift specifications of the THS4281 are corrected by using a dc-correcting amplifier (such as the OPA333) inside the feedback loop.

For the input driver, as a rule of thumb, the distortion of the amplifier must be at least 10 dB less than the ADC distortion. The distortion resulting from variation in the common-mode signal is eliminated by using the driver in an inverting gain configuration. This configuration also eliminates the need for an amplifier that supports rail-to-rail input. The OPA836 is a good choice for an input driver because of its low-power consumption and exceptional ac performance (such as low distortion and high bandwidth).

Finally, the components of the antialiasing filter are chosen such that the noise from the front-end circuit is kept low without adding distortion to the input signal.



Typical Application (continued)

10.2.3 Application Curve

To ensure that the circuit meets the design requirements, the dc noise performance and the frequency content of the digitized output is verified. The input is set to a fixed dc value at half the reference. The histogram of the output code shows a peak-to-peak noise distribution of four codes which translates to 14 bits of noise-free bits.

An ac signal at 10 kHz is then fed to the input. The FFT of the output shows a THD of –106 dB and an SNR of 92 dB, which is close to the design requirements.

10.3 Do's and Don'ts

- Use multiple capacitors to decouple the dynamic current transients at various input pins including the reference, supply, and input signal.
- Parasitic inductance can induce ringing on the clock signal. Include a resistor on the SCLK pin to clean up the clock edges.

11 Power-Supply Recommendations

The ADS8339 is designed to operate from an analog supply voltage range between 4.5 V and 5.5 V and a digital supply voltage range between 2.375 V and 5.5 V. Both supplies must be well regulated. The analog supply must always be greater than or equal to the digital supply. A $1-\mu F$ ceramic decoupling capacitor is required at each supply pin and must be placed as close as possible to the device.

12 Layout

12.1 Layout Guidelines

Figure 64 shows one of the board layouts as an example when using ADS8339 in a circuit.

- A printed circuit board (PCB) board with at least four layers is recommended to keep all critical components on the top layer.
- Analog input signals and the reference input signals must be kept away from noise sources. Crossing digital
 lines with the analog signal path should be avoided. The analog input and the reference signals are routed on
 to the left side of the board and the digital connections are routed on the right side of the device.
- Due to the dynamic currents that occur during conversion and data transfer, each supply pin (AVDD and DVDD) must have a decoupling capacitor that keeps the supply voltage stable. TI recommends using one 1μF ceramic capacitor at each supply pin.
- A layout that interconnects the converter and accompanying capacitors with the low inductance path is critical for achieving optimal performance. Using 15-mil vias to interconnect components to a solid analog ground plane at the subsequent inner layer minimizes stray inductance. Avoid placing vias between the supply pin and the decoupling capacitor. Any inductance between the supply capacitor and the supply pin of the converter must be kept to less than 5 nH by placing the capacitor within 0.2 inches from the supply or input pins of the ADS8339 and by using 20-mil traces, as shown in Figure 64.
- Dynamic currents are also present at the REFIN pin during the conversion phase. Therefore, good decoupling
 is critical to achieve optimal performance. The inductance between the reference capacitor and the REFIN pin
 must be kept to less than 2 nH by placing the capacitor within 0.1 inches from the REFIN pin and by using
 20-mil traces.
- A single 10-μF, X7R-grade, 0805-size ceramic capacitor with at least a 10-V rating is recommended for good performance over temperature range.
- A small, 0.1-Ω to 0.47-Ω, 0603-size resistor placed in series with the reference capacitor keeps the overall impedance low and constant, especially at very high frequencies.
- Avoid using additional lower value capacitors because the interactions between multiple capacitors can affect the ADC performance at higher sampling rates.
- Place the RC filters immediately next to the input pins. Among surface-mount capacitors, COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG (NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and temperature changes.

12.2 Layout Example

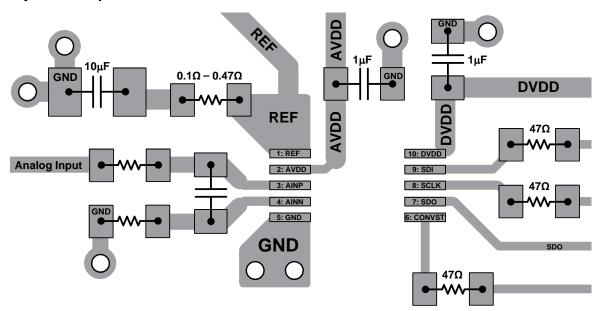


Figure 64. Board Layout Example

13 器件和文档支持

13.1 文档支持

13.1.1 相关文档

《REF5045 数据表》(文献编号 SBOS410)

《THS4281 数据表》(文献编号 SLOS432)

《OPA333 数据表》(文献编号 SBOS351)

《OPA836 数据表》(文献编号 SLOS713)

《ADS886xEVM-PDK 和 ADS83x9EVM-PDK 用户指南》(文献编号 SBAU233)

13.2 商标

TINA is a trademark of Texas Instruments Inc..

