

# 12位、2.5/2.0 GSPS、 1.3 V/2.5 V模数转换器

**AD9625** 

### 产品特性

12位、2.5 GSPS ADC,无失码

SFDR = 79 dBc, AIN高达1 GHz(-1 dBFS, 2.5 GSPS)

SFDR = 75 dBc, AIN高达1.8 GHz(-1 dBFS, 2.5 GSPS)

SNR = 57.6 dBFS, AIN高达1 GHz(-1 dBFS, 2.5 GSPS)

SNR = 56.7 dBFS, AIN高达1.8 GHz(-1 dBFS, 2.5 GSPS)

噪声频谱密度 = -150 dBFS/Hz (2.5 GSPS)

功耗: 3.8 W (2.5 GSPS) 差分模拟输入: 1.1 Vp-p

差分时钟输入

高速6或8通道JESD204B串行输出

Subclass 1: 6.25 Gbps (2.5 GSPS)

两个独立的1/8抽取或1/16抽取滤波器和10位NCO

电源电压: 1.3 V、2.5 V

串行端口控制

灵活的数字输出模式 内置可选数字测试码

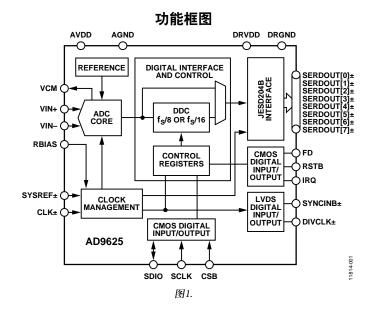
#### 应用

频谱分析仪

军用通信

雷达

高性能数字存储示波器


有源干扰/抗干扰

电子监控和对抗

### 概述

AD9625是一款12位单芯片采样模数转换器(ADC),转换速率高达2.5 GSPS。本产品设计用于对高达第二奈奎斯特区的宽带模拟信号进行采样。AD9625集宽输入带宽、高采样速率和出色的线性度等特性于一身,非常适合于频谱分析仪、数据采集系统以及各式军工电子应用,比如雷达和干扰/抗干扰措施等。

模拟输入、时钟和SYSREF±信号均为差分输入信号。基于 JESD204B的高速串行输出可采用1、2、4、6或8通道配 置。额定温度范围为-40℃至+85℃工业温度范围,



### 产品特色

- 1. 高性能:高采样速率应用中具有出色的SFDR性能,提供直接RF采样和片内基准电压源。
- 2. 基于JESD204B规范的灵活数字数据输出格式。
- 3. 提供控制路径SPI接口端口,支持各种产品特性和功能, 比如数据格式化、增益和失调校准值。

Rev. Pr. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014 Analog Devices, Inc. All rights reserved.

Technical Support w

www.analog.com

## 目录

| 产品特性1         |
|---------------|
| 应用1           |
| 功能框图1         |
| 概述1           |
| 技术规格3         |
| 交流规格4         |
| 数字规格5         |
| 开关规格7         |
| 时序规格7         |
| 绝对最大额定值8      |
| 热特性8          |
| ESD警告8        |
| 引脚配置和功能描述9    |
| 典型性能参数15      |
| 等效测试电路18      |
| 工作原理19        |
| ADC架构19       |
| 快速检测19        |
| 增益阈值操作19      |
| 测试模式20        |
| 数字下变频器(DDC)21 |
| 频率合成器和混频器21   |
| 高带宽抽取器21      |
| 低带宽抽取器21      |
| 模拟输入考虑23      |

| 时钟输入考虑         | 23 |
|----------------|----|
| 效字输出           | 24 |
| JESD204B接口简介   | 24 |
| 功能概述           | 25 |
| JESD204B链路建立   | 25 |
| 物理层输出          | 29 |
| 加扰器            | 29 |
| 结束位            | 29 |
| DDC模式(单和双)     | 29 |
| 校验和            | 30 |
| 8位/10位编码器控制    | 30 |
| 初始通道对齐序列(ILAS) | 30 |
| 通道同步           | 30 |
| JESD204B应用层    | 31 |
| 帧对齐字符插入        | 33 |
| 散热考虑           | 33 |
| 电源考虑           | 33 |
| 串行端口接口(SPI)    | 35 |
| 使用SPI的配置       | 35 |
| 硬件接口           | 35 |
| 字储器映射          | 36 |
| 读取存储器映射寄存器     | 36 |
| 存储器映射寄存器       | 36 |
| 外形尺寸           | 54 |
| 订购指南           | 54 |

# 技术规格

除非另有说明, AVDD1 = DVDD1 = DRVDD1 = 1.3 V, AVDD2 = DVDD2 = DRVDD2 = 2.5 V, 额定最大采样速率, 1.2 V内部基准电压源, AIN = -1.0 dBFS, 默认SPI设置, 直流耦合输出数据。

表1.

|                          |                               |      |      | AD9625-2.0 |      | A    | D9625-2.5 |      |                    |
|--------------------------|-------------------------------|------|------|------------|------|------|-----------|------|--------------------|
| 参数                       | 测试条件                          | 温度1  | 最小值  | 典型值        | 最大值  | 最小值  | 典型值       | 最大值  | 单位                 |
| 速度等级                     |                               |      | 2.0  |            |      | 2.5  |           |      | GSPS               |
| 分辨率                      |                               |      | 12   |            |      | 12   |           |      | 位                  |
| 精度                       |                               |      |      |            |      |      |           |      |                    |
| 无失码                      |                               | 全    |      | 保证         |      |      | 保证        |      |                    |
| 失调误差                     |                               | 全    |      | ±0.5       |      |      | ±0.5      |      | LSB                |
| 增益误差                     |                               | 全    |      | ±8         |      |      | ±8        |      | %FSR               |
| 差分非线性(DNL)               |                               | 全    |      | ±0.3       |      |      | ±0.5      |      | LSB                |
| 积分非线性(INL)               |                               | 全    |      | ±0.9       |      |      | ±1.0      |      | LSB                |
| 模拟输入                     |                               |      |      |            |      |      |           |      |                    |
| 差分输入                     |                               |      |      |            |      |      |           |      |                    |
| 电压范围                     | 内部V <sub>REF</sub> =<br>1.2 V | 全    |      | 1.1        |      |      | 1.1       |      | V p-p              |
| 电阻                       | 1.2                           | 25°C |      | 100        |      |      | 100       |      | Ω                  |
| 电容                       |                               | 25°C |      | 1.5        |      |      | 1.5       |      | рF                 |
| 内部共模电压(V <sub>cM</sub> ) |                               | 全    |      | 525        |      |      | 525       |      | mV                 |
| 全功率模拟带宽                  | 100 Ω差分                       | 25°C |      |            |      |      |           |      | GHz                |
| 主分十大扬市见                  | 端接                            |      |      | 3.0        |      |      | 3.0       |      |                    |
| 折合到输入端噪声                 |                               | 25°C |      | 3          |      |      | 4         |      | LSB <sub>RMS</sub> |
| 电源                       |                               |      |      |            |      |      |           |      |                    |
| AVDD1                    |                               | 全    | 1.26 | 1.3        | 1.32 | 1.26 | 1.3       | 1.32 | V                  |
| AVDD2                    |                               | 全    | 2.4  | 2.5        | 2.6  | 2.4  | 2.5       | 2.6  | V                  |
| DRVDD1                   |                               | 全    | 1.26 | 1.3        | 1.32 | 1.26 | 1.3       | 1.32 | V                  |
| DRVDD2                   |                               | 全    | 2.4  | 2.5        | 2.6  | 2.4  | 2.5       | 2.6  | V                  |
| DVDD1                    |                               | 全    | 1.26 | 1.3        | 1.32 | 1.26 | 1.3       | 1.32 | V                  |
| DVDD2                    |                               | 全    | 2.4  | 2.5        | 2.6  | 2.4  | 2.5       | 2.6  | V                  |
| DVDDIO                   |                               | 全    | 2.4  | 2.5        | 2.6  | 2.4  | 2.5       | 2.6  | V                  |
| SPI_VDDIO                |                               | 全    | 2.4  | 2.5        | 2.6  | 2.4  | 2.5       | 2.6  | V                  |
| I <sub>AVDD1</sub>       |                               | 全    |      | 1120       |      |      | 1260      |      | mA                 |
| I <sub>AVDD2</sub>       |                               | 全    |      | 383        |      |      | 421       |      | mA                 |
| I <sub>DRVDD1</sub>      |                               | 全    |      | 456        |      |      | 498       |      | mA                 |
| I <sub>DRVDD2</sub>      |                               | 全    |      | 9          |      |      | 9         |      | mA                 |
| I <sub>DVDD1</sub>       |                               | 全    |      | 430        |      |      | 459       |      | mA                 |
| I <sub>DVDD2</sub>       |                               | 全    |      | <1         |      |      | <1        |      | mA                 |
| I <sub>DVDDIO</sub>      |                               | 全    |      | <1         |      |      | <1        |      | mA                 |
| I <sub>SPI_VDDIO</sub>   |                               | 全    |      | <1         |      |      | <1        |      | mA                 |
| 功耗                       |                               | 全    |      | 3.48       |      |      | 3.8       |      | W                  |

<sup>&</sup>lt;sup>1</sup> 全温度范围为外壳上测量的-40℃至+85℃ (T<sub>c</sub>)。

### 交流规格

除非另有说明,AVDD1=DVDD1=DRVDD1=1.3 V,AVDD2=DVDD2=DRVDD2=2.5 V,额定最大采样速率,1.2 V内部基准电压源,AIN=-1.0 dBFS,采样时钟输入=1.65 V p-p差分,默认SPI设置。

### 表2.

|                                                              |                 |      | AD9625-2.0 |     | AD96     | 525-2.5 |       |
|--------------------------------------------------------------|-----------------|------|------------|-----|----------|---------|-------|
| 参数                                                           | 测试条件            | 温度   | 最小值 典型值    | 最大值 | 最小值      | 典型值 最大值 | 单位    |
| 速度等级                                                         |                 |      | 2.0        |     | 2.5      |         | GSPS  |
| 模拟输入                                                         | 满量程             | 全    | 1.1        |     |          | 1.1     | V p-p |
| 噪声密度                                                         |                 | 25°C | -149.5     |     | -        | -150    | dBFS  |
|                                                              |                 |      |            |     |          |         | /Hz   |
| 信噪比(SNR)                                                     |                 |      |            |     |          |         |       |
| $f_{IN} = 100 \text{ MHz}$                                   |                 | 25°C | 59.5       |     | 58       | 8.3     | dBFS  |
| $f_{IN} = 500 \text{ MHz}$                                   |                 | 25°C | 59.4       |     | !        | 58.0    | dBFS  |
| $f_{IN} = 1000 \text{ MHz}$                                  |                 | 25°C | 59.0       |     |          | 57.6    | dBFS  |
| f <sub>IN</sub> = 1800 MHz                                   |                 | 全    | 58.2       |     |          | 56.7    | dBFS  |
| 信纳比(SINAD)                                                   |                 |      |            |     |          |         |       |
| $f_{IN} = 100 \text{ MHz}$                                   |                 | 25°C | 58.4       |     | !        | 57.2    | dBc   |
| $f_{\text{IN}} = 500 \text{ MHz}$                            |                 | 25°C | 58.4       |     | !        | 57.0    | dBc   |
| $f_{\text{IN}} = 1000 \text{ MHz}$                           |                 | 25°C | 58.0       |     | !        | 56.5    | dBc   |
| $f_{\text{IN}} = 1800 \text{ MHz}$                           |                 | 全    | 57.2       |     | 1        | 55.3    | dBc   |
| 有效位数(ENOB)                                                   |                 |      |            |     |          |         |       |
| $f_{\text{IN}} = 100 \text{ MHz}$                            |                 | 25°C | 9.4        |     | 9.2      |         | 位     |
| $f_{\text{IN}} = 500 \text{ MHz}$                            |                 | 25°C | 9.4        |     | 9.2      |         | 位     |
| $f_{\text{IN}} = 1000 \text{ MHz}$                           |                 | 25°C | 9.3        |     | 9.1      |         | 位     |
| $f_{\text{IN}} = 1800 \text{ MHz}$                           |                 | 全    | 9.2        |     | 8.9      |         | 位     |
| 无杂散动态范围(SFDR)                                                | 包括二次和           |      |            |     |          |         |       |
|                                                              | 三次谐波            |      |            |     |          |         |       |
| $f_{IN} = 100 \text{ MHz}$                                   |                 | 25°C | 80         |     | 77       |         | dBc   |
| $f_{IN} = 500 \text{ MHz}$                                   |                 | 25°C | 81         |     | 76       |         | dBc   |
| $f_{IN} = 1000 \text{ MHz}$                                  |                 | 25°C | 80         |     | 79       |         | dBc   |
| $f_{IN} = 1800 \text{ MHz}$                                  |                 | 全    | 76         |     |          | 75      | dBc   |
| 最差其它杂散                                                       | 不包括二次<br>和三次谐波  |      |            |     |          |         |       |
| $f_{\text{IN}} = 100 \text{ MHz}$                            |                 | 25°C | 80         |     |          | 77      | dBc   |
| $f_{\text{IN}} = 500 \text{ MHz}$                            |                 | 25°C | 86         |     |          | 76      | dBc   |
| $f_{\text{IN}} = 1000 \text{ MHz}$                           |                 | 25°C | 83         |     |          | 82      | dBc   |
| $f_{\text{IN}}=1800\;\text{MHz}$                             |                 | 全    | 85         |     |          | 81      | dBc   |
| 双音交调失真(IMD)                                                  | 每信号音<br>-7 dBFS |      |            |     |          |         |       |
| $f_{iN1} = 728.5 \text{ MHz}, f_{iN2} = 731.5 \text{ MHz}$   |                 | 25°C | 82.8       |     | 81.2     |         | dBc   |
| f <sub>in1</sub> = 1805.5 MHz, f <sub>in2</sub> = 1808.5 MHz |                 | 25°C | 77.6       |     | <u> </u> | 76.3    | dBc   |

### 数字规格

除非另有说明, AVDD1 = DVDD1 = DRVDD1 = 1.3 V, AVDD2 = DVDD2 = DRVDD2 = 2.5 V, 额定最大采样速率, 1.2 V内部基准电压源, AIN = -1.0 dBFS, 默认SPI设置。

### 表3.

| 参数                                    | 温度          | 最小值              | 典型值             | 最大值  | 单位      |
|---------------------------------------|-------------|------------------|-----------------|------|---------|
| 时钟输入(CLK+、CLK-)                       |             |                  |                 |      |         |
| 差分输入电压                                | 全           | 250              |                 | 1800 | mV p-p  |
| 共模输入电压                                | 全           |                  | 0.88            |      | V       |
| 输入电阻(差分)                              | 全           |                  | 57              |      | kΩ      |
| 输入电容                                  | 全           |                  | 1.5             |      | рF      |
| SYSREF输入(SYSREF+/SYSREF-)             |             |                  |                 |      |         |
| 差分输入电压                                | 全           | 250              |                 | 1800 | mV p-p  |
| 共模输入电压                                | 全           |                  | 0.88            |      | V       |
| 输入电阻(差分)                              | 全           |                  | 100             |      | Ω       |
| 输入电容                                  | 全           |                  | 1.5             |      | pF      |
| 逻辑输入(SDIO、SCLK、CSB)                   |             |                  |                 |      |         |
| 逻辑兼容                                  |             |                  | CMOS            |      |         |
| 电压                                    |             |                  |                 |      |         |
| 逻辑1                                   | 全           | 0.8 × SPI_DVDDIO |                 |      | V       |
| 逻辑0                                   | 全           | _                |                 | 0.5  | V       |
| 输入电阻                                  | 全           |                  | 30              |      | kΩ      |
| 输入电容                                  | 全           |                  | 0.5             |      | рF      |
| SYNCB+/SYNCB-输入                       |             |                  |                 |      | '       |
| 逻辑兼容                                  | 全           |                  | LVDS            |      |         |
| 输入电压                                  | <u> </u>    |                  |                 |      |         |
| 差分                                    | 全           | 250              |                 | 1200 | mV p-p  |
| 共模                                    | 全           |                  | 1.2             |      | V       |
| 输入电阻(差分)                              | <del></del> |                  | 20              |      | kΩ      |
| 输入电容                                  | 全           |                  | 2.5             |      | рF      |
| 逻辑输出(SDIO)                            |             |                  |                 |      | '       |
| 逻辑兼容                                  |             |                  | CMOS            |      |         |
| 电压                                    |             |                  |                 |      |         |
| 逻辑1 (I <sub>OH</sub> = 800 μA)        | 全           |                  | 0.8 × SPI_VDDIO |      | V       |
| 逻辑0 (I <sub>OL</sub> = 50 μA)         | 全           |                  | 0.3             |      | V       |
| 数字输出(SERDOUTx)                        |             |                  |                 |      |         |
| 顺从电压                                  | 全           |                  | CML             |      |         |
| 输出电压                                  | <u> </u>    |                  | CIVIL           |      |         |
| 差分                                    | 全           | 360              | 700             | 800  | mV p-p  |
| 偏移                                    | 全<br>全      | 300              | DRVDD/2         | 000  | mV p-p  |
| 差分回损(RL <sub>DIF</sub> ) <sup>1</sup> | 25C         | 8                | DIVDD/2         |      | dB      |
| 共模回损(RL <sub>cm</sub> )               | 25C         | 6                |                 |      | dB      |
| 差分端接阻抗                                | 全<br>全      | Ŭ                |                 | 100  | Ω       |
| 复位(RSTB)                              | 土           |                  |                 | 100  | 12      |
| 电压                                    |             |                  |                 |      |         |
| 电压<br>逻辑1                             |             | 0.8 × DVDDIO     |                 |      | V       |
|                                       | 全           | טוטטעע x סוטטוט  |                 | 0.5  | V       |
| 逻辑0                                   | 全人          |                  | 20              | 0.5  | V<br>kΩ |
| 输入电阻(差分)                              | 全人          |                  | 20<br>2.5       |      |         |
| 输入电容                                  | 全           |                  | 2.3             |      | pF      |
| 快速检测(FD)和中断(IRQ)                      |             |                  |                 |      |         |

| 参数       | 温度 | 最小值          | 典型值 | 最大值 | 单位 |
|----------|----|--------------|-----|-----|----|
| 电压       |    |              |     |     |    |
| 逻辑1      | 全  | 0.8 × DVDDIO |     |     | V  |
| 逻辑0      | 全  |              |     | 0.5 | V  |
| 输入电阻(差分) | 全  |              | 20  |     | kΩ |
| 输入电容     | 全  |              | 2.5 |     | pF |

<sup>&</sup>lt;sup>1</sup> 差分和共模回损的测量范围是100 MHz至0.75 x 波特率。

### 开关规格

除非另有说明,AVDD1 = DVDD1 = DRVDD1 = 1.3 V,AVDD2 = DVDD2 = DRVDD2 = 2.5 V,额定最大采样速率,1.2 V内部基准电压源,AIN = -1.0 dBFS,默认SPI设置。

### 表4.

| 参数                            | 测试条件/注释 | 温度   | 最小值 典型值 最大值 | 单位                 |
|-------------------------------|---------|------|-------------|--------------------|
| 时钟(CLK)                       |         |      |             |                    |
| 最大时钟速率                        |         | 全    | 2500        | MSPS               |
| 最小时钟速率                        |         | 全    | 330¹        | MSPS               |
| 时钟高电平脉宽                       |         | 全    | 50 ± 5      | %占空比               |
| 时钟低电平脉宽                       |         | 全    | 50 ± 5      | %占空比               |
| SYSREF (SYSREF±) <sup>2</sup> |         |      |             |                    |
| 建立时间(t <sub>SU_SREF</sub> )   |         | 25°C | +200        | ps                 |
| 保持时间(t <sub>H_SREF</sub> )    |         | 25°C | -100        | ps                 |
| 快速检测输出(FD)                    |         |      |             |                    |
| 延迟                            |         | 全    | 82          | 时钟周期               |
| 输出参数(SERDOUT[x])              |         |      |             |                    |
| 上升时间                          |         | 25°C | 70          | ps                 |
| 下降时间                          |         | 25°C | 70          | ps                 |
| 流水线延迟                         | 通用8通道模式 | 25°C | 187         | 时钟周期               |
| 孔径                            |         |      |             |                    |
| 延迟                            |         | 全    | 180         | fs                 |
| 不确定(抖动)                       |         | 全    | 55          | f <sub>s</sub> rms |
| 超范围恢复时间                       |         | 全    | 2           | 时钟周期               |

<sup>&</sup>lt;sup>1</sup> 针对最低采样速率,必须使用双通道、通用输出通道配置。欲了解更多信息,请参阅JESD204B规范文件中的通道表。

### 时序规格

### 表5.

| 参数                     | 测试条件/注释                             | 最小值 | 典型值 | 最大值 | 单位 |
|------------------------|-------------------------------------|-----|-----|-----|----|
| SPI时序要求                |                                     |     |     |     |    |
| t <sub>DS</sub>        | 数据与SCLK上升沿之间的建立时间                   | 2   |     |     | ns |
| <b>t</b> <sub>DH</sub> | 数据与SCLK上升沿之间的保持时间                   | 2   |     |     | ns |
| t <sub>CLK</sub>       | SCLK周期                              | 40  |     |     | ns |
| ts                     | CSB与SCLK之间的建立时间                     | 2   |     |     | ns |
| tн                     | CSB与SCLK之间的保持时间                     | 2   |     |     | ns |
| t <sub>HIGH</sub>      | SCLK应处于逻辑高电平状态的最短时间                 | 10  |     |     | ns |
| t <sub>LOW</sub>       | SCLK应处于逻辑低电平状态的最短时间                 | 10  |     |     | ns |
| t <sub>EN_SDIO</sub>   | 相对于SCLK下降沿,SDIO引脚从输入状态切换到输出状态所需的时间  | 10  |     |     | ns |
| t <sub>DIS_SDIO</sub>  | 相对于SCLK上升沿, SDIO引脚从输出状态切换到输入状态所需的时间 | 10  |     |     | ns |

<sup>&</sup>lt;sup>2</sup> SYSREF建立和保持时间相对于SYSREF±上升沿和时钟上升沿定义。正建立时间领先时钟沿。负保持时间同样领先时钟沿。



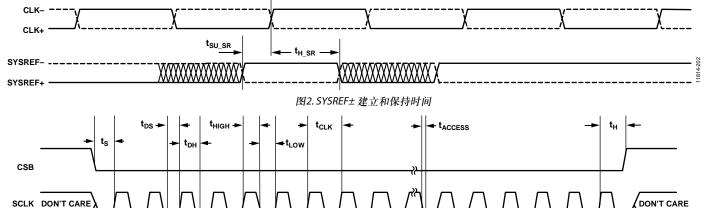



图3. 串行端口接口时序图(MSB 优先)

Α7

**A8** 

### 绝对最大额定值

SDIO DON'T CARE

R/W

A14

A13

A12

A11

A10

Α9

### 表6.

| _ 参数              | 额定值                      |
|-------------------|--------------------------|
| 电气                |                          |
| AVDD1至AGND        | −0.3 V至+1.32 V           |
| AVDD2至AGND        | −0.3 V至+2.75V            |
| DRVDD1至DRGND      | −0.3 V至+1.32 V           |
| DRVDD2至DRGND      | −0.3 V至+2.75 V           |
| DVDD1至DGND        | −0.3 V至+1.32 V           |
| DVDD2至DGND        | −0.3 V至+2.75 V           |
| DVDDIO至DGND       | −0.3 V至+3.63 V           |
| SPI_VDDIO至DGND    | −0.3 V至+3.63 V           |
| AGND至DRGND        | −0.3 V至+0.3 V            |
| VIN±至AGND         | −0.3 V至AVDD1+ 0.2 V      |
| VCM至AGND          | −0.3 V至AVDD1+ 0.2 V      |
| VMON至AGND         | −0.3 V至AVDD1+ 0.2 V      |
| CLK±至AGND         | −0.3 V至AVDD1+ 0.2 V      |
| SYSREF±至AGND      | −0.3 V至AVDD1+ 0.2 V      |
| SYNCINB±至DRGND    | -0.3 V至DRVDD2 + 0.2 V    |
| SCLK至DRGND        | -0.3 V至SPI_VDDIO + 0.2 V |
| SDIO至DRGND        | -0.3 V至SPI_VDDIO + 0.2 V |
| IRQ至DRGND         | -0.3 V至DVDDIO + 0.2 V    |
| RSTB至DRGND        | -0.3 V至DVDDIO + 0.2 V    |
| CSB至 DRGND        | -0.3 V至SPI_VDDIO + 0.2 V |
| FD至DRGND          | -0.3 V至DVDDIO + 0.2 V    |
| DIVCLK±至DRGND     | -0.3 V至DRVDD2 + 0.2 V    |
| SERDOUT[x]±至DRGND | −0.3 V至DRVDD1 + 0.2 V    |
| 环境                |                          |
| 工作温度范围            | -40°C至+85°C              |
| 最高结温              | 110°C                    |

注意,等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。

D2

D1

D0

11814-203

DON'T CARE

### 热特性

下面是4层和10层印刷电路板(PCB)的特性。

D3

D4

D5

### 表7. 热阻

| PCB | T <sub>A</sub> (°C) | θ <sub>JA</sub><br>(°C/W) | Ψ <sub>π</sub><br>(°C/W) | Ψ <sub>JB</sub><br>(°C/W) | θ <sub>JC</sub><br>(°C/W) |
|-----|---------------------|---------------------------|--------------------------|---------------------------|---------------------------|
| 4层  | 85.0                | 18.7                      | 0.61                     | 6.1                       | 1.4                       |
| 10层 | 85.0                | 11.5                      | 0.61                     | 4.1                       | N/A <sup>1</sup>          |

<sup>1</sup> N/A表示不适用。

### ESD警告



### ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高能量ESD时,器件可能会损坏。因此,应当采取适当的 ESD防范措施,以避免器件性能下降或功能丧失。

# 引脚配置和功能描述

A D9625 TOP VIEW (Not to Scale)

|     | 1      | 2               | 3               | 4               | 5               | 6         | 7                       | 8               | 9        | 10              | 11                              | 12     | 13      | 14      |
|-----|--------|-----------------|-----------------|-----------------|-----------------|-----------|-------------------------|-----------------|----------|-----------------|---------------------------------|--------|---------|---------|
| А   | AGND   | AGND            | AGND            | AVED1           | AGND            | AVICER    | VOM                     | AGND            | VIN+     | VIN−            | AGND                            | VM_BYP | AVDŒ    | AV DC2  |
| В   | AGND   | AGND            | AGND            | AGND            | AVDDI           | AGND      | AVDŒ                    | AGND            | AGND     | AGND            | AGND                            | AV CCQ | AGND    | AGND    |
| С   | AGND   | AGND            | AGND            | AGND            | AGND            | AV ED1    | AGND                    | AV CCQ          | AGND     | AGND            | AVDŒ                            | AGND   | AGND    | AV 001  |
| D   | DVDDI  | DVDD1           | DVDDI           | DNC             | AGND            | AGND      | AVDDI                   | AV CCQ          | AGND     | AGND            | AVDŒ                            | AV ED1 | AVDDI   | AV 001  |
| E   | DGND   | DGND            | DGND            | DVDCQ           | VMON            | AGND      | AVDDI                   | AVICCO          | AGND     | AGND            | AVDŒ                            | AV ED1 | AGND    | AGND    |
| F   | DVDDI  | DVDD1           | DVDDI           | 8 PI_V COIO     | DVDDIO          | AGND      | AVDDI                   | AV CCQ          | AGND     | AGND            | AVDŒ                            | AV ED1 | AGND    | CLK+    |
| G   | DGND   | DGND            | DGND            | CSB             | DVDDIO          | AGND      | AVDDI                   | AV CCQ          | AGND     | AGND            | AVDŒ                            | AV ED1 | AGND    | ак-     |
| Н   | DVDDI  | DVDD1           | DVDDI           | SCLK            | IRQ             | AGND      | AVDDI                   | AV CCQ          | AGND     | AGND            | AVDD                            | AVEO1  | AGND    | AGND    |
| J   | DGND   | DGND            | DGND            | SDIO            | FD              | REIAS_EXT | AVDDI                   | AV CCQ          | AGND     | AGND            | AVDŒ                            | AV ED1 | AGND    | SY SREF |
| к   | DVDDI  | DVDD1           | RSTB            | PWD N           | AGND            | AGND      | AGND                    | AGND            | AGND     | AGND            | AGND                            | AGND   | AGND    | SYSREF- |
| L   | DGND   | DNC             | SYNCINB-        | 8 YNCIN B       | DGND            | DGND      | DGND                    | DGND            | DGND     | DNC             | DNC                             | DNC    | AGND    | AGND    |
| М   | DRGND  | DRGND           | DRGND           | DRGND           | DRG ND          | DRGND     | DRG ND                  | DRGND           | DRG ND   | DRGND           | DRVD01                          | REXT   | DRG ND  | DRGND   |
| N   | DRVDDI | SERDOUT<br>[7]+ | SERCOUT         | SERDOUT<br>[5]+ | SERCOUT         | DRVDD1    | SERCOUT<br>[8]+         | SERDOUT<br>[2]+ | S ERDOUT | SERDOUT<br>[0]+ | DRVD01                          | VP_BYP | DRVDC2  | DRVDD   |
| Р   | DRVDDI | SERDOUT         | SERCOUT<br>[6]- | SERDOUT<br>[5]- | SERCOUT<br>[#]- | DRVDD1    | SERCOUT<br> \$}-        | SERDOUT<br>[2]- | S ERDOUT | SERDOUT<br>[0]- | DRVD01                          | DRGND  | DIVOLK- | DMCLK+  |
| · · |        |                 |                 |                 |                 |           |                         |                 |          |                 |                                 |        |         |         |
|     | AVDE2  | AVDDI           | DV DC2          | D/DD1           | DRVDC2          | DRVDDI    | DVDDIO<br>SPI VD<br>DIO | AG ND           | DGND     | DRG ND          | DNC OR<br>BYPASS<br>WITH<br>CAP |        |         |         |

NOTES
1. DNC = DO NOT CONNECT, DO NOT CONNECT TO THIS PIN, LEAVE THIS PIN FLOATING.

图4. 引脚配置

### 表8.引脚功能描述(按引脚编号)

|         | 能描述(按引脚绑  |     | шър                   |
|---------|-----------|-----|-----------------------|
| 引脚编号    | 引脚名称      | 类型  | 描述                    |
| A1至A3   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| A4      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| A5      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
| A6      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| A7      | VCM       | 输出  | 模拟输入共模电压(0.525 V)。    |
| A8      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
| A9      | VIN+      | 输入  | 差分模拟输入(+)。            |
| A10     | VIN-      | 输入  | 差分模拟输入(-)。            |
| A11     | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
| A12     | VM_BYP    | 输入  | 电压旁路。                 |
| A13     | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| A14     | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| B1至B4   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| B5      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| B6      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
| B7      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| B8至B11  | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| B12     | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| B13、B14 | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| C1至C5   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| C6      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| C7      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
| C8      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| C9、C10  | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| C11     | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| C12、C13 | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| C14     | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| D1至D3   | DVDD1     | 电源  | ADC数字电源(1.30 V)。      |
| D4      | DNC       | 不适用 | 不连接。请勿连接该引脚。此引脚悬空。    |
| D5、D6   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| D7      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| D8      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| D9、D10  | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| D11     | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| D12至D14 | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| E1至E3   | DGND      | 地   | 数字控制地电源。这些引脚连接到数字接地层。 |
| E4      | DVDD2     | 电源  | ADC数字电源(2.5 V)。       |
| E5      | VMON      | 输出  | CTAT电压监控输出。           |
| E6      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
| E7      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| E8      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| E9、E10  | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| E11     | AVDD2     | 电源  | ADC模拟电源(2.50 V)。      |
| E12     | AVDD1     | 电源  | ADC模拟电源(1.30 V)。      |
| E13、E14 | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。  |
| F1至F3   | DVDD1     | 电源  | ADC数字电源(1.30 V)。      |
| F4      | SPI_VDDIO | 电源  | SPI数字电源(2.50 V)。      |
| F5      | DVDDIO    | 电源  | 数字I/O电源(2.50 V)。      |
| F6      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。   |
|         | I         | 1   | 1                     |

| <br>引脚编号 | 引脚名称      | 类型  | 描述                              |
|----------|-----------|-----|---------------------------------|
| F7       | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| F8       | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| F9、F10   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。            |
| F11      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| F12      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| F13      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。             |
| F14      | CLK+      | 输入  | ADC时钟输入(+)。                     |
| G1至G3    | DGND      | 地   | 数字控制地电源。这些引脚连接到数字接地层。           |
| G4       | CSB       | 输入  | SPI片选CMOS输入。低电平有效。              |
| G5       | DVDDIO    | 电源  | 数字I/O电源(2.50 V)。                |
| G6       | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。             |
| G7       | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| G8       | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| G9、G10   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。            |
| G11      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| G12      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| G13      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。             |
| G14      | CLK-      | 输入  | ADC时钟输入(-)。                     |
| H1至H3    | DVDD1     | 电源  | ADC数字电源(1.30 V)。                |
| H4       | SCLK      | 输入  | SPI串行时钟CMOS输入。                  |
| H5       | IRQ       | 输出  | 中断请求输出信号。                       |
| H6       | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。             |
| H7       | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| H8       | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| H9、H10   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。            |
| H11      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| H12      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| H13、H14  | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。            |
| J1至J3    | DGND      | 地   | 数字控制地电源。这些引脚连接到数字接地层。           |
| J4       | SDIO      | I/O | SPI串行数据CMOS输入/输出;扫描输出1。         |
| J5       | FD        | 输出  | 快速检测输出。该引脚需要一个外部10 kΩ接地电阻。      |
| J6       | RBIAS_EXT | 输入  | 基准电压旁路。该引脚需要一个外部10 kΩ接地电阻。      |
| J7       | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| J8       | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| J9、J10   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。            |
| J11      | AVDD2     | 电源  | ADC模拟电源(2.50 V)。                |
| J12      | AVDD1     | 电源  | ADC模拟电源(1.30 V)。                |
| J13      | AGND      | 地   | ADC模拟地。该引脚连接到模拟接地层。             |
| J14      | SYSREF+   | 输入  | 系统参考芯片同步(+)。                    |
| K1至K2    | DVDD1     | 电源  | ADC数字电源(1.30 V)。                |
| K3       | RSTB      | 输入  | 芯片数字复位,低电平有效。                   |
| K4       | PWDN      | 输入  | 关断                              |
| K5至K13   | AGND      | 地   | ADC模拟地。这些引脚连接到模拟接地层。            |
| K14      | SYSREF-   | 输入  | 系统参考芯片同步(-)。                    |
| L1       | DGND      | 地   | 数字控制地电源。该引脚连接到数字接地层。            |
| L2       | DNC       | 不适用 | 不连接。请勿连接该引脚。此引脚悬空。              |
| L3       | SYNCINB-  | 输入  | 同步(-)。                          |
| L4       | SYNCINB+  | 输入  | 同步(+)。SYNCINB LVDS输入(低电平有效, +)。 |
| L5至L9    | DGND      | 地   | 数字控制地电源。这些引脚连接到数字接地层。           |
| L10至L12  | DNC       | 不适用 | 不连接。请勿连接到这些引脚。这些引脚悬空。           |

| 引脚编号    | 引脚名称        | 类型 | 描述                                  |  |  |  |  |
|---------|-------------|----|-------------------------------------|--|--|--|--|
| L13、L14 | AGND        | 地  | ADC模拟地。这些引脚连接到模拟接地层。                |  |  |  |  |
| M1至M10  | DRGND       | 地  | 数字驱动器地电源。这些引脚连接到数字驱动器接地层。           |  |  |  |  |
| M11     | DRVDD1      | 电源 | 参考时钟分频器、VCO和合成器电源(1.3 V)。           |  |  |  |  |
| M12     | REXT        | 输入 | 卜部电阻, 10 kΩ接地。                      |  |  |  |  |
| M13、M14 | DRGND       | 地  | 数字驱动器地电源。该引脚连接到数字驱动器接地层。            |  |  |  |  |
| N1      | DRVDD1      | 电源 | 串行数字电源(1.3 V)。                      |  |  |  |  |
| N2      | SERDOUT[7]+ | 输出 | 通道7 CML输出数据(+)。                     |  |  |  |  |
| N3      | SERDOUT[6]+ | 输出 | 通道6 CML输出数据(+)。                     |  |  |  |  |
| N4      | SERDOUT[5]+ | 输出 | 通道5 CML输出数据(+)。                     |  |  |  |  |
| N5      | SERDOUT[4]+ | 输出 | 通道4 CML输出数据(+)。                     |  |  |  |  |
| N6      | DRVDD1      | 电源 | 串行数字电源(1.3 V)。                      |  |  |  |  |
| N7      | SERDOUT[3]+ | 输出 | 通道3 CML输出数据(+)。                     |  |  |  |  |
| N8      | SERDOUT[2]+ | 输出 | 通道2 CML输出数据(+)。                     |  |  |  |  |
| N9      | SERDOUT[1]+ | 输出 | 通道1 CML输出数据(+)。                     |  |  |  |  |
| N10     | SERDOUT[0]+ | 输出 | 通道0 CML输出数据(+)。                     |  |  |  |  |
| N11     | DRVDD1      | 电源 | 串行数字电源(1.3 V)。                      |  |  |  |  |
| N12     | VP_BYP      | 输入 | 电压旁路。                               |  |  |  |  |
| N13、N14 | DRVDD2      | 电源 | SYNCINB±, DIVCLK±的参考时钟分频器电源(2.5 V)。 |  |  |  |  |
| P1      | DRVDD1      | 电源 | 串行数字电源(1.3 V)。                      |  |  |  |  |
| P2      | SERDOUT[7]- | 输出 | 通道7 CML输出数据(-)                      |  |  |  |  |
| P3      | SERDOUT[6]- | 输出 | 通道6 CML输出数据(-)。                     |  |  |  |  |
| P4      | SERDOUT[5]- | 输出 | 通道5 CML输出数据(-)。                     |  |  |  |  |
| P5      | SERDOUT[4]- | 输出 | 通道4 CML输出数据(-)。                     |  |  |  |  |
| P6      | DRVDD1      | 电源 | 串行器数字电源(1.30 V)。                    |  |  |  |  |
| P7      | SERDOUT[3]- | 输出 | 通道3 CML输出数据(-)。                     |  |  |  |  |
| P8      | SERDOUT[2]- | 输出 | 通道2 CML输出数据(-)。                     |  |  |  |  |
| P9      | SERDOUT[1]- | 输出 | 通道1 CML输出数据(-)。                     |  |  |  |  |
| P10     | SERDOUT[0]- | 输出 | 通道0 CML输出数据(-)。                     |  |  |  |  |
| P11     | DRVDD1      | 电源 | 串行器数字电源(1.30 V)。                    |  |  |  |  |
| P12     | DRGND       | 地  | 数字驱动器地电源。该引脚连接到数字驱动器接地层。            |  |  |  |  |
| P13     | DIVCLK-     | 输出 | 4分频参考时钟LVDS (-)。                    |  |  |  |  |
| P14     | DIVCLK+     | 输出 | 4分频参考时钟LVDS (+)。                    |  |  |  |  |

### 表9.引脚功能描述(按功能)1

| 引脚编号                                                                                                                                                                                       | 引脚名称      | 类型 | 描述                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|----------------------------|
| 通用电源和地电源引脚                                                                                                                                                                                 |           |    |                            |
| A1至A3、A5、A8、A11、B1至B4、B6、B8<br>至B11、B13、B14、C1至C5、C7、C9、C10、<br>C12、C13、D5、D6、D9、D10、E6、E9、<br>E10、E13、E14、F6、F9、F10、F13、G6、<br>G9、G10、G13、H6、H9、H10、H13、H14、<br>J9、J10、J13、K5至K13、L13、L14 | AGND      | 地  | ADC模拟地。这些引脚连接到模拟接地层。       |
| J6                                                                                                                                                                                         | RBIAS_EXT | 输入 | 基准电压旁路。该引脚需要一个外部10 kΩ接地电阻。 |
| 时钟引脚                                                                                                                                                                                       |           |    |                            |
| F14                                                                                                                                                                                        | CLK+      | 输入 | ADC时钟输入(+)。                |
| G14                                                                                                                                                                                        | CLK-      | 输入 | ADC时钟输入(-)。                |
| ADC模拟电源和地电源引脚                                                                                                                                                                              |           |    |                            |
| A6、A13、A14、B7、B12、C8、C11、D8、<br>D11、E8、E11、F8、F11、G8、G11、H8、<br>H11、J8、J11                                                                                                                 | AVDD2     | 电源 | ADC模拟电源(2.50 V)。           |
| A4、B5、C6、C14、D7、D12至D14、E7、<br>E12、F7、                                                                                                                                                     | AVDD1     | 电源 | ADC模拟电源(1.30 V)。           |

| 引脚编号                          | 引脚名称                 | 类型           | 描述                                 |
|-------------------------------|----------------------|--------------|------------------------------------|
| F12、G7、G12、H7、H12、J7、J12      |                      |              |                                    |
| A12                           | VM_BYP               | 输入           | 电压旁路。                              |
| A1至A3、A5、A8、A11、B1至B4、B6、B8   | AGND                 | 地            | ADC模拟地。这些引脚连接到模拟接地层。               |
| 至B11、B13、B14、C1至C5、C7、C9、     |                      |              |                                    |
| C10、C12、C13、D5、D6、D9、D10、E6、  |                      |              |                                    |
| E9 E10 E13 E14 F6 F9 F10 F13  |                      |              |                                    |
| 、G6、G9、G10、G13、H6、H9、H10、     |                      |              |                                    |
| H13、H14、J9、J10、J13、K5至K13、L13 |                      |              |                                    |
| 、L14<br>ADC模拟输入和输出引脚          |                      |              |                                    |
| A9                            | VIN+                 | 输入           | 差分模拟输入(+)。                         |
| A10                           | VIN-                 | 输入           | 差分模拟输入(一)。                         |
|                               |                      |              |                                    |
| A7<br>E5                      | VCM                  | 输出           | 模拟输入共模电压(0.525 V)。                 |
|                               | VMON                 | 输出           | CTAT电压监控输出(二极管温度传感器)。              |
| JESD204B高速电源和地引脚              | DD//DD4              | alla Nezi    | ++ (- )kl, -> += 15 (4 2 ) ()      |
| N1、N6、N11、P1、P6、P11           | DRVDD1               | 电源           | 串行数字电源(1.3 V)。                     |
| M1至M10、M13、M14、P12            | DRGND<br>DRVDD2      | 地            | 数字驱动器地电源。这些引脚连接到数字驱动器接地层。          |
| N13、N14<br>M11                | DRVDD2<br>DRVDD1     | 电源<br>电源     | SYNCINB±、DIVCLK的参考时钟分频器电源(2.5 V)。  |
| N12                           | VP_BYP               | □ 电源<br>□ 输入 | 参考时钟分频器、VCO和合成器电源(1.3 V)。<br>电压旁路。 |
| L2                            | DNC                  | 和人<br>N/A    |                                    |
|                               | DINC                 | IN/A         | 不连接。请勿连接该引脚。                       |
| JESD204B高速串行I/O引脚<br>J14      | CVCDEE               | <i>t</i>     | <b>조达会老</b> 世世目华(1)                |
| K14                           | SYSREF+<br>SYSREF-   | 输入           | 系统参考芯片同步(+)。                       |
| L4                            | SYNCINB+             | 输入           | 系统参考芯片同步(-)。                       |
| L4<br>L3                      | SYNCINB+<br>SYNCINB- | 输入           | 同步(+)。SYNCINB LVDS输入(低电平有效, +)。    |
|                               |                      | 输入           | 同步(-)。SYNCINB LVDS输入(低电平有效, -)。    |
| N10                           | SERDOUT[0]+          | 输出           | 通道0 CML输出数据(+)。                    |
| P10                           | SERDOUT[0]—          | 输出           | 通道0 CML输出数据(-)。                    |
| N9                            | SERDOUT[1]+          | 输出           | 通道1 CML输出数据(+)。                    |
| P9                            | SERDOUT[1]-          | 输出           | 通道1 CML输出数据(-)。                    |
| N8                            | SERDOUT[2]+          | 输出           | 通道2 CML输出数据(+)。                    |
| P8                            | SERDOUT[2]-          | 输出           | 通道2 CML输出数据(-)。                    |
| N7                            | SERDOUT[3]+          | 输出           | 通道3 CML输出数据(+)。                    |
| P7                            | SERDOUT[3]—          | 输出           | 通道3 CML输出数据(-)。                    |
| N5                            | SERDOUT[4]+          | 输出           | 通道4CML输出数据(+)。                     |
| P5                            | SERDOUT[4]—          | 输出           | 通道4 CML输出数据(-)。                    |
| N4                            | SERDOUT[5]+          | 输出           | 通道5 CML输出数据(+)。                    |
| P4                            | SERDOUT[5]—          | 输出           | 通道5 CML输出数据(-)。                    |
| N3                            | SERDOUT[6]+          | 输出           | 通道6 CML输出数据(+)。                    |
| P3                            | SERDOUT[6]-          | 输出           | 通道6 CML输出数据(-)。                    |
| N2                            | SERDOUT[7]+          | 输出           | 通道7 CML输出数据(+)。                    |
| P2                            | SERDOUT[7]—          | 输出           | 通道7 CML输出数据(-)。                    |
| P14                           | DIVCLK+              | 输出           | 4分频参考时钟LVDS (+)。                   |
| P13                           | DIVCLK-              | 输出           | 4分频参考时钟LVDS (-)。                   |
| 数字电源和地引脚                      |                      |              |                                    |
| D1至D3、F1至F3、H1至H3、K1至K2       | DVDD1                | 电源           | ADC数字电源(1.3 V)。                    |
| F5、G5                         | DVDDIO               | 电源           | 数字I/O电源(2.5 V)。                    |
| F4                            | SPI_VDDIO            | 电源           | SPI数字电源(2.5 V)。                    |
| E4                            | DVDD2                | 电源           | ADC数字电源(2.5 V)。                    |
| E1至E3、G1至G3、J1至J3、L1、L5至L9    | DGND                 | 地            | 数字控制地电源。这些引脚连接到数字接地层。              |

| 引脚编号    | 引脚名称 | 类型  | 描述                         |
|---------|------|-----|----------------------------|
| D4      | DNC  | 不适用 | 不连接。请勿连接该引脚。此引脚悬空。         |
| 数字控制引脚  |      |     |                            |
| K3      | RSTB | 输入  | 芯片数字复位,低电平有效。              |
| K4      | PWDN | 输入  | AD9625关断。                  |
| M12     | REXT | 输入  | 外部电阻, 10 kΩ接地。             |
| G4      | CSB  | 输入  | SPI片选CMOS输入。低电平有效。         |
| H4      | SCLK | 输入  | SPI串行时钟CMOS输入。             |
| J4      | SDIO | I/O | SPI串行数据CMOS输入/输出。          |
| J5      | FD   | 输出  | 快速检测输出。该引脚需要一个外部10 kΩ接地电阻。 |
| H5      | IRQ  | 输出  | 中断请求输出信号。                  |
| L10至L12 | DNC  | 不适用 | 不连接。请勿连接到这些引脚。这些引脚悬空。      |

<sup>1</sup> 注意:当引脚与多个类别相关时,表9中将其重复列出。表9中的引脚可能不是按字母数字顺序列出。

# 典型性能参数

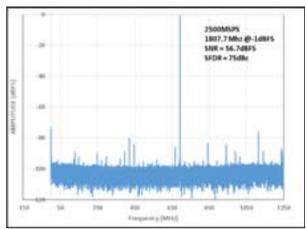



图5. FFT曲线: 2.5 GSPS, AIN的 $f_{\rm IN}$  = 1807.7 MHz (SFDR = 75.0 dBc、SNR = 56.7 dBFS)

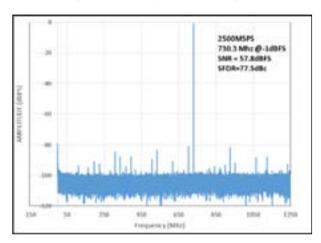



图6. FFT曲线: 2.5 GSPS, AIN的 $f_{IN} = 730.3 \text{ MHz}$  (SFDR = 77.5 dBc、SNR = 57.8 dBFS)

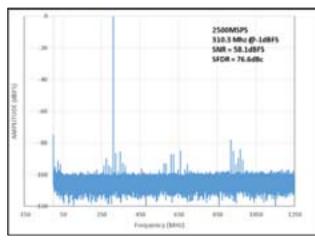



图7. FFT曲线: 2.5 GSPS,  $AIN的f_{IN} = 310.13$  MHz (SFDR = 76.6 dBc、SNR = 58.1 dBFS)

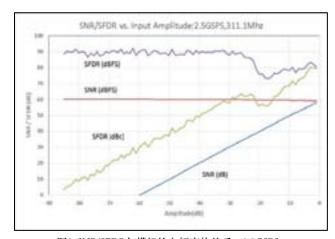



图8. SNR/SFDR与模拟输入幅度的关系:2.5GSPS,  $AIN的f_{\rm IN}=311.1~MHz$ 

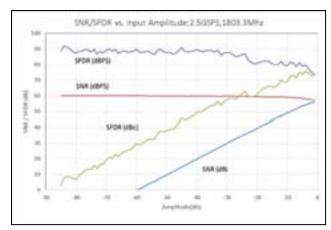



图9. SNR/SFDR与模拟输入幅度的关系: 2.5 GSPS, AIN的 $f_{\rm IN}=1803.3~{
m MHz}$ 

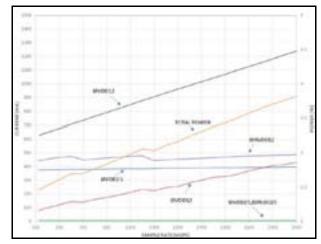



图10. 电流和功耗与采样速率的关系

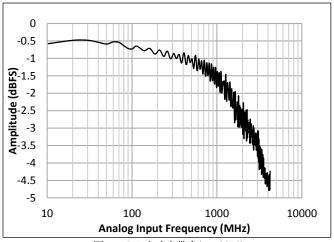



图11.3GHz全功率带宽(2.5 GSPS)

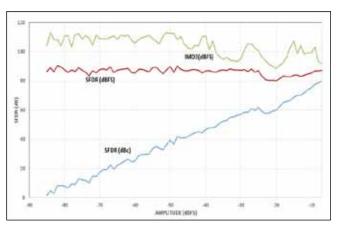



图12. 双音SFDR和IMD3与模拟输入幅度的关系: 2.5GSPS, 1800 MHz AIN

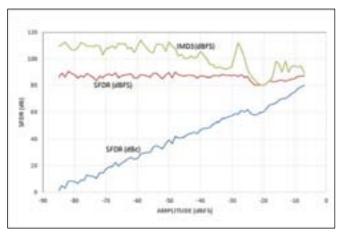



图13. 双音SFDR和IMD3与模拟输入幅度的关系: 2.5 GSPS, 230 MHz AIN

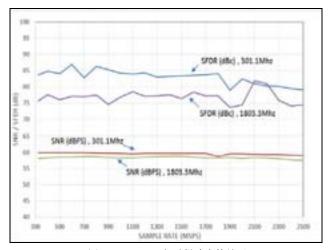



图14. SNR/SFDR与采样速率的关系

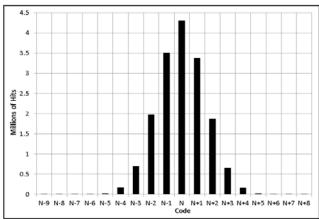



图15. 折合到输入端的噪声直方图(2.5GHz采样时钟)

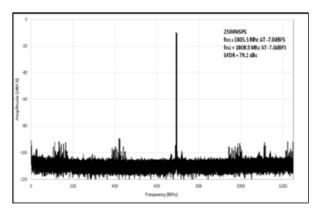



图16. 双音FFT曲线: 2.5 GSPS,AIN的 $f_{_{\rm IN1}}$  = 1805.5 MHz且  $f_{_{\rm IN2}}$  = 1808.5 MHz,-7 dBFS (SFDR = 79.2 dBc)

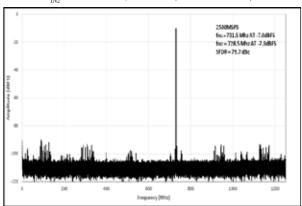



图17. 双音FFT曲线: 2.5 GSPS, AIN的 $f_{_{\rm IN1}}$  = 728.5 MHz且  $f_{_{\rm IN2}}$  = 731.5 MHz, -7 dBFS (SFDR = 79.7 dBc)

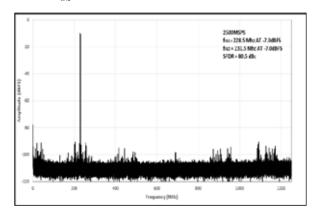



图18. 双音FFT曲线:2.5 GSPS,AIN的 $f_{_{\rm IN1}}$  = 228.5 MHz且  $f_{_{\rm IN2}}$  = 231.5 MHz,-7 dBFS (SFDR = 80 dBc)

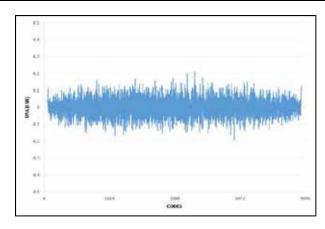



图19. 差分非线性(DNL), ±0.2 LSB

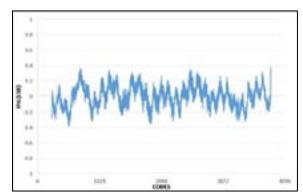



图20. 积分非线性(INL), ±0.4 LSB

## 等效测试电路

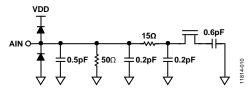



图21. 等效模拟输入电路

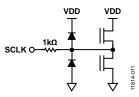



图22. 等效SCLK电路

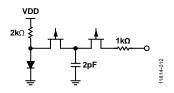



图23. 等效温度传感器电路

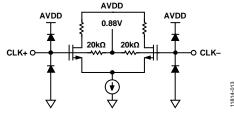



图24. 等效时钟输入电路

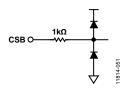



图 25. 等效CSB输入电路

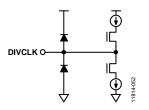



图26. 等效DIVCLK±输出电路

### 工作原理

### ADC架构

AD9625是一款流水线式ADC。流水线结构允许第一级处理新的输入采样点,而其它级继续处理之前的采样点。采样在时钟的上升沿进行。

除最后一级以外,流水线的每一级都包括一个低分辨率 Flash型ADC、一个开关电容数模转换器(DAC)和一个级间 余量放大器(MDAC)。余量放大器放大重构DAC输出与 Flash型输入之差,以便提供给流水线的下一级。为了帮助 对Flash误差进行数字校正,每一级设定了一位的冗余量。 最后一级仅由一个Flash型ADC组成。

输入级包含一个差分采样电路,可在差分或单端模式下完成交流耦合或直流耦合。输出级模块能够实现数据对准、错误校正,且能将数据传输到输出缓冲器。输出缓冲器需要单独供电,允许调整输出驱动电流。

同步功能用于多个器件之间的同步定时。

### 快速检测

AD9625中的快速检测模块产生快速检测位(FD), 当结合可变增益放大器前端模块使用时,它可降低增益,防止ADC输入信号电平超过转换器范围。

图27显示了检测位可利用阈值上限、阈值下限和驻留时间 进行编程的快速性。 当输入信号超过可编程阈值上限时,FD位置1。只有输入信号的绝对值降至阈值下限以下,并且持续时间超过可编程驻留时间,FD位才会清0,由此提供一个迟滞,防止FD位过快切换。

### 增益阈值操作

该阈值禁止后台校准针对小信号幅度进行更新。增益校准的阈值默认使能。

### 阈值操作

每个样本的绝对值累计以产生平均电压估计值。

当校准运行了预定的采样数时,电压估计值与数据集阈值进行比较。若电压估计值大于阈值,则校准系数更新,否则不更新。

### 阈值格式

阈值寄存器都是16位寄存器,通过SPI加载,一次一个字节。 阈值范围是0到16,384,对应的电压范围是0.0 V到1.1 V(满量程)。

校准阈值范围是0到16,384(0x00至0x4000, 十六进制),表示输入的平均幅度。例如,若要设置阈值,使得-6dBFS输入正弦波恰好位于阈值,则需将阈值设置为:

$$16,384 \times 10^{\frac{-6}{20}} \times \frac{2}{\pi} \ge 5228$$

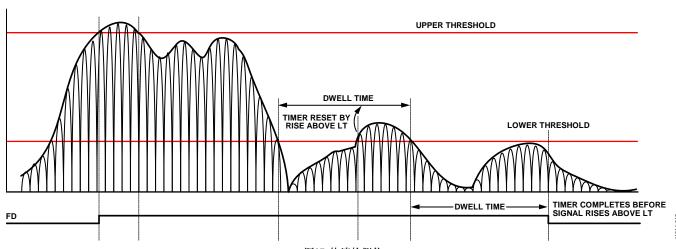



图27. 快速检测位

### 测试模式

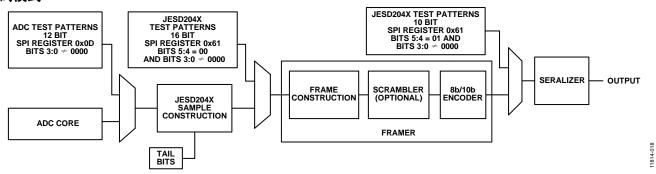



图28. 测试模式

表10. 灵活的输出测试模式(SPI寄存器0x00D)

| 输出测试模式位<br>序列 | 测试码名称  | 数字输出字1<br>(默认二进制补码格式)       | 数字输出字2(默认二进制补码格式)       | 接受数据<br>格式选择 |
|---------------|--------|-----------------------------|-------------------------|--------------|
| 0000          | 关闭(默认) | 不适用                         | 不适用                     | 是            |
| 0001          | 中间电平短码 | 0000 0000 0000              | =Word1                  | 是            |
| 0010          | 正满量程   | 0111 1111 1111              | =Word1                  | 是            |
| 0011          | 负满刻度   | 1000 0000 0000              | =Word1                  | 是            |
| 0100          | 交替棋盘形式 | 1010 1010 1010              | 0101 0101 0101          | 否            |
| 0101          | PN长序列  | 不适用                         | 不适用                     | 是            |
| 0111          | 1/0字反转 | 1111 1111 1111              | 0000 0000 0000          | 否            |
| 1000          | 用户测试模式 | 寄存器0x019至寄存器0x020<br>中的用户数据 | 寄存器0x019至寄存器0x020中的用户数据 | 是            |
| 1111          | 斜坡输出   | N                           | N + 1                   | 否            |

### 数字下变频器(DDC)

AD9625架构包括两个DDC,每个用于提取ADC捕捉的完整数字频谱的一部分。每个调谐器由独立的频率合成器和正交混频器组成,这些元件之后是一系列用于速率转换的低通滤波器。假设采样频率为2.500 GHz,则频率合成器(10位NCO)支持1024个离散调谐频率,从-1.2499 GHz到+1.2500 GHz,步长为2500/1024=2.44 MHz。低通滤波器支持两种工作模式。

- 高帯宽模式,240 MHz宽(-120 MHz至+120 MHz),I和Q 分支分别以2.5 GHz/8 = 312.5 MHz采样。来自I和Q分支 的16位样本通过专用JESD204B接口传输。
- 低带宽模式,120 MHz宽(-60 MHz至+60 MHz),I和Q分支分别以2.5 GHz/16 = 156.25 MHz采样。来自I和Q分支的16位样本通过专用JESD204B接口传输。

设计上, 所有模块以单一时钟频率2.5 GHz/8 = 312.5 MHz 工作。

每个滤波器级都包括一个可由用户编程的增益控制模块。增益范围是0 dB到18 dB,步长为6 dB,该增益在最终缩放和舍入之前应用。当调谐器滤除很强的带外干扰信号,而留下很弱的带内信号时,该增益控制特性可能很有用。

### 频率合成器和混频器

采样速率为2.500 GHz时,合成器(10位NCO)输出-1.249 GHz 至+1.250 GHz的1024个可能复数频率中的一个。合成器采用 直接数字合成技术,并利用查找正弦表和相位累加器。用 户通过写入10位相位递增寄存器来指定调谐器频率。

### 高带宽抽取器

第一滤波器级的设计降速系数是8,产生的采样速率为2.500 GHz/8 = 312.5 MHz。为了降低复杂度并实现低时钟速率,DDC采用8倍抽取多相融合滤波器,它在每个时钟周期从混频器模块接收8个13位样本。

模块设计提供用户指定的增益控制,范围是0 dB到18 dB,步长为6 dB。该增益在最终缩放和舍入到16位之前应用。

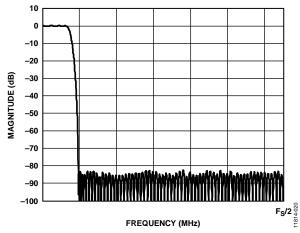



图29.8倍抽取多相融合滤波器的幅度响应

滤波器性能如图29和图31所示。该滤波器产生120 MHz的有效带宽,过渡带为156.5-120=36.5 MHz。因此,该滤波器的双边复数带宽为240 MHz。

85 dB的抑制比确保折回通带的七个混叠产生85 dB - 10log10(7) = 76.5 dB的SNR, 使得混叠远低于输入信号的噪底。通带纹波为±0.05 dB, 如图30所示。

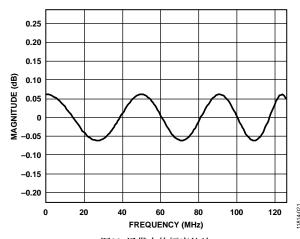



图30. 通带中的幅度纹波

### 低带宽抽取器

只能在可选的低带宽模式下使用第二滤波器级。它额外实现2倍的降速系数,产生的最终采样速率为2.500 GHz/16 = 156.25 MHz。低带宽抽取滤波器的内部结构与高带宽抽取器类似。此外,为便于物理设计,该模块以250 MHz的速率工作,因此I和Q相位可共用该滤波器引擎。

低带宽抽取滤波器的性能如图31和图32所示。该滤波器产生60 MHz的有效带宽,过渡带为81.25 MHz-60=21.25 MHz。 因此,该滤波器的双边复数带宽为120 MHz。85 dB的抑制 比确保混叠区折回到远低于输入信号噪底的水平。

像高带宽滤波器一样,此模块也提供用户指定的增益控制,范围是0 dB到18 dB,步长为6 dB。该增益在低带宽抽取滤波器的输出最终量化到16位之前应用。

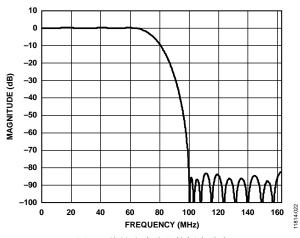
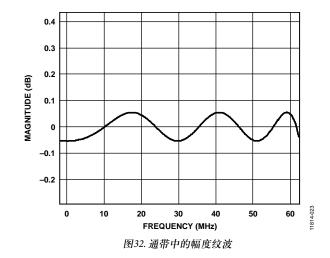




图31.2倍抽取滤波器的幅度响应



## 模拟输入考虑

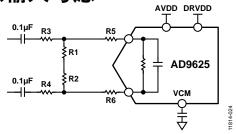



图33. 前端最低要求

建议使用串联电阻(R5和R6)来降低带宽峰化,并使ADC采 样电容的反冲影响最低。小串联电阻(R3和R4)会限制带宽, 但可以安装以进一步改善性能。表11列出了前端要求。

表11. 推荐前端元件

| * * * * * * * * * * * * * * * * * * * * |                            |
|-----------------------------------------|----------------------------|
| 元件                                      | 元件值                        |
| R1                                      | 50 Ω(端接)                   |
| R2                                      | 50 Ω(端接)                   |
| R3                                      | 0 Ω至33 Ω                   |
| R4                                      | 0 Ω至33 Ω                   |
| R5                                      | 0 Ω至33 Ω                   |
| R6                                      | 0 Ω至33 Ω                   |
|                                         | R1<br>R2<br>R3<br>R4<br>R5 |

### 直流耦合

AD9625可在直流耦合输入配置下工作。模拟输入信号需要参考AD9625的Vcm输出。

### 时钟输入考虑

为了充分发挥芯片的性能,应利用一个差分信号驱动AD9625采样时钟输入端(CLK+和CLK-)。通常,应使用一个变压器或两个电容器将该信号交流耦合到CLK+引脚和CLK-引脚内。这两个引脚有内部偏置,无需其它偏置。

### 时钟抖动考虑

高速、高分辨率ADC对时钟输入信号的质量非常敏感。在给定的输入频率 $(f_A)$ 下,仅由孔径抖动 $(t_J)$ 造成的信噪比(SNR)下降计算公式如下:

 $SNR = 20 \times \log 10(2 \times \pi \times f_A \times t_J)$ 

公式中,均方根孔径抖动表示所有抖动源(包括时钟输入信号、模拟输入信号和ADC孔径抖动规格)的均方根。中频 欠采样应用对抖动尤其敏感(见图34)。

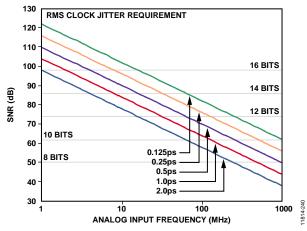



图34. 理想信噪比与模拟输入频率和抖动的关系

当孔径抖动可能影响AD9625的动态范围时,应将时钟输入信号视为模拟信号。为避免在时钟信号内混入数字噪声,时钟驱动器电源应与ADC输出驱动器电源分离。如果时钟信号来自其它类型的时钟源(通过门控、分频或其它方法),则应在最后对原始时钟进行重定时。如需深入了解与ADC相关的抖动性能信息,请参阅应用笔记AN-501和AN-756。

### 时钟占空比考虑

典型的高速ADC利用时钟的两个边沿来产生各种内部时序信号。因此,这些ADC可能对时钟占空比很敏感。通常,为保持ADC的动态性能,时钟占空比容差应为5%。

## 数字输出

### JESD204B接口简介

AD9625数字输出符合JEDEC标准(标准号: JESD204B, 数据转换器串行接口)。JESD204B是AD9625通过串行接口(最高6.5 Gbps链路速度)连接数字处理设备的协议。相比于LVDS, JESD204B接口的优势包括:数据接口路由所需电路板空间更少,以及转换器和逻辑器件的封装更小。AD9625支持1、2、4、6或8个输出通道。

JESD204B数据发送模块可将来自ADC的并行数据组合成数据帧,并使用8位/10位编码以及可选数据加扰技术,输出串行数据。在初始链路的建立过程中,使用特殊字符可支持通道同步;而用于维持同步的额外数据则嵌入在随后的数据流中。完整的串行链路需要一个JESD204B接收机。有关JESD204B接口的详细信息,建议用户查阅JESD204B标准。

AD9625 JESD204B发送模块将ADC的输出通过链路映射到两个数字下变频器。一条链路最多可配置为使用8个JESD204B通道。JESD204B规范用多个参数来定义链路,JESD204B发射机(AD9625的输出)和接收机(FPGA、ASIC或逻辑器件)的这些参数必须匹配。

表12说明了JESD204B接口术语(转换器件和链路这两个术 语在该规范中通用)。

表12. JESD204B 接口术语

| 77 | 2010 10 10 10 10 10 10 10 10 10 10 10 10 |
|----|------------------------------------------|
| 符号 | 说明                                       |
| S  | 每个帧周期每个转换器发送的样本                          |
| M  | 每个转换器件(链路)的转换器数                          |
| L  | 每个转换器件(链路)的通道数                           |
| N  | 转换器分辨率                                   |
| N' | 每个样本的总位数                                 |
| CF | 每个转换器件(链路)每个帧时钟周期的控制字数                   |
| CS | 每个转换样本的控制位数                              |
| K  | 每个多帧的帧数                                  |
| HD | 高密度模式                                    |
| F  | 每帧的8位字数                                  |
| C  | 控制位(超范围、时间戳)                             |
| T  | 结束位                                      |

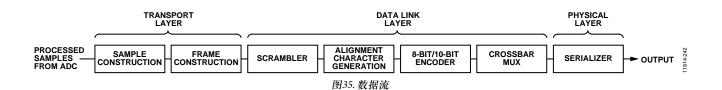
AD9625遵循JESD204B规范草案,该规范针对数据转换器和逻辑器件提供高速、串行、嵌入式时钟接口标准。该器件设计为MCDA-ML、Subclass 1器件,利用SYSREF±输入信号实现多芯片同步和确定性延迟。此设计采用如下基本JESD204B链路配置参数:

- M = 1(单一转换器, AD9625始终如此)
- L=1至8(最多8个通道)
- S = 4(每个JESD204B帧4个样本)
- F=1、2、4、8(每帧最多8个8位字)
- N'=12、16(12或16位JESD204B字大小)
- HD=0、1(高密度模式、样本跨多个通道)

### 功能概述

图35中的框图显示了数据通过JESD204B硬件从采样输入到物理输出的流程。处理可依据OSI模型分为多层,OSI模型广泛用于描述通信系统的抽象层。它有传输层、数据链路层和物理层(串行器)。以下部分详细介绍各层。

### 传输层


传输层将数据(由样本和可选控制位组成)包装成8位字并发送至数据链路层。传输层受链路配置数据产生的规则控制。它根据规则包装数据,需要时添加结束位以填补空隙。

### 数据链路层

数据链路层负责执行通过链路传送数据的低级功能,包括加扰数据(可选),处理链路上的字符、帧和通道的同步过程,将8位数据字编码为10位字符,以及在数据输出中插入适当的控制字符。数据链路层还负责发送初始通道对齐序列(ILAS),它包含链路配置数据,接收机(Rx)利用它来验证传输层的设置。

#### 物理层

物理层由以串行时钟速率运行的高速电路构成,包括串行 化电路和高速驱动器。



### JESD204B链路建立

AD9625 JESD204B Tx接口按照JEDEC标准204B(2011年7月规范)的规定,以Subclass 1工作。它分为以下几步:代码组同步、初始化通道对齐序列和数据流。

### 代码组同步(CGS)和SYNCINB±

CGS是JESD204B接收机找到数据流中10位字符间边界的过程。在CGS阶段,JESD204B传送模块传送/K28.5/字符。接收机(外部逻辑器件)必须使用时钟和数据恢复(CDR)技术,在输入数据流中定位/K28.5/字符。

接收机通过激活AD9625的SYNCINB±引脚,发出一个同步请求。JESD204B Tx开始发送/K28.5/字符,直至下一LMFC 边界。当接收机已同步时,它便等待接收机至少正确接收4个连续的/K28.5/符号,然后停用SYNCINB±。AD9625接着在下一LMFC边界发送一个初始通道对齐序列(ILAS)。

有关代码组同步阶段的更多信息,请参见JEDEC标准204B (2011年7月)第5.3.3.1节。

SYNCINB±引脚操作可以由SPI控制。默认情况下, SYNCINB±信号是一个差分LVDS模式信号,但也可以单端 驱动。有关配置SYNCINB±引脚操作的更多信息,参见存储器映射部分。

### 初始通道对齐序列(ILAS)

CGS阶段之后是ILAS阶段,它在下一LMFC边界开始。 ILAS由4个多帧组成,/R/字符表示开始,/A/字符表示结束。 ILAS从发送/R/字符开始,然后发送一个多帧的0至255斜坡 数据。在第二个多帧发送链路配置数据,从第三个字符开 始。第二个字符是/Q/字符,用以确认随后是链路配置数 据。所有未定义数据时隙都用斜坡数据填充。ILAS序列从 不加扰。

ILAS序列结构如图38所示。4个多帧包括:

- 多帧1: 以/R/字符(K28.0)开始,以/A/字符(K28.3)结束。
- 多帧2:以/R/字符开始,后接/Q/[K28.4]字符,然后是 14个配置8位字的链路配置参数,最后以/A/字符结束。 许多参数值用-1表示。

- 多帧3: 与多帧1相同。
- 多帧4: 与多帧1相同。

#### 数据流

完成初始通道对齐序列之后便发送用户数据。在普通的一帧中,所有字符都是用户数据。然而,为了监控帧时钟和多帧时钟同步,当数据符合某些条件时,有一个机制来将字符替换为/F/或/A/对齐字符。对于未加扰和加扰的数据,这些条件是不同的。默认使能加扰操作,但可以通过SPI禁用。

对于加扰的数据,帧末尾的任何0xFC字符都用/F/替换,多帧末尾的任何0xFD字符都用/A/替换。JESD204B Rx检查接收数据流中有无/F/和/A/字符,验证其仅出现在预期的位置。如果发现意外的/F/或/A/字符,接收机将利用动态对齐处理这种情况,或激活SYNCINB±信号并持续四帧以上的时间以启动重新同步。对于未加扰的数据,如果两个连续帧的最后字符相同,则第二个字符将被替换为/F/(若它位于一个帧的末尾)或/A/(若它位于一个多帧的末尾)。

对齐字符的插入可通过SPI修改。帧对齐字符插入默认使能。有关链路控制的更多信息,参见存储器映射部分的寄存器0x062。

### 8位/10位编码器

8位/10位编码器将8位字转换为10位字符,并在需要时将控制字符插入流中。JESD204B使用的控制字符如表13所示。8位/10位编码通过使用相同数量的1和0来支持信号达到直流平衡。

8位/10位接口的选项可通过SPI控制,包括旁路、反转和镜像。这些选项用作数字前端(DFE)验证的故障排除工具。

#### 数字输出、时序和控制

AD9625物理层由JEDEC标准204B(2011年7月)所规定的驱动器组成。差分数字输出默认上电。驱动器利用100 Ω的动态内部端接电阻来降低反射干扰。

在每个接收机的输入端放置一个100 Ω差分端接电阻,可实现标称300 mV p-p的接收机摆幅(见图36)。也可使用单端50 Ω端接电阻。使用单端端接电阻时,终端电压为DRVDD/2;此外,还可使用0.1 μΓ交流耦合电容以便端接至任意单端电压。

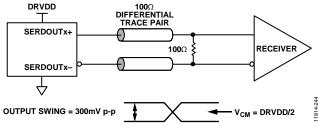
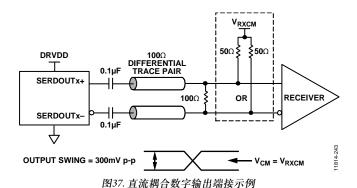




图36. 交流耦合数字输出端接示例

AD9625数字输出可与定制的ASIC和FPGA接收机接口,从而在高噪声环境中实现出色的开关性能。推荐使用单一点到点网络拓扑结构,并将单个100 Ω差分端接电阻尽可能靠近接收机输入端放置。数字输出的共模电压自动偏置到DRVDD电源的一半。图37显示输出直流耦合到接收机逻辑。



如果没有远端接收机端接电阻,或者差分走线布线不佳,可能会导致时序错误。为避免产生时序错误,建议走线长度不要超过6英寸,差分输出走线应尽可能彼此靠近且长度相等。

### 去加重

当互连插入损耗不符合JESD204B规范时,利用去加重可以符合接收机眼图眼罩。只能在接收机因为插入损耗过大而无法恢复时钟时使用去加重特性。一般情况下,该特性禁用以节省功耗。此外,对一个短链路使能并设置过高的去加重值,可能导致接收机眼图失效。去加重设置应慎重使用,因为它会增加电磁干扰(EMI)。详细信息见存储器映射部分。

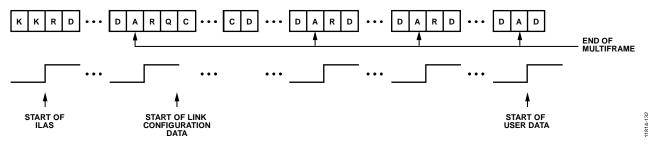



图38. 初始通道对齐序列

表13. AD9625用于JESD204B的控制字符

| 缩写  | 控制符号    | 8位值       | 10位值<br>RD(运行差异)<br>= –1 | 10位值<br>RD(运行差异)<br>=+1 | 说明       |
|-----|---------|-----------|--------------------------|-------------------------|----------|
| /R/ | /K28.0/ | 000 11100 | 001111 0100              | 110000 1011             | 多帧开始     |
| /A/ | /K28.3/ | 011 11100 | 001111 0011              | 110000 1100             | 通道对齐     |
| /Q/ | /K28.4/ | 100 11100 | 001111 0100              | 110000 1101             | 链路配置数据开始 |
| /K/ | /K28.5/ | 101 11100 | 001111 1010              | 110000 0101             | 组同步      |
| /F/ | /K28.7/ | 111 11100 | 001111 1000              | 110000 0111             | 帧对齐      |

表14. JESD204B工作模式(除非另有说明, M=1, S=4, N'=16)

|       |                 |           |              | 采样品        | <b>対</b> 速率 |         | JESD204B通道速率 |            |
|-------|-----------------|-----------|--------------|------------|-------------|---------|--------------|------------|
| 快速配置值 | 说明 <sup>1</sup> | 通道<br>(L) | 8位字/帧<br>(F) | 最小<br>MSPS | 最大<br>MSPS  | 采样时钟倍频器 | 最小<br>Mbps   | 最大<br>Mbps |
| 0x02  | 通用              | 2         | 4            | 330        | 650         | 10      | 3300         | 6500       |
| 0x04  | 通用              | 4         | 2            | 650        | 1300        | 5       | 3250         | 6500       |
| 0x06  | 通用 (N' = 12)    | 6         | 1            | 1300       | 2500        | 2.5     | 3250         | 6250       |
| 0x08  | 通用              | 8         | 1            | 1300       | 2500        | 2.5     | 3250         | 6250       |
| 0x42  | $f_S \times 8$  | 2         | 4            | 406        | 813         | 8       | 3250         | 6500       |
| 0x44  | $f_S \times 4$  | 4         | 2            | 813        | 1625        | 4       | 3250         | 6500       |
| 0x48  | $f_S \times 2$  | 8         | 1            | 1625       | 2500        | 2       | 3250         | 5000       |
| 0x81  | 单DDC, 高带宽       | 1         | 8            | 650        | 1300        | 5       | 3250         | 6500       |
| 0x82  | 单DDC, 高带宽       | 2         | 4            | 1300       | 2500        | 2.5     | 3250         | 6250       |
| 0x91  | 单DDC, 低带宽       | 1         | 8            | 1300       | 2500        | 2.5     | 3250         | 6250       |
| 0xC1  | 双DDC,高带宽        | 1         | 8            | 330        | 650         | 10      | 3300         | 6500       |
| 0xC2  | 双DDC,高带宽        | 2         | 4            | 650        | 1300        | 5       | 3250         | 6500       |
| 0xC4  | 双DDC,高带宽        | 4         | 2            | 1300       | 2500        | 2.5     | 3250         | 6250       |
| 0xD1  | 双DDC,混合带宽       | 1         | 8            | 330        | 650         | 10      | 3300         | 6500       |
| 0xD2  | 双DDC,混合带宽       | 2         | 4            | 650        | 1300        | 5       | 3250         | 6500       |
| 0xE1  | 双DDC,混合带宽       | 4         | 2            | 1300       | 2500        | 2.5     | 3250         | 6250       |
| 0xE2  | 双DDC, 低带宽       | 1         | 8            | 650        | 1300        | 5       | 3250         | 6500       |
| 0xE4  | 双DDC,低带宽        | 2         | 4            | 1300       | 2500        | 2.5     | 3250         | 6250       |

 $<sup>^1</sup>$  DDC表示数字下变频器, $f_s imes x$ 表示采样速率乘以一个整数。

### 表15. JESD204B逻辑通道映射

| 快速配置值 | 说明                | 通道<br>(L) | 逻辑通道0                                                                                   | 逻辑通道1                                     | 逻辑通道2                          | 逻辑通道3                     | 逻辑诵道4                                        | 逻辑通道5                        | 逻辑通道6          | 逻辑通道7          |
|-------|-------------------|-----------|-----------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|---------------------------|----------------------------------------------|------------------------------|----------------|----------------|
| 0x02  | 通用                | 2         | S[N],<br>S[N + 1]                                                                       | S[N + 2],<br>S[N + 3]                     | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |
| 0x04  | 通用                | 4         | S[N]                                                                                    | S[N + 1]                                  | S[N + 2]                       | S[N + 3]                  | 关                                            | 关                            | 关              | 关              |
| 0x06  | 通用<br>(N' = 12)   | 6         | S <sub>MSB</sub> [N], S <sub>LSE</sub>                                                  | [N], S <sub>MSB</sub> [N + 1              | ], S <sub>LSB</sub> [N + 1], S | $_{MSB}[N+2], S_{LSB}[I]$ | N + 2], S <sub>MSB</sub> [N +                | 3], S <sub>LSB</sub> [N + 3] | 关              | 关              |
| 0x08  | 通用                | 8         | S <sub>MSB</sub> [N]                                                                    | S <sub>LSB</sub> [N]                      | $S_{MSB}[N+1]$                 | S <sub>LSB</sub> [N + 1]  | S <sub>MSB</sub> [N + 2]                     | S <sub>LSB</sub> [N + 2]     | $S_{MSB}[N+3]$ | $S_{LSB}[N+3]$ |
| 0x42  | $f_s \times 8$    | 2         |                                                                                         |                                           | 参见图43                          | ,f <sub>s</sub> x 2模式应    | 用层(发送)                                       |                              |                |                |
| 0x44  | $f_S \times 4$    | 4         |                                                                                         |                                           | 参见图43                          | ,f <sub>s</sub> x 2模式应    | 用层(发送)                                       |                              |                |                |
| 0x48  | f <sub>S</sub> ×2 | 8         | SMS                                                                                     |                                           |                                |                           | SB[N + 2], SLSB[<br>图43,f <sub>s</sub> x 2模词 |                              |                | 3],            |
| 0x81  | 单DDC,<br>高带宽      | 1         | $I_0[N],$ $Q_0[N],$ $I_0[N+1],$ $Q_0[N+1]$                                              | 关                                         | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |
| 0x82  | 单DDC,<br>高带宽      | 2         | I₀[N],<br>Q₀[N]                                                                         | I₀[N+1],<br>Q₀[N+1]                       | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |
| 0x91  | 单DDC,<br>低带宽      | 1         | $I_0[N],$ $Q_0[N],$ $I_0[N+1],$ $Q_0[N+1]$                                              | 关                                         | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |
| 0xC1  | 双DDC,<br>高带宽      | 1         | I <sub>0</sub> [N],<br>Q <sub>0</sub> [N],<br>I <sub>1</sub> [N],<br>Q <sub>1</sub> [N] | 关                                         | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |
| 0xC2  | 双DDC,<br>高带宽      | 2         | I <sub>0</sub> [N],<br>Q <sub>0</sub> [N]                                               | I <sub>1</sub> [N],<br>Q <sub>1</sub> [N] | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |
| 0xC4  | 双DDC,<br>高带宽      | 4         | I <sub>0</sub> [N]                                                                      | Q <sub>0</sub> [N]                        | I <sub>1</sub> [N]             | Q <sub>1</sub> [N]        | 关                                            | 关                            | 关              | 关              |
| 0xD1  | 双DDC,<br>混合带宽     | 1         | I <sub>0</sub> [N],<br>Q <sub>0</sub> [N],<br>I <sub>1</sub> [N],                       | 关                                         | 关                              | 关                         | 关                                            | 关                            | 关              | 关              |

| 快速配置值 | 说明            | 通道<br>(L) | 逻辑通道0                               | 逻辑通道1                                     | 逻辑通道2              | 逻辑通道3              | 逻辑通道4 | 逻辑通道5 | 逻辑通道6 | 逻辑通道7 |
|-------|---------------|-----------|-------------------------------------|-------------------------------------------|--------------------|--------------------|-------|-------|-------|-------|
|       |               |           | Q <sub>1</sub> [N]                  |                                           |                    |                    |       |       |       |       |
| 0xD2  | 双DDC,<br>混合带宽 | 2         | I₀[N],<br>Q₀[N]                     | I <sub>1</sub> [N],<br>Q <sub>1</sub> [N] | 关                  | 关                  | 关     | 关     | 关     | 关     |
| 0xE1  | 双DDC,<br>混合带宽 | 4         | I <sub>0</sub> [N]                  | Q <sub>0</sub> [N]                        | I <sub>1</sub> [N] | Q <sub>1</sub> [N] | 关     | 关     | 关     | 关     |
| 0xE2  | 双DDC,<br>低带宽  | 1         | I₀[N],<br>Q₀[N],<br>I₁[N],<br>Q₁[N] | 关                                         | 关                  | 关                  | 关     | 关     | 关     | 关     |
| 0xE4  | 双DDC,<br>低带宽  | 2         | I₀[N],<br>Q₀[N]                     | I <sub>1</sub> [N],<br>Q <sub>1</sub> [N] | 关                  | 关                  | 关     | 关     | 关     | 关     |

### 物理层输出

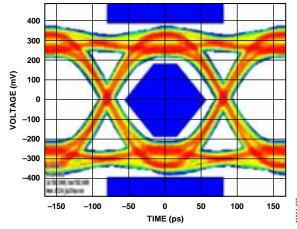



图39. JESD204B通道(6.25 Gbps)恢复的数据眼图

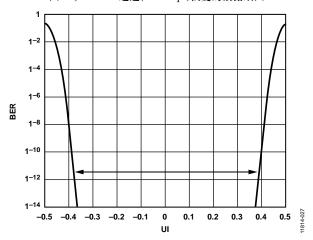



图40. JESD204B输出(6.25 Gbps)的浴盆图

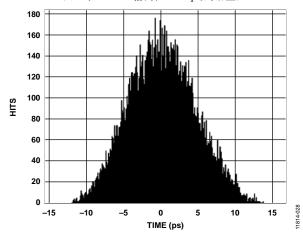



图41. JESD204B输出(6.25 Gbps)的时间间隔直方图误差

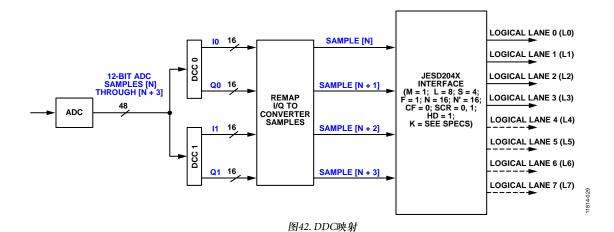
### 加扰器

加扰器多项式为1+x14+x15。加扰器使能位是寄存器0x06E[7]。

- 位7设为0即禁用加扰器。
- 位7设为1即使能加扰器。

### 结束位

结束位(PN发生器)是寄存器0x05F[6]。


- 位6设为0即禁用结束位发生器。
- 位6设为1即使能结束位发生器。

### DDC模式(单和双)

AD9625内置两个独立的DDC,它们能以较低带宽将实数ADC输出数据数字下变频为I/Q抽取数据。当不需要该2.5 GSPS转换器提供的全部带宽时,此特性很有用。

图 42显示了DDC模块遍历AD9625的简化框图。所有 JESD204B帧都包含4个样本(S=4),因此DDC也必须输出4个 样本。表16显示了AD9625特定的JESD204B接口的I/Q样本 与转换器样本的重映射关系。

在混合带宽模式下, DDC 0始终处于高带宽模式, DDC 1 始终处于低带宽模式。为了匹配高带宽模式的数据吞吐速 率,混合带宽模式下的低带宽样本会重复两次。表17列出 了DDC 0(高带宽模式)和DDC 1(低带宽模式)的4个数据帧。



### 表16. DDC将I/Q重映射到转换器样本

| 应用模式 | 样本[N]              | 样本[N + 1] | 样本[N + 2]              | 样本[N+3]                |
|------|--------------------|-----------|------------------------|------------------------|
| 单DDC | I <sub>0</sub> [N] | Q₀[N]     | I <sub>0</sub> [N + 1] | Q <sub>0</sub> [N + 1] |
| 双DDC | I <sub>0</sub> [N] | $Q_0[N]$  | I <sub>1</sub> [N]     | Q <sub>1</sub> [N]     |

### 表17. DDC混合带宽模式

| JESD204B | 样本[N]                  | 样本[N+1]            | 样本[N+2]                | 样本[N+3]                |
|----------|------------------------|--------------------|------------------------|------------------------|
| 第0帧      | I <sub>0</sub> [N]     | Q <sub>0</sub> [N] | I <sub>1</sub> [N]     | Q <sub>1</sub> [N]     |
| 第1帧      | I₀[N + 1]              | $Q_0[N+1]$         | I <sub>1</sub> [N]     | Q <sub>1</sub> [N]     |
| 第2帧      | I₀[N + 2]              | $Q_0[N+2]$         | I <sub>1</sub> [N + 1] | Q <sub>1</sub> [N + 1] |
| 第3帧      | I <sub>0</sub> [N + 3] | $Q_0[N+3]$         | $I_1[N+1]$             | Q <sub>1</sub> [N + 1] |

### 校验和

JESD204B校验和值是在初始通道对齐序列期间与配置参数 一起发送。禁用校验和主要是用于调试。

### 8位/10位编码器控制

8位/10位编码器必须通过以下方式进行控制:

- 旁路8位/10位编码器通过寄存器0x60的位2控制(0 = 使能 8位/10位; 1 = 禁用8位/10位)。
- 反转10位编码器通过寄存器0x060的位1控制(0=正常,1=反转)。
- 镜像10位编码器通过寄存器0x060的位0控制(0=正常,1= 镜像)。

利用反转的10位值,用户可以交换电路板上交换的正/负差分引脚。有关寄存器0x060的详细信息,参见存储器映射寄存器部分。

### 初始通道对齐序列(ILAS)

AD9625必须支持三种不同的ILAS模式,这些寄存器通过寄存器0x05F的位[3:2]控制,如下所示:

- 00:禁用
- 01: 使能

- 10: 保留
- 11: 始终开启, 测试模式

使能时,器件还必须支持重复ILAS的功能,ILAS的重复次数利用寄存器0x062的位[7:0]确定(0 = 重复0次,ILAS仅运行一次;1 = 重复一次,ILAS运行两次,以此类推)。每个多帧的帧数由K值确定,因此初始通道对齐序列期间发送的总帧数为:

$$4 \times (K+1) \times (ILAS\_COUNT+1)$$

其中K值由寄存器0x070的位[4:0]定义。注意,只能使用可被4整除的值。

有关寄存器0x05F和寄存器0x062的详细信息,参见存储器映射寄存器部分。

### 诵道同步

通道同步由寄存器0x05F的位4定义(0 = 禁用, 1 = 使能)。 更多信息请参见存储器映射寄存器部分。

### JESD204B样本的ADC输出控制位

当N'=16且ADC分辨率为12时,每个样本有4个闲置位。其中2位可用作控制位,即样本的位置2到位置1,具体取决于配置选项。控制位在寄存器0x072的位[7:6]中设置。

- 00: 每个样本发送0个控制位(CS = 0)。
- 01: 每个样本发送1个控制位,超范围位使能(CS = 1)。
- 10:每个样本发送2个控制位,超范围+带时间戳的SYSREF 控制位(标记SYSREF±引脚上看到的上升沿样本)(CS=2)。 使用SYSREF控制位(CS=2)给特定模拟样本加时间戳,该 样本与SYSREF±引脚上的上升信号同时出现。

寄存器0x061的位[5:4]控制JESD204B接口测试注入点。

- 00: 链路样本输入端注入的16位测试产生数据。
- 01: 8位/10位编码器输出端(PHY输入端)注入的10位测试 产生数据。
- 10: 加扰器输入端注入的8位测试产生数据。
- 11: 保留。

寄存器0x061的位[3:0]决定注入的测试码类型,如下所示:

- 0000: 正常工作(测试模式禁用)。
- 0001:交替棋盘形式。
- 0010:1/0字交替。
- 0011: PN序列: 长(x<sup>23</sup> + x<sup>18</sup> + 1)。
- 0101: 连续/重复用户测试模式,16位用户模式码的最高 有效位(1、2、3、4)置于输出端一个时钟周期,然后重 复。(输出用户模式码:1、2、3、4、1、2、3、4、1、2、 3、4、...)
- 0110: 单一用户测试模式,16位用户模式码的最高有效位(1、2、3、4)置于输出端一个时钟周期,然后输出全0。(输出用户模式码:1、2、3、4,然后输出全0。)
- 0111: 斜坡输出(取决于测试注入点和位数N)。
- 1000: 修改的RPAT测试序列。
- 1001: 未用
- 1010: JSPAT测试序列。
- 1011: JTSPAT测试序列。

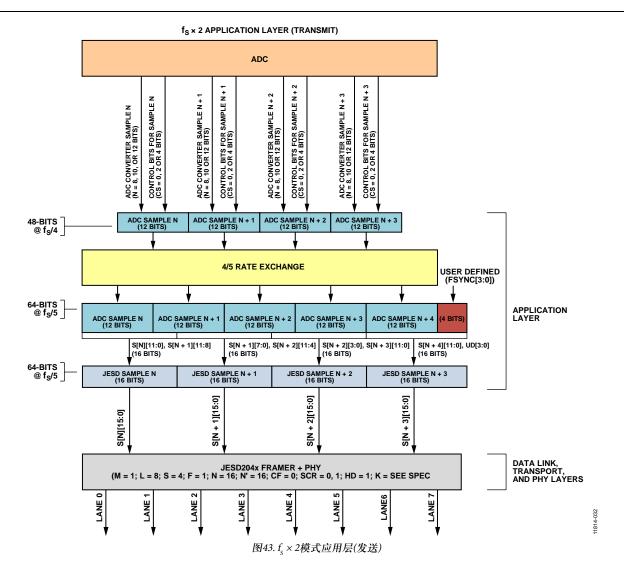
• 1100至1111: 未用

### JESD204B应用层

AD9625通过寄存器0x063[3:0]支持以下应用层模式:

- 0100: f<sub>s</sub>×x模式,它支持线路速率是采样速率的整数倍数
- 1000: 单DDC模式, 高带宽模式(仅使用DDC 0)
- 1001: 单DDC模式, 低带宽模式(仅使用DDC 0)
- 1010至1011: 未用
- 1100: 双DDC模式, 高带宽模式(DDC 0和DDC 1均使用)
- 1101: 双DDC模式, 低带宽模式(DDC 0和DDC 1均使用)
- 1110: 双DDC模式,混合带宽模式(DDC 0为高带宽模式, DDC 1为低带宽模式,样本重复)

### f、×2、f、×4、f、×8模式


JESD204B低倍频器模式应用层在JESD204B发射机/接收机 之上增加了速率转换,其具有如下配置参数: M=1, L=8, S=4, F=1, N=16, N'=16, CS=0, CF=0, SCR=0、1, HD=1, K=参考JESD204B规范。

这种模式下,每帧有5个实际样本,JESD204B接口可以选择使能加扰。低倍频器模式JESD204B应用层的发送部分如图43所示。

此应用层的第一步是12位ADC样本分为6个字节。

为使JESD204B接口的线路速率能够直接映射为转换器采样速率的整数倍,需要进行4比5的速率转换,以便将12位ADC样本分组,每5个样本构成一个区块。速率转换期间,对于每5个12位ADC样本,需增加一个额外的用户自定义4位半字节,以形成一个64位帧。然后,64位低倍频器帧映射为4个16位JESD204B样本。64位低倍频器帧的最高有效16位映射为最早的16位JESD204B样本,最低有效16位映射为最新的16位JESD204B样本。

f。×2 JESD204B应用层的接收部分如图44所示。



Rev. Pr. A | Page 32 of 56

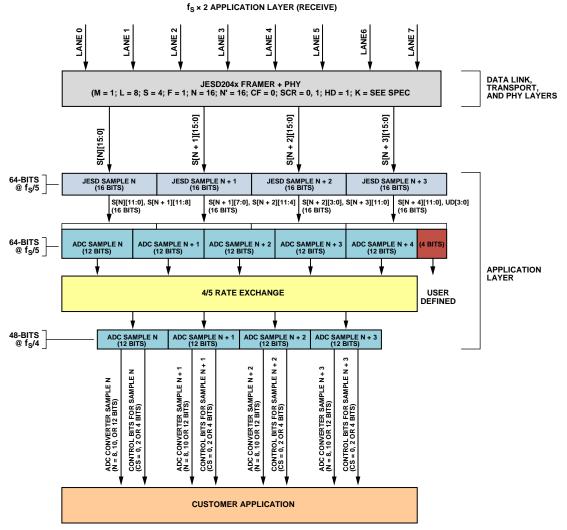


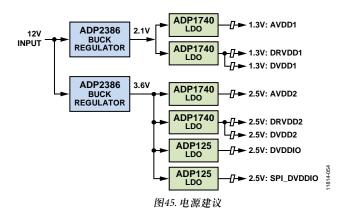

图44. f<sub>c</sub>×2应用层(接收)

### 帧对齐字符插入

帧对齐字符插入(FACI)在寄存器映射中定义(参见存储器映射寄存器部分)。只有FACI用作测试特性时,才能禁用它。

FACI禁用位是寄存器0x05F的位1。使用如下设置:

- 位1设为0即使能FACI。
- 位1设为1即禁用FACI。


### 散热考虑

由于该器件的功耗很高,在高温下工作时,必须提供气流和/或安装散热器,确保最大壳温不超过85℃。

### 电源考虑

AD9625必须由以下2个电源供电: AVDD1=DVDD1=DRVDD1=1.3 V, AVDD2=DVDD2=DRVDD2=2.5 V。可能还需要可选的2.5 V DVDDIO和SPI DVDDIO。

对于要求高电源效率和低噪声性能的应用,建议使用开关稳压器ADP2386来将12 V输入轨转换为两个中间电压轨(2.1 V和3.6 V),然后用超低噪声、低压差(LDO)稳压器(ADP1740、ADP7104和ADP125)调节这些中间电压轨。图45展示的是建议方法。



### 串行端口接口(SPI)

AD9625 SPI允许用户利用ADC内部的一个结构化寄存器空间来配置转换器,以满足特定功能和操作的需要。SPI具有灵活性,可根据具体的应用进行定制。通过串行端口,可访问地址空间,以及对地址空间进行读写。存储空间以字节为单位进行组织,并且能进一步划分成多个区域。各个区域的说明见存储器映射部分。

### 使用SPI的配置

该ADC的SPI由三个引脚组成: SCLK引脚、SDIO引脚和 CSB引脚(见表18)。SCLK(串行时钟)引脚用于同步从ADC 读出的数据和写入ADC的数据。SDIO(串行数据输入/输出) 引脚是一个双功能引脚,可通过此引脚将数据发送至内部 ADC存储器映射寄存器或从该寄存器中读出数据。CSB(片选信号)引脚是低电平有效控制引脚,它能够使能或者禁用读写周期。

### 表18. 串行端口接口引脚

| 引脚   | 功能                                                                |
|------|-------------------------------------------------------------------|
| SCLK | 串行时钟。串行移位时钟输入,用来同步串行接口的<br>读、写操作。                                 |
| SDIO | 以、与採作。<br>  串行数据输入/输出。双功能引脚,通常用作输入或<br>  输出,具体取决于发送的指令和时序帧中的相对位置。 |
| CSB  | 片选信号。低电平有效控制信号,用来选通读写周期。                                          |

CSB的下降沿与SCLK的上升沿共同决定帧的开始。

CSB引脚可以在其它模式下工作。CSB引脚可始终维持在低电平状态,从而使器件一直处于使能状态,这称作流。CSB引脚可以在字节之间停留在高电平,这样可以允许其他外部时序。CSB引脚拉高时,SPI功能处于高阻抗模式。在该模式下,可以开启SPI引脚的第二功能。

所有数据均由8位字组成。串行数据的每个字节的第一位 表示发出的是读命令还是写命令。这样,就能将SDIO引脚 的数据传输方向从输入改为输出。

除了字长,指令周期还决定串行帧是读操作还是写操作, 从而通过串行端口对芯片编程以及读取片上存储器内的数 据。如果指令是回读操作,则执行回读操作会使SDIO引脚 在串行帧的适当位置由输入变为输出。

数据可通过MSB优先模式或LSB优先模式发送。芯片上电后,默认采用MSB优先的方式,可以通过SPI端口配置寄存器来更改数据发送方式。

### 硬件接口

表18中所描述的引脚包括用户编程器件与AD9625的串行端口之间的物理接口。使用SPI接口时,SCLK引脚和CSB引脚用作输入引脚。SDIO引脚是双向引脚,在写入阶段,用作输入引脚,在回读阶段,用作输出引脚。

SPI接口非常灵活,FPGA或微控制器均可控制该接口。应用笔记AN-812"基于微控制器的串行接口(SPI)启动电路"中详细介绍了一种SPI配置方法。

当需要转换器充分发挥其全动态性能时,应禁用SPI端口。通常SCLK信号、CSB信号和SDIO信号与ADC时钟是异步的,因此,这些信号中的噪声会降低转换器性能。如果其它器件使用板上SPI总线,则可能需要在该总线与AD9625之间连接缓冲器,以防止这些信号在关键的采样周期内,在转换器的输入端发生变化。

## 存储器映射

### 读取存储器映射寄存器

存储器映射寄存器的每一行有8位。存储器映射大致分为 三个部分:芯片配置寄存器(地址0x000至地址0x002);传 送寄存器(地址0x0FF);ADC功能寄存器,包括设置、控制 和测试(地址0x008至地址0x13A)。

存储器映射寄存器表列出了每个十六进制地址及其十六进制默认值。

位7 (MSB)栏为给定十六进制默认值的起始位。例如,输出模式寄存器(地址0x14)的十六进制默认值为0x01。这表明,位0 = 1,其余位均为0。此设置是默认输出格式值(二进制补码)。如需了解更多关于该功能及其它功能的信息,请参阅应用笔记AN-877:"通过SPI与高速ADC接口"。

### 禁用位置和保留位置

本器件目前并不支持全部地址和位位置。有效地址中未使用的位应写为0。当一个地址仅有部分位处于禁用状态时,才需要对这些位置进行写操作。如果整个地址均禁用,则不应对该地址进行写操作。

### 默认值

AD9625复位后,关键寄存器将载入默认值。存储器映射寄存器表列出了各寄存器的默认值。

### 逻辑电平

以下是逻辑电平的术语说明:

- "置位"指将某位设置为逻辑1或向某位写入逻辑1。
- "清除位"指将某位设置为逻辑0或向某位写入逻辑0。

### 传送寄存器映射

地址0x008至地址0x020被屏蔽,向这些地址进行写操作不会影响器件运行,除非向地址0x0FF写入0x01以设置传输位,从而发出传输命令。这样,设置传输位时,就可以在内部同时更新这些寄存器。设置传输位时,内部进行更新,然后传输位自动清零。

### 存储器映射寄存器

此器件目前不支持表19至表107中未包括的地址和位。

表19. SPI配置寄存器, 地址0x000(默认值 = 0x00)

| 位号 | 访问类型 | 位功能描述                                                                                                       |
|----|------|-------------------------------------------------------------------------------------------------------------|
| 7  |      | 未用                                                                                                          |
| 6  | RW   | SPI最低有效位(LSB)优先。 1: 对于所有SPI操作, LSB首先移位。对于多字节SPI操作, 地址自动递增。 0: 对于所有SPI操作, 最高有效位(MSB)首先移位。对于多字节SPI操作, 地址自动递减。 |
| 5  | RW   | 自清零软复位。<br>1: 复位SPI寄存器(自清零)。<br>0: 无操作。                                                                     |
| 4  | R    | 使能13位寻址。                                                                                                    |
| 3  | R    | 使能13位寻址。                                                                                                    |
| 2  | RW   | 自清零软复位。<br>1: 复位SPI寄存器(自清零)。<br>0: 无操作。                                                                     |
| 1  | RW   | SPI LSB优先。 1: 对于所有SPI操作,LSB首先移位。对于多字节SPI操作,地址自动递增。 0: 对于所有SPI操作,MSB首先移位。对于多字节SPI操作,地址自动递减。                  |
| 0  | 未用   | 未用                                                                                                          |

### 表20. 芯片ID寄存器, 地址0x001(默认值 = 0x00)

| 位号 | 访问类型 | 位功能描述 |  |  |
|----|------|-------|--|--|

| [7:0]                                             |                 | R                                     | 芯片ID。                                                                   |
|---------------------------------------------------|-----------------|---------------------------------------|-------------------------------------------------------------------------|
| 表21. ネ                                            | 芯片等级名           | 字存器,地址0x(                             | 002(默认值 = 0x00)                                                         |
| 位号                                                |                 | 访问类型                                  | 位功能描述                                                                   |
| [7:6]                                             |                 |                                       | 未用                                                                      |
| [5:4]                                             |                 | R                                     | 芯片ID/速度等级。                                                              |
| 3                                                 |                 |                                       | 未用                                                                      |
| [2:0]                                             |                 | R                                     | 芯片版本。                                                                   |
|                                                   |                 |                                       | 100: 芯片版本代码。                                                            |
|                                                   |                 |                                       | 101到111: 保留。                                                            |
| 表22.耳                                             | 功耗控制模           | ************************************* | 业0x008(默认值 = 0x00)                                                      |
| <u> </u>                                          | 774 UJII 183 13 | 访问类型                                  | 位功能描述                                                                   |
| <del>12                                    </del> |                 | W) 1)(±                               | 未用                                                                      |
| 6                                                 |                 |                                       | 未用                                                                      |
| 5<br>5                                            |                 |                                       | 未用                                                                      |
| <br>[4:2]                                         |                 |                                       | 未用                                                                      |
| [1:0]                                             |                 | RW                                    | 芯片功耗模式。                                                                 |
| [1.0]                                             |                 | 100                                   | 00: 普通模式(上电)。                                                           |
|                                                   |                 |                                       | 01: 关断                                                                  |
|                                                   |                 |                                       | 10: 待机模式: 数字数据路径时钟禁用, JESD204B接口使能, 输出使能。                               |
|                                                   |                 |                                       | 11: 数字数据路径复位模式,数字数据路径时钟使能,数字数据路径保持复位状态,JESD204                          |
|                                                   |                 |                                       | 接口保持复位状态,输出使能。                                                          |
| <b>≠</b> 22 D                                     |                 | <b>左</b> 嬰 +b+b-0-0                   |                                                                         |
|                                                   |                 | 1                                     | 0A(默认值 = 0x00)                                                          |
| <del>位号</del><br>7                                | 访问类             |                                       | · p.                                                                    |
| /                                                 | RO              | PLL锁定状态                               |                                                                         |
|                                                   |                 | 0: PLL未锁定                             |                                                                         |
| [6:0]                                             |                 | 1: PLL已锁定                             |                                                                         |
| [0:0]                                             |                 | 未用                                    |                                                                         |
| 表24. <i>F</i>                                     | ADC测试控          | 2制寄存器,地域                              | 止0x00D(默认值 = 0x00)                                                      |
| 4.5                                               | 访问              | 43-1 Ab 144                           |                                                                         |
| 位号<br>-                                           | 类型              | 位功能描述                                 |                                                                         |
| 7                                                 | RW              |                                       | 用户测试模式控制。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000]<br>些位,否则忽略。 |
|                                                   |                 |                                       | 竺世,音则忍咐。<br>模式码模式。将每个用户模式码(1、2、3、4)置于输出端一个时钟周期,然后重复。(输出用户模              |
|                                                   |                 |                                       | 3、4、1、2、3、4、1、2、3、4、)                                                   |
|                                                   |                 |                                       | 马模式。将每个用户模式码(1、2、3、4)置于输出端一个时钟周期,然后输出全0。(输出用户模式                         |
|                                                   |                 |                                       | 4, 然后输出全0。)                                                             |
| 6                                                 |                 | 未用                                    |                                                                         |
| 5                                                 | RW              | ADC长伪随机                               | 数据测试发生器复位。                                                              |
|                                                   |                 | 0: 长PN使能。                             |                                                                         |
|                                                   |                 | 1:长PN保持复                              | 位状态。                                                                    |
| 4                                                 | RW              | 未用                                    |                                                                         |
| [3:0]                                             | RW              |                                       | 测试生成模式。                                                                 |
|                                                   |                 | 0000: 美闭,正                            |                                                                         |
|                                                   |                 | 0001: 中间电平                            | <sup>2</sup> 短路。                                                        |
|                                                   |                 | 0010: 正满量和                            |                                                                         |
|                                                   |                 | 0011: 负满量和                            | Ē.                                                                      |
|                                                   |                 | 0100: 交替棋盘                            |                                                                         |
|                                                   | 1               | 0101 DNI ( ) 中7                       |                                                                         |

0101: PN长序列。 0110: 未用

0111:1/0字反转。

1000: 用户测试模式。结合寄存器0x00D[7]和用户模式码(1、2、3、4)寄存器使用。

1001到1110: 未用 1111:斜坡输出。

#### 表25. 数据路径客户偏移寄存器,地址0x010(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                          |
|-------|------|--------------------------------|
| [7:6] |      | 未用                             |
| [5:0] | RW   | 数字数据路径偏移。二进制补码偏移调整与转换器最低分辨率对齐。 |
|       |      | 011111: +31                    |
|       |      | 011110: +30                    |
|       |      |                                |
|       |      | 000001: 1                      |
|       |      | 000000: 0                      |
|       |      | 111111: –1                     |
|       |      |                                |
|       |      | 100001: –31                    |
|       |      | 100000: –32                    |

#### 表26. 输出模式寄存器, 地址0x014(默认值 = 0x00)

| 70-01 AMIL | 农20. 相山快风引作品,心处500·11款次位—50007 |                                                         |  |
|------------|--------------------------------|---------------------------------------------------------|--|
| 位号         | 访问类型                           | 位功能描述                                                   |  |
| [7:5]      |                                | 未用                                                      |  |
| 4          | RW                             | 芯片输出禁用。位4使能和禁用ADC的数字输出。                                 |  |
|            |                                | 0: 使能。                                                  |  |
|            |                                | 1: 禁用。                                                  |  |
| 3          |                                | 未用                                                      |  |
| 2          | RW                             | 数字ADC样本反转。                                              |  |
|            |                                | 0: ADC样本数据不反转。                                          |  |
|            |                                | 1: ADC样本数据反转。                                           |  |
| [1:0]      | RW                             | 数字ADC数据格式选择(DFS)。注意:AD9625不支持通过复用SDIO引脚控制寄存器0x014[1:0]。 |  |
|            |                                | 00: 偏移二进制。                                              |  |
|            |                                | 01: 二进制补码(默认)。                                          |  |
|            |                                | 10:保留。                                                  |  |
|            |                                | 11:保留。                                                  |  |

#### 表27. 串行器输出调整寄存器,地址0x015(默认值 = 0x50)

| 位号    | 访问类型 | 位功能描述              |
|-------|------|--------------------|
| 7     | RW   | 串行器输出极性选择。         |
|       |      | 0: 正常,不反转。         |
|       |      | 1: 输出驱动器极性反转。      |
| [6:5] | RW   | 串行器输出加重幅度控制。       |
|       |      | 00:0 mV加重差分p-p。    |
|       |      | 01: 160 mV加重差分p-p。 |
|       |      | 10:80 mV加重差分p-p。   |
|       |      | 11: 40 mV幅度差分p-p。  |
| [4:0] | RW   | 保留。                |

#### 表28. 用户测试码1 LSB寄存器, 地址0x019(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                                                                                                         |
|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | RW   | 用户测试码1最低有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时,或寄存器0x061的位[3:0]处于加扰器或10位测试模式(寄存器0x061[3:0] = 0100至0111)时,才使用这些位。其它情况下忽略这些位。 |

| 位号    | 访问<br>类型 | 位功能描述                                                                               |
|-------|----------|-------------------------------------------------------------------------------------|
| [7:0] | RW       | 用户测试码1最高有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时,才使用这些位。其它情况下忽略这些位。 |

#### 表30. 用户测试码2 LSB寄存器, 地址0x01B(默认值 = 0x00)

| 位号    | 访问<br>类型 | 位功能描述                                                                                   |
|-------|----------|-----------------------------------------------------------------------------------------|
| [7:0] | RW       | 用户测试码2最低有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时,<br>才使用这些位。其它情况下忽略这些位。 |

#### 表31. 用户测试码2 MSB寄存器, 地址0x01C(默认值 = 0x00)

| 位号    | 访问<br>类型 | 位功能描述                                                                               |
|-------|----------|-------------------------------------------------------------------------------------|
| [7:0] | RW       | 用户测试码2最高有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时,才使用这些位。其它情况下忽略这些位。 |

#### 表32. 用户测试码3 LSB寄存器, 地址0x01D(默认值 = 0x00)

| 位号    | 访问<br>类型 | 位功能描述                                                                               |
|-------|----------|-------------------------------------------------------------------------------------|
| [7:0] | RW       | 用户测试码3最低有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时,才使用这些位。其它情况下忽略这些位。 |

#### 表33. 用户测试码3 MSB寄存器, 地址0x01E(默认值 = 0x00)

| 位号    | 访问<br>类型 | 位功能描述                                                                                   |
|-------|----------|-----------------------------------------------------------------------------------------|
| [7:0] | RW       | 用户测试码3最高有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时,<br>才使用这些位。其它情况下忽略这些位。 |

#### 表34. 用户测试码4 LSB寄存器, 地址0x01F(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                             |
|-------|------|-------------------------------------------------------------------|
| [7:0] | RW   | 用户测试码4最低有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时, |
|       |      | 才使用这些位。其它情况下忽略这些位。                                                |

#### 表35. 用户测试码4 MSB寄存器, 地址0x020(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                             |
|-------|------|-------------------------------------------------------------------|
| [7:0] | RW   | 用户测试码4最高有效字节。注意:仅当寄存器0x00D的位[3:0]处于用户输入模式(寄存器0x00D[3:0] = 1000)时, |
|       |      | 才使用这些位。其它情况下忽略这些位。                                                |

#### 表36. 合成器PLL控制寄存器, 地址0x021(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述           |
|-------|------|-----------------|
| [7:5] |      | 未用              |
| 4     | RW   | 1 = VCO LDO强制关断 |
| 3     | RW   | 保留供未来使用。        |
| [2:0] |      | 未用              |

#### 表37. ADC模拟输入控制寄存器, 地址0x02C(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                    |
|-------|------|--------------------------|
| [7:3] |      | 未用                       |
| 2     | RW   | 设置VMON引脚的功能。             |
|       |      | 0: 未用                    |
|       |      | 1: 允许客户在VMON引脚上施加外部基准电压。 |
| [1:0] |      | 未用                       |

#### 表38. SYSREF控制寄存器, 地址0x03A(默认值 = 0x00)

| 位号 | 访问类型 | 位功能描述                                                             |
|----|------|-------------------------------------------------------------------|
| 7  | RW   | SYSREF状态位替换转换器输出的LSB。                                             |
|    |      | 0: 正常模式。                                                          |
|    |      | 1: SYSREF状态位替换LSB。                                                |
| 6  | RW   | SYSREF状态位标志复位。若要使用标志,寄存器0x03A的位1必须置1。                             |
|    |      | 0: 正常标志操作。                                                        |
|    |      | 1: SYSREF状态位标志保持复位状态。                                             |
| 5  |      | 未用                                                                |
| 4  | RW   | SYSREF±跃迁选择。                                                      |
|    |      | 0: 使用选定的CLK边沿,SYSREF±在低电平到高电平跃迁时有效。                               |
|    |      | 1: 使用选定的CLK边沿,SYSREF±在高电平到低电平跃迁时有效。                               |
| 3  | RW   | SYSREF±捕捉边沿选择。                                                    |
|    |      | 0: 在CLK输入的上升沿捕捉。                                                  |
|    |      | 1: 在CLK输入的下降沿捕捉。                                                  |
| 2  | RW   | SYSREF±下一模式。                                                      |
|    |      | 0: 连续模式。                                                          |
|    |      | 1: 下一SYSREF±模式:仅使用SYSREF±引脚的下一有效边沿。忽略SYSREF±引脚随后的边沿。找到下一系统参考时,    |
|    |      | 寄存器0x03A的位1清0。                                                    |
| 1  | RW   | SYSREF±引脚使能。                                                      |
|    |      | 0: SYSREF±禁用。                                                     |
|    |      | 1: SYSREF±使能。当寄存器0x03A的位2=1时,仅使用SYSREF±引脚的下一有效边沿。忽略SYSREF引脚随后的边沿。 |
| 0  |      | 未用                                                                |

#### 表39. 快速检测控制寄存器, 地址0x045(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                   |
|-------|------|-----------------------------------------|
| [7:4] |      | 未用                                      |
| 3     | RW   | 强制驱动快速检测输出引脚。                           |
|       |      | 0: 快速检测引脚正常工作。                          |
|       |      | 1: 将快速检测引脚强制驱动为某一值(参见本表的位2)。            |
| 2     | RW   | 当强制驱动输出时,快速检测输出引脚设置为该位中的值(寄存器0x045[2])。 |
| 1     |      | 未用                                      |
| 0     | RW   | 使能对校正ADC数据的快速检测。                        |
|       |      | 0: 禁用精密快速检测。                            |
|       |      | 1: 使能精密快速检测。                            |

### 表40. 快速检测阈值上限寄存器,地址0x047(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                           |
|-------|------|-------------------------------------------------|
| [7:0] | RW   | 这些位是快速检测阈值上限的LSB。可编程12位阈值上限的这8个LSB与精密ADC幅度进行比较。 |

#### 表41. 快速检测阈值上限寄存器, 地址0x048(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                           |
|-------|------|-------------------------------------------------|
| [7:4] |      | 未用                                              |
| [3:0] | RW   | 这些位是快速检测阈值上限的MSB。可编程12位阈值上限的这4个MSB与精密ADC幅度进行比较。 |

#### 表42. 快速检测阈值下限寄存器、地址0x049(默认值 = 0x00)

| 位  | 过号   | 访问类型 | 位功能描述                                           |
|----|------|------|-------------------------------------------------|
| [7 | 7:0] | RW   | 这些位是快速检测阈值下限的LSB。可编程12位阈值下限的这8个LSB与精密ADC幅度进行比较。 |

#### 表43. 快速检测阈值下限寄存器, 地址0x04A(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                       |
|-------|------|---------------------------------------------|
| [7:4] |      | 未用                                          |
| [3:0] | RW   | 快速检测阈值下限的MSB。可编程12位阈值下限的这4个MSB与精密ADC幅度进行比较。 |

#### 表44. 快速检测驻留时间计数器阈值寄存器,地址0x04B(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                  |
|-------|------|--------------------------------------------------------|
| [7:0] | RW   | 这些位是快速检测驻留时间计数器目标的LSB。这是16位计数器的值,决定FD引脚复位到0之前ADC数据必须低于 |
|       |      | 阈值下限的时长。                                               |

#### 表45. 快速检测驻留时间计数器阈值寄存器,地址0x04C(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                                          |
|-------|------|--------------------------------------------------------------------------------|
| [7:0] | RW   | 这些位是快速检测驻留时间计数器目标的MSB。这是16位计数器的值,决定FD引脚复位到0之前ADC数据必须低                          |
|       |      | 于阈值下限的时长。<br>注意:在寄存器0x04C[7:0]中的值所表示的样本数内,如果ADC代码始终低于目标下限,则快速检测(FD)引脚解除<br>置位。 |

|       |      | 速配置寄存器,地址0x05E(默认值 = 0x00)                                                                                                                                                                                                       |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 位号    | 访问类型 | 位功能描述                                                                                                                                                                                                                            |
| [7:0] | RW   | JESD2048串行快速配置(自清零)。此寄存器自清零,并不直接控制AD9625的任何事情,仅改变其他控制芯片的 JESD240B寄存器的值。由于是自清零寄存器,它在每次写入后必定恢复到000。要使用快速配置特性,首先应写入此寄存器,然后,如果需要修改以下任何寄存器,再写入其他JESD204B寄存器。 0x00: 其他寄存器决定的配置。由于是自清零寄存器,它在每次写入后必定恢复为此值。 0x01: 保留。                     |
|       |      | 0x02. 通用2通道配置寄存器0x063[3:0] = 0x0, 寄存器0x06E[4:0] = 0x1, 寄存器0x072[4:0] = 0xB,         寄存器0x073[4:0] = 0xF。         0x04. 通用4通道配置寄存器0x063[3:0] = 0x0, 寄存器0x06E[4:0] = 0x3, 寄存器0x072[4:0] = 0xB,         寄存器0x073[4:0] = 0xF。        |
|       |      | 0x06:通用6通道配置寄存器0x063[3:0] = 0x0,寄存器0x06E[4:0] = 0x5,寄存器0x072[4:0] = 0xB,<br>寄存器0x073[4:0] = 0xB。<br>0x08:通用8通道配置寄存器0x063[3:0] = 0x0,寄存器0x06E[4:0] = 0x7,寄存器0x072[4:0] = 0xB,                                                     |
|       |      | 寄存器0x073[4:0] = 0xF。 0x42: 保留。 0x44: 保留。                                                                                                                                                                                         |
|       |      | 0x48: f <sub>s</sub> × 2模式, 8通道。寄存器0x063[3:0] = 0x4, 寄存器0x06E[4:0] = 0x7, 寄存器0x072[4:0] = 0xF, 寄存器0x073[4:0] = 0xF。<br>0x81: 1 DDC(高带宽), 1通道。寄存器0x063[3:0] = 0x8; 寄存器0x06E[4:0] = 0x0; 寄存器0x072[4:0] = 0xF, 寄存器0x073[4:0] = 0xF。 |
|       |      | 0x82: 1 DDC(高带宽), 2通道。寄存器0x063[3:0] = 0x8; 寄存器0x06E[4:0] = 0x1; 寄存器0x072[4:0] = 0xF; 寄存器0x073[4:0] = 0xF。 0x91: 1 DDC(低带宽), 1通道。寄存器0x063[3:0] = 0x9; 寄存器0x06E[4:0] = 0x0; 寄存器0x072[4:0] = 0xF;                                   |
|       |      | 寄存器0x073[4:0] = 0xF。<br>0xC1: 2 DDC(高帯宽), 1通道。寄存器0x063[3:0] = 0xC; 寄存器0x06E[4:0] = 0x0; 寄存器0x072[4:0] = 0xF;<br>寄存器0x073[4:0] = 0xF。                                                                                             |
|       |      | 0xC2: 2 DDC(高带宽), 2通道。寄存器0x063[3:0] = 0xC; 寄存器0x06E[4:0] = 0x1; 寄存器0x072[4:0] = 0xF; 寄存器0x073[4:0] = 0xF。 0xC4: 2 DDC(高带宽), 4通道。寄存器0x063[3:0] = 0xC; 寄存器0x06E[4:0] = 0x3; 寄存器0x072[4:0] = 0xF;                                   |
|       |      | 寄存器0x073[4:0] = 0xF。 0xD1: 2 DDC(低带宽), 1通道。寄存器0x063[3:0] = 0xD; 寄存器0x06E[4:0] = 0x0; 寄存器0x072[4:0] = 0xF;                                                                                                                        |
|       |      | 寄存器0x073[4:0] = 0xF。 0xD2: 2 DDC(低带宽), 2通道。寄存器0x063[3:0] = 0xD; 寄存器0x06E[4:0] = 0x1; 寄存器0x072[4:0] = 0xF; 寄存器0x073[4:0] = 0xF。                                                                                                   |

| 位号 | 访问类型 | 位功能描述                                                                                    |
|----|------|------------------------------------------------------------------------------------------|
|    |      | 0xE1: 2 DDC(混合带宽), 1通道。寄存器0x063[3:0] = 0xE; 寄存器0x06E[4:0] = 0x0, 寄存器0x072[4:0] = 0xF; 寄存 |
|    |      | 器0x073[4:0] = 0xF。                                                                       |
|    |      | 0xE2: 2 DDC(混合带宽), 2通道。寄存器0x063[3:0] = 0xE; 寄存器0x06E[4:0] = 0x1, 寄存器0x072[4:0] = 0xF; 寄存 |
|    |      | 器0x073[4:0] = 0xF。                                                                       |
|    |      | 0xE4: 2 DDC(混合带宽), 4通道。寄存器0x063[3:0] = 0xE; 寄存器0x06E[4:0] = 0x3; 寄存器0x072[4:0] = 0xF; 寄存 |
|    |      | 器0x073[4:0] = 0xF。                                                                       |
|    |      | 所有其他值无作用。                                                                                |

### 表47. JESD204B链路控制寄存器1, 地址0x05F(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                                 |
|-------|------|-----------------------------------------------------------------------|
| 7     |      | 未用                                                                    |
| 6     | RW   | JESD204B串行结束位,PN,使能。注意:可以利用下式来确定每个样本发送的PN位数:N'-N-CS(每个样本的控            |
|       |      | 制位数)。                                                                 |
|       |      | 0: 串行结束位,PN,禁用。未用的额外结束位用0填充。                                          |
|       |      | 1: 串行结束位,PN,使能。未用的额外结束位用31位LFSR产生的伪随机数序列填充(参见JESD204B 5.1.4)。         |
| 5     | RW   | JESD204B串行测试样本使能。                                                     |
|       |      | 0: JESD204B测试样本禁用。                                                    |
|       |      | 1: JESD204B测试样本使能。所有链路通道都会发送传输层测试样本序列(按照JESD204B第5.1.6.2部分的规定)。       |
| 4     | RW   | JESD204B串行通道同步使能。注意:要使能通道同步,必须使能帧字符插入(寄存器0x05F[1] = 0)。               |
|       |      | 0: 通道同步禁用。两侧均不执行通道同步,帧对齐字符插入始终使用/K28.7/控制字符(参见JESD204B 5.3.3.4)。      |
|       |      | 1: 通道同步使能。两侧均执行通道同步,帧对齐字符插入使用/K28.3/或/K28.7/控制字符(参见JESD204B 5.3.3.4)。 |
| [3:2] | RW   | JESD204B串行初始通道对齐序列模式。                                                 |
|       |      | 00: 初始通道对齐序列禁用(JESD204B 5.3.3.5)。                                     |
|       |      | 01: 初始通道对齐序列使能(JESD204B 5.3.3.5)。                                     |
|       |      | 10: 保留。                                                               |
|       |      | 11: 测试模式下初始通道对齐序列始终开启,JESD204B数据链路层测试模式,所有通道均发送重复通道对齐序列(按             |
|       | DW   | 照JESD204B第5.3.3.9.2部分的规定)。                                            |
| 1     | RW   | JESD204B串行帧对齐字符插入(FACI)禁用。                                            |
|       |      | 0: 帧对齐字符插入使能(JESD204B 5.3.3.4)。                                       |
|       |      | 1: 帧对齐字符插入禁用。注意,这仅用于调试(JESD204B 5.3.3.4)。                             |
| 0     | RW   | JESD204B串行发送链路关断(高电平有效)。注意:更改任何链路配置位时,JESD204B发射机链路必须关断。              |
|       |      | 0: JESD204B串行发送链路使能。用于代码组同步的/K28.5/字符发送由SYNCINB±引脚控制。                 |
|       |      | 1: JESD204B串行发送链路关断(保持复位状态且时钟选通)。                                     |

## 表48. JESD204B链路控制寄存器2,地址0x060(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                  |  |  |  |
|-------|------|----------------------------------------|--|--|--|
| [7:6] | RW   | RW JESD204B串行同步模式。                     |  |  |  |
|       |      | 00: 正常模式。                              |  |  |  |
|       |      | 01:保留。                                 |  |  |  |
|       |      | 10: SYNCINB±有效模式。SYNCINB±引脚有效:强制代码组同步。 |  |  |  |
|       |      | 11: SYNCINB±引脚禁用。                      |  |  |  |
| 5     | RW   | JESD204B串行同步引脚反转。                      |  |  |  |
|       |      | 0: SYNCINB±引脚不反转。                      |  |  |  |
|       |      | 1: SYNCINB±引脚反转。                       |  |  |  |
| [4:3] |      | 未用                                     |  |  |  |

| 位号 | 访问类型 | 位功能描述                                                                                                             |
|----|------|-------------------------------------------------------------------------------------------------------------------|
| 2  | RW   | JESD204B串行8位/10位旁路(仅限测试模式)。<br>0: 使能8位/10位。<br>1: 旁路8位/10位(2个最高有效位为0)。                                            |
| 1  | RW   | JESD204B 10位串行发送位反转。注意:如果系统板布局中的CML信号反接,此位将使物理层的差分输出反转。0:正常。1:反转a、b、c、d、e、f、g、h、i、j位。                             |
| 0  | RW   | JESD204B 10位串行发送位镜像。<br>0: 不镜像10位串行位。发送位序按字母顺序:a、b、c、d、e、f、g、h、i、j。<br>1: 镜像10位串行位。发送位序按字母逆序:j、i、h、g、f、e、d、c、b、a。 |

#### 表49. JESD204B链路控制寄存器3, 地址0x061(默认值 = 0x00)

|       |      | 时江则可行65,地址0x001(款队值 - 0x00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 位号    | 访问类型 | 位功能描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7     | RW   | JESD204B校验和禁用。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |      | 0: 链路配置参数使能校验和。正常工作。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |      | 1: 链路配置参数禁用校验和(设为0)。仅供测试使用。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6     | RW   | JESD204B校验和模式。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |      | 0: 校验和为链路配置域中所有8位寄存器之和。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |      | 1: 校验和为各链路配置域(LSB对齐)之和。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [5:4] | RW   | JESD204B串行测试生成输入选择。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |      | 00: 链路样本输入端注入的16位测试产生数据。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |      | 01:8位/10位编码器输出端(PHY输入端)注入的10位测试产生数据。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |      | 10: 加扰器输入端注入的8位测试产生数据。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |      | 11: 保留。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [3:0] | RW   | JESD204B串行测试生成模式。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |      | 0000: 正常工作(测试模式禁用)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |      | 0001: 交替棋盘形式。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |      | 0010: 1/0字交替。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |      | 0011: PN序列(长)。<br>0100: 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |      | 0100. 末用<br>  0101: 连续/重复用户测试模式。用户测试码的最高有效位(1、2、3、4)置于输出端一个时钟周期,然后重复(输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |      | $\Pi$   $\Pi$ |
|       |      | 0110: 单一用户测试模式。用户测试码的最高有效位(1、2、3、4)置于输出端一个时钟周期,然后输出全0(输出用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |      | 户测试码为1、2、3、4、然后输出全0)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |      | 0111: 斜坡输出。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |      | 1000: 修改的RPAT测试序列(10位值)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |      | 1001: 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |      | 1010: JSPAT测试序列(10位值)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |      | 1011: JTSPAT测试序列(10位值)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |      | 1100到1111:未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### 表50. JESD204B链路控制寄存器4, 地址0x062(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                                                                                                                                              |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | RW   | 初始通道对齐序列重复计数。位[7:0]指定初始通道对齐序列重复的次数。对于ADC, JESD204B规范声明, 初始通道对齐序列总是横跨4个多帧(JESD204B 5.3.3.5)。寄存器0x070的位[4:0]确定每个多帧的帧数, 因此初始通道对齐序列期间发送的总帧数为4×(寄存器0x070[4:0] + 1)×(寄存器0x062[7:0] + 1)。 |

## 表51. JESD204B链路控制寄存器5,地址0x063(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                                              |
|-------|------|------------------------------------------------------------------------------------|
| 7     |      | 未用                                                                                 |
| [6:4] |      | 未用                                                                                 |
| [3:0] | RW   | JESD204B应用层模式。DDC带宽模式包括: 高带宽、8倍抽取(有效输出带宽 = $f_s$ /10)和低带宽、16倍抽取(有效带宽 = $f_s$ /20)。 |

0000: 通用(不使用应用层)。

0001: 未用 0010: 未用 0011: 未用

0100: f<sub>c</sub>×x模式(其中x为整数2、4、8)。

0101至0111: 未用

1000: 单DDC模式, 高带宽模式(仅使用DDC0)。 1001: 单DDC模式, 低带宽模式(仅使用DDC0)。

1010到1011: 未用

1100: 双DDC模式, 高带宽模式(DDC 0和DDC 1均使用)。 1101: 双DDC模式, 低带宽模式(DDC 0和DDC 1均使用)。

1110: 双DDC模式, 混合带宽模式(DDC 0为高带宽模式, DDC 1为低带宽模式, 样本重复)。

1111: 未用

#### 表52. JESD204B配置寄存器,地址0x064(默认值=0x00)

| 位号    | 访问类型 | 位功能描述                 |
|-------|------|-----------------------|
| [7:0] | RW   | JESD204B串行器件标识(DID)号。 |

#### 表53. JESD204B配置寄存器, 地址0x065(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                        |
|-------|------|------------------------------|
| [7:4] |      | 未用                           |
| [3:0] | RW   | JESD204B串行模块标识(BID)号(DID扩展)。 |

#### 表54. JESD204B配置寄存器, 地址0x066(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                     |
|-------|------|---------------------------|
| [7:5] |      | 未用                        |
| [4:0] | RW   | 通道0的JESD204B串行通道标识(LID)号。 |

#### 表55. JESD204B配置寄存器, 地址0x067(默认值 = 0x01)

| 位号    | 访问类型 | 位功能描述                     |
|-------|------|---------------------------|
| [7:5] |      | 未用                        |
| [4:0] | RW   | 通道1的JESD204B串行通道标识(LID)号。 |

#### 表56. JESD204B配置寄存器, 地址0x068(默认值 = 0x02)

| 位号    | 访问类型 | 位功能描述                     |
|-------|------|---------------------------|
| [7:5] |      | 未用                        |
| [4:0] | RW   | 通道2的JESD204B串行通道标识(LID)号。 |

#### 表57. JESD204B配置寄存器, 地址0x069(默认值 = 0x03)

| 位号    | 访问类型 | 位功能描述                     |  |
|-------|------|---------------------------|--|
| [7:5] |      | 未用                        |  |
| [4:0] | RW   | 通道3的JESD204B串行通道标识(LID)号。 |  |

#### 表58. JESD204B配置寄存器,地址0x06A(默认值 = 0x04)

| 位号    | 访问类型 | 位功能描述                     |  |
|-------|------|---------------------------|--|
| [7:5] |      | 未用                        |  |
| [4:0] | RW   | 通道4的JESD204B串行通道标识(LID)号。 |  |

#### 表59. JESD204B配置寄存器,地址0x06B(默认值 = 0x05)

| 位号    | 访问类型 | 位功能描述 |
|-------|------|-------|
| [7:5] |      | 未用    |

| 位号                                            | 访问类型                             | 位功能描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-----------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [7:5]                                         |                                  | 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| [4:0]                                         | RW                               | 通道6的JESD204B串行通道标识(LID)号。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 表61. JE                                       | SD204B配置客存                       | ·<br>荐器,地址0x06D(默认值 = 0x07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| <del>仪51155</del><br>位号                       | 访问类型                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| [7:5]                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| [4:0]                                         | RW                               | 通道7的JESD204B串行通道标识(LID)号。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 表62. JE                                       | :SD204B配置寄存                      | ·<br>器,地址0x06E(默认值 = 0x87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 位号                                            |                                  | 位功能描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <del></del> 7                                 |                                  | JESD204B串行加扰器模式。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                  | 0: JESD204B加扰器禁用(SCR = 0)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                               |                                  | 1: JESD204B加扰器使能(SCR = 1)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| [6:5]                                         |                                  | 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| [4:0]                                         | RW                               | JESD204B串行通道控制(L = 寄存器0x06E[4:0] + 1)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| =                                             |                                  | 0: 每链路1个通道(L = 1)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                               |                                  | 1: 链路2个通道(L = 2)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                               |                                  | 2: 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                               |                                  | 3: 每链路4个通道(L = 4)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                               |                                  | 4:未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                               |                                  | 5: 每链路6个通道(L = 6)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                               |                                  | 6: 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                               |                                  | 7: 每链路8个通道(L = 8)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                               |                                  | 8到31: 未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <u> </u>                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                               |                                  | ·器,地址0x06F(默认值 = 0x00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 位号                                            | 访问类型                             | 位功能描述<br>USSP2019年15日140日 - Christian Control of the Christian Control of |  |
| [7:0]                                         | RO                               | JESD204B每帧的8位字数(F = 寄存器0x06F[7:0] + 1)。这些位利用下式计算:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                               |                                  | $F = (N')/(2 \times L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                  | 以下是F的有效值:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                               |                                  | M=1, S=4, N'=16, L=1, F=8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                               |                                  | M = 1, $S = 4$ , $N' = 16$ , $L = 2$ , $F = 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                  | M=1, $S=4$ , $N'=16$ , $L=4$ , $F=2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                               |                                  | M = 1, $S = 4$ , $N' = 12$ , $L = 6$ , $F = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                  | M=1, S=4, N'=16, L=8, F=1(默认)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                               | 1                                | F器,地址0x070(默认值 = 0x00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 位号                                            | SD204B配置寄存<br>访问类型               | 位功能描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>位号</b><br>[7:5]                            | 访问类型                             | <b>位功能描述</b><br>未用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| <b>位号</b><br>[7:5]                            | 1                                | 位功能描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 位号<br>[7:5]<br>[4:0]<br>表 <b>65.</b> JE       | 访问类型<br>RW<br>SD204B配置寄存         | <b>位功能描述</b><br>未用<br>JESD204B每个多帧的帧数(K=寄存器0x070[4:0] + 1)。只能使用可被4整除的值。<br>器, <b>地址0x071(默认值 = 0x00)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 位号<br>[7:5]<br>[4:0]<br>表 <b>65.</b> JE       | 访问类型<br>RW                       | <b>位功能描述</b><br>未用<br>JESD204B每个多帧的帧数(K = 寄存器0x070[4:0] + 1)。只能使用可被4整除的值。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <b>位号</b><br>[7:5]<br>[4:0]                   | 访问类型<br>RW<br>SD204B配置寄存         | <b>位功能描述</b><br>未用<br>JESD204B每个多帧的帧数(K=寄存器0x070[4:0] + 1)。只能使用可被4整除的值。<br>器, <b>地址0x071(默认值 = 0x00)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 位号<br>[7:5]<br>[4:0]<br>表 <b>65. JE</b><br>位号 | 访问类型<br>RW<br>SD204B配置寄存<br>访问类型 | 位功能描述<br>未用<br>JESD204B每个多帧的帧数(K = 寄存器0x070[4:0] + 1)。只能使用可被4整除的值。<br>5器,地址0x071(默认值 = 0x00)<br>位功能描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

通道5的JESD204B串行通道标识(LID)号。

[4:0]

RW

### 表66. JESD204B配置寄存器,地址0x072(默认值=0x0B)

| 位号       | 访问类型 | 位功能描述                                     |
|----------|------|-------------------------------------------|
| [7:6] RW |      | JESD204B每个样本的控制位数(CS,基于JESD204B规范)。       |
|          |      | 00: 每个样本发送0个控制位(CS = 0)。                  |
|          |      | 01: 每个样本发送1个控制位,超范围位使能(CS = 1)。           |
|          |      | 10: 每个样本发送2个控制位,超范围 + 时间戳SYSREF位(CS = 2)。 |
|          |      | 11: 保留。                                   |
| 5        |      | 未用                                        |
| [4:0]    | RW   | JESD204B转换器分辨率(N = 寄存器0x072[4:0] + 1)。    |
|          |      | 0x00至0x06: 保留。                            |
|          |      | 0x07至0x09: 保留。                            |
|          |      | 0x0A: 保留。                                 |
|          |      | 0x0B: N = 12位ADC转换器分辨率。                   |
|          |      | 0x0C至0x0E: 保留。                            |
|          |      | 0x0F: N = 16位ADC转换器分辨率。                   |
|          |      | 0x10至0x1F: 保留。                            |

#### 表67. JESD204B配置寄存器,地址0x073(默认值 = 0x2F)

| 位号    | 访问类型 | 位功能描述                                     |
|-------|------|-------------------------------------------|
| [7:5] | RW   | JESD204B器件Subclass版本。                     |
|       |      | 0x0: Subclass 0.                          |
|       |      | 0x1: Subclass 1(默认)。                      |
|       |      | 0x2: Subclass 2(不支持)。                     |
|       |      | 0x3: 未定义。                                 |
| [4:0] | RW   | JESD204B每个样本的总位数(N' = 寄存器0x073[4:0] + 1)。 |
|       |      | 0x0至0xA: 未用                               |
|       |      | OxB: N'=12(L必须等于6)。                       |
|       |      | 0xC至0xE:未用                                |
|       |      | OxF: N'=16(L必须等于1、2、4或8)。                 |

#### 表68. JESD204B配置寄存器,地址0x074(默认值 = 0x23)

|       |      | · •- · · · · · · · · · · · · · · · · · ·                                                                                                                                   |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 位号    | 访问类型 | 位功能描述                                                                                                                                                                      |
| [7:5] | RW   | JESD204B版本。 0x0: JESD204A。SYNCINB±引脚由帧时钟内部选通。SYNCINB±必须保持低电平至少2个帧时钟周期, 才能被解读为同步请求。 0x1: JESD204B。SYNCINB±引脚由局部多帧时钟内部选通。SYNCINB±必须保持低电平至少4个帧时钟 周期,才能被解读为同步请求。 0x2至0x7: 未定义。 |
| [4:0] | RO   | JESD204B每个转换器帧周期的样本数(S = 寄存器0x074[4:0] + 1)。这些是只读位。对于AD9625, S必须等于4(寄存器0x074[4:0] = 3)。                                                                                    |

### 表69. JESD204B配置寄存器,地址0x075(默认值=0x80)

| 位号 | 访问类型 | 位功能描述                            |
|----|------|----------------------------------|
| 7  | RO   | JESD204B高密度(HD)格式。这是只读位。         |
|    |      | 0: HD格式禁用。                       |
|    |      | 1: HD格式使能。根据N'和L的值,高密度模式自动使能。    |
|    |      | AD9625的HD值如下:                    |
|    |      | $N' = 16, L = 1, HD = 0_{\circ}$ |
|    |      | $N' = 16, L = 2, HD = 0_{\circ}$ |
|    |      | $N' = 16, L = 4, HD = 0_{\circ}$ |
|    |      | $N' = 12, L = 6, HD = 1_{\circ}$ |
|    |      | N'=16, L=8, HD=1(默认)。            |

| [6:5]                   |           | 未用                                                                         |  |  |
|-------------------------|-----------|----------------------------------------------------------------------------|--|--|
| [4:0]                   | RO        | JESD204B每个链路每个帧时钟周期的控制字数(CF)。这些是只读位。对于AD9625, CF必须等于0(寄存器 0x075[4:0] = 0)。 |  |  |
| 表70. J                  | ESD204B配  | 置寄存器,地址0x076(默认值 = 0x00)                                                   |  |  |
| 位号                      | 访问类       | 型 位功能描述                                                                    |  |  |
| [7:0]                   | RW        | JESD204B串行保留域1。                                                            |  |  |
| 表71.1                   | IFSD204R配 | 置寄存器,地址0x077(默认值 = 0x00)                                                   |  |  |
| <del>夜/1.7</del><br>位号  | 访问类       |                                                                            |  |  |
| [7:0]                   | RW        | JESD204B串行保留域2。                                                            |  |  |
| まっ !                    | ECD204D#3 | 要字字型 ++++-00-70/B+-1 /                                                     |  |  |
| <del>夜/2.</del> 」<br>位号 | 访问类       | 置寄存器,地址0x078(默认值 = 0x00)<br>:型                                             |  |  |
| [7:0]                   | RO        | JESD204B通道0的串行校验和值。该值自动计算,等于通道0的所有链路配置参数之和除以256的余数。                        |  |  |
| [ •]                    |           | 校验和通过寄存器0x061的位7使能/禁用。                                                     |  |  |
| 表73.1                   | FSD204R而  | 置寄存器,地址0x079(默认值 = 0x00)                                                   |  |  |
| <del>夜/3.7</del><br>位号  | 访问类       |                                                                            |  |  |
| [7:0]                   | RO        | JESD204B通道1的串行校验和值。该值自动计算,等于通道1的所有链路配置参数之和除以256的余数。                        |  |  |
| -                       |           | 校验和通过寄存器0x061的位7使能/禁用。                                                     |  |  |
| 夷74. J                  | ESD204B配  | 置寄存器,地址0x07A(默认值 = 0x00)                                                   |  |  |
| <u> 位号</u>              | 访问类       |                                                                            |  |  |
| [7:0]                   | RO        | JESD204B通道2的串行校验和值。该值自动计算,等于通道2的所有链路配置参数之和除以256的余数。                        |  |  |
|                         |           | 校验和通过寄存器0x061的位7使能/禁用。                                                     |  |  |
| 表75. J                  | ESD204B配  | 置寄存器,地址0x07B(默认值 = 0x00)                                                   |  |  |
| 位号                      | 访问类       |                                                                            |  |  |
| [7:0]                   | RO        | JESD204B通道3的串行校验和值。该值自动计算,等于通道3的所有链路配置参数之和除以256的余数。                        |  |  |
|                         |           | 校验和通过寄存器0x061的位7使能/禁用。                                                     |  |  |
| 表76. J                  | ESD204B配  | 置寄存器,地址0x07C(默认值 = 0x00)                                                   |  |  |
| 位号                      | 访问类       | 型 位功能描述                                                                    |  |  |
| [7:0]                   | RO        | JESD204B通道4的串行校验和值。该值自动计算,等于通道4的所有链路配置参数之和除以256的余数。                        |  |  |
|                         |           | 校验和通过寄存器0x061的位7使能/禁用。                                                     |  |  |
| 表77. J                  | ESD204B配  | 置寄存器,地址0x07D(默认值 = 0x00)                                                   |  |  |
| 位号                      | 访问类型      | 位功能描述                                                                      |  |  |
| [7:0]                   | RO        | JESD204B通道5的串行校验和值。该值自动计算,等于通道5的所有链路配置参数之和除以256的余数。校验                      |  |  |
|                         |           | 和通过寄存器0x061的位7使能/禁用。                                                       |  |  |
| 表78. J                  | ESD204B配  | 置寄存器,地址0x07E(默认值 = 0x00)                                                   |  |  |
| 位号                      | 访问类型      | 位功能描述                                                                      |  |  |
| [7:0]                   | RO        | JESD204B通道6的串行校验和值。该值自动计算,等于通道6的所有链路配置参数之和除以256的余数。校验                      |  |  |
|                         |           | 和通过寄存器0x061的位7使能/禁用。                                                       |  |  |
| 表79. J                  | ESD204B配  | 置寄存器,地址0x07F(默认值 = 0x00)                                                   |  |  |
| 位号                      | 访问类型      |                                                                            |  |  |
| [7:0]                   | RO        | JESD204B通道6的串行校验和值。该值自动计算,等于通道6的所有链路配置参数之和除以256的余数。校验                      |  |  |
|                         |           | 和通过寄存器0x061的位7使能/禁用。                                                       |  |  |
|                         |           |                                                                            |  |  |
| 表80. J                  | ESD204B通  | 道关断寄存器,地址0x080(默认值 = 0x00)                                                 |  |  |

| 位号 | 访问类型 | 位功能描述     |
|----|------|-----------|
| 7  | RW   | 物理通道H关断。  |
|    |      | 0: 通道H使能。 |
|    |      | 1: 通道H关断。 |
| 6  | RW   | 物理通道G关断。  |
|    |      | 0: 通道G使能。 |
|    |      | 1: 通道G关断。 |
| 5  | RW   | 物理通道F关断。  |
|    |      | 0: 通道F使能。 |
|    |      | 1: 通道F关断。 |
| 4  | RW   | 物理通道E关断。  |
|    |      | 0: 通道E使能。 |
|    |      | 1: 通道E关断。 |
| 3  | RW   | 物理通道D关断。  |
|    |      | 0: 通道D使能。 |
|    |      | 1: 通道D关断。 |
| 2  | RW   | 物理通道C关断。  |
|    |      | 0: 通道C使能。 |
|    |      | 1: 通道C关断。 |
| 1  | RW   | 物理通道B关断。  |
|    |      | 0: 通道B使能。 |
|    |      | 1: 通道B关断。 |
| 0  | RW   | 物理通道A关断。  |
|    |      | 0: 通道A使能。 |
|    |      | 1: 通道A关断。 |

## 表81. JESD204B通道控制寄存器1,地址0x082(默认值 = 0x10)

| 位号    | 访问类型 | 位功能描述           |
|-------|------|-----------------|
| 7     |      | 未用              |
| [6:4] | RW   | 物理通道B分配。        |
|       |      | 000: 逻辑通道0。     |
|       |      | 001: 逻辑通道1(默认)。 |
|       |      | 010: 逻辑通道2。     |
|       |      | 011: 逻辑通道3。     |
|       |      | 100: 逻辑通道4。     |
|       |      | 101: 逻辑通道5。     |
|       |      | 110: 逻辑通道6。     |
|       |      | 111: 逻辑通道7。     |
| 3     |      | 未用              |
| [2:0] | RW   | 物理通道A分配。        |
|       |      | 000: 逻辑通道0(默认)。 |
|       |      | 001: 逻辑通道1。     |
|       |      | 010: 逻辑通道2。     |
|       |      | 011: 逻辑通道3。     |
|       |      | 100: 逻辑通道4。     |
|       |      | 101: 逻辑通道5。     |
|       |      | 110: 逻辑通道6。     |
|       |      | 111: 逻辑通道7。     |

## 表82. JESD204B通道控制寄存器2,地址0x083(默认值 = 0x42)

| 位号    | 访问类型 | 位功能描述           |
|-------|------|-----------------|
| 7     |      | 未用              |
| [6:4] | RW   | 物理通道D分配。        |
|       |      | 000: 逻辑通道0。     |
|       |      | 001: 逻辑通道1。     |
|       |      | 010: 逻辑通道2。     |
|       |      | 011: 逻辑通道3(默认)。 |
|       |      | 100: 逻辑通道4。     |
|       |      | 101: 逻辑通道5。     |
|       |      | 110: 逻辑通道6。     |
|       |      | 111: 逻辑通道7。     |
| 3     |      | 未用              |
| [2:0] | RW   | 物理通道C分配。        |
|       |      | 000: 逻辑通道0。     |
|       |      | 001: 逻辑通道1。     |
|       |      | 010: 逻辑通道2(默认)。 |
|       |      | 011: 逻辑通道3。     |
|       |      | 100: 逻辑通道4。     |
|       |      | 101: 逻辑通道5。     |
|       |      | 110: 逻辑通道6。     |
|       |      | 111: 逻辑通道7。     |

#### 表83. JESD204B通道控制寄存器3, 地址0x084(默认值 = 0x54)

| 位号    | 访问类型 | 位功能描述           |
|-------|------|-----------------|
| 7     |      | 未用              |
| [6:4] | RW   | 物理通道F分配。        |
|       |      | 000: 逻辑通道0。     |
|       |      | 001: 逻辑通道1。     |
|       |      | 010: 逻辑通道2。     |
|       |      | 011: 逻辑通道3。     |
|       |      | 100: 逻辑通道4。     |
|       |      | 101: 逻辑通道5(默认)。 |
|       |      | 110: 逻辑通道6。     |
|       |      | 111: 逻辑通道7。     |
| 3     |      | 未用              |
| [2:0] | RW   | 物理通道E分配。        |
|       |      | 000: 逻辑通道0。     |
|       |      | 001: 逻辑通道1。     |
|       |      | 010: 逻辑通道2。     |
|       |      | 011: 逻辑通道3。     |
|       |      | 100: 逻辑通道4(默认)。 |
|       |      | 101: 逻辑通道5。     |
|       |      | 110: 逻辑通道6。     |
|       |      | 111: 逻辑通道7。     |

#### 表84. JESD204B通道控制寄存器4, 地址0x085(默认值 = 0x76)

| 位号    | 访问类型 | 位功能描述       |
|-------|------|-------------|
| 7     |      | 未用          |
| [6:4] | RW   | 物理通道H分配。    |
|       |      | 000: 逻辑通道0。 |

|       |    | 001: 逻辑通道1。     |
|-------|----|-----------------|
|       |    | 010: 逻辑通道2。     |
|       |    | 011: 逻辑通道3。     |
|       |    | 100: 逻辑通道4。     |
|       |    | 101: 逻辑通道5。     |
|       |    | 110: 逻辑通道6。     |
|       |    | 111: 逻辑通道7(默认)。 |
| 3     |    | 未用              |
| [2:0] | RW | 物理通道G分配。        |
|       |    | 000: 逻辑通道0。     |
|       |    | 001: 逻辑通道1。     |
|       |    | 010: 逻辑通道2。     |
|       |    | 011: 逻辑通道3。     |
|       |    | 100: 逻辑通道4。     |
|       |    | 101: 逻辑通道5。     |
|       |    | 110: 逻辑通道6(默认)。 |
|       |    | 111: 逻辑通道7。     |

#### 表85. 未用, 地址0x088(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述 |
|-------|------|-------|
| [7:0] | RW   | 未用    |

#### 表86. 未用, 地址0x089(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述 |
|-------|------|-------|
| [7:0] | RW   | 未用    |

#### 表87. 未用控制寄存器,地址0x08A(默认值 = 0x20)

| 位号    | 访问类型 | 位功能描述            |
|-------|------|------------------|
| [7:6] |      | 未用               |
| [5:4] | RW   | 未用,位[5:4]必须设为10。 |
| [3:2] |      | 未用               |
| [1:0] | RW   | 