SPI is a trademark of Motorola.

All other trademarks are the property of their respective owners.

13.3 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

13.4 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

14 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

29-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ADS8339IDGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	8339	Samples
ADS8339IDGST	ACTIVE	VSSOP	DGS	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	8339	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

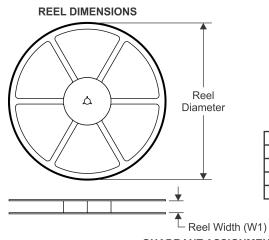
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

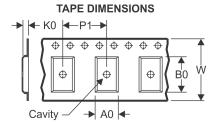
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


29-Oct-2014

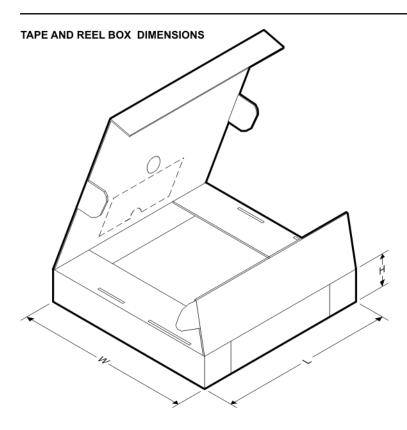

In no event shall TI's liabilit	v arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

TAPE AND REEL INFORMATION

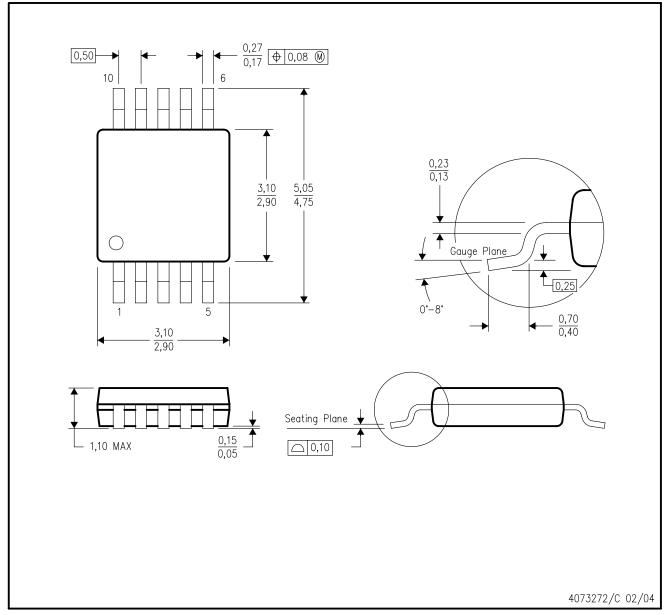
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS8339IDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
ADS8339IDGST	VSSOP	DGS	10	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 3-Aug-2017

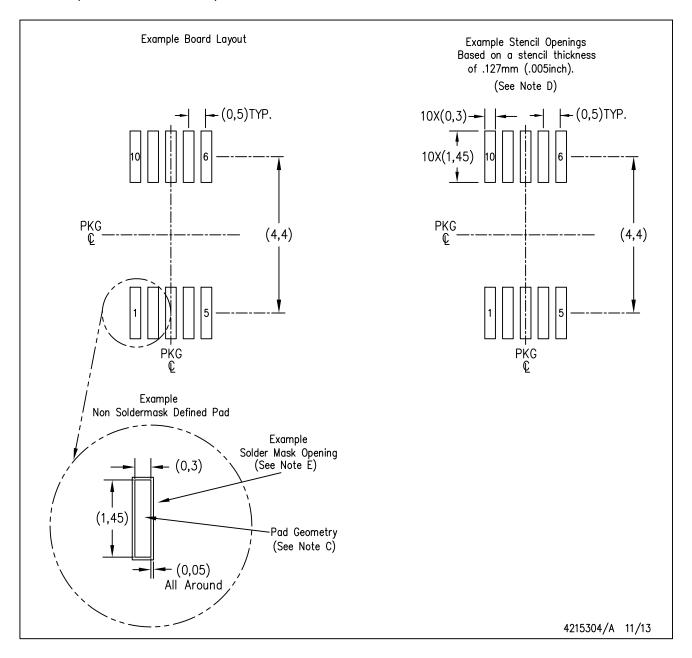


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS8339IDGSR	VSSOP	DGS	10	2500	367.0	367.0	35.0
ADS8339IDGST	VSSOP	DGS	10	250	210.0	185.0	35.0

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

DGS (S-PDSO-G10)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 己认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员(总称"设计人员")理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且应全权负责并确保应用的安全性,及设计人员的应用(包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够(1)预见故障的危险后果,(2)监视故障及其后果,以及(3)降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何应用前,将彻底测试该等应用和该等应用中所用 TI 产品的功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称"TI资源"),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、访问或使用任何特定的 TI资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI资源。

TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系"按原样"提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。

除 TI 己明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备,除非己由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2017 德州仪器半导体技术(上海)有限公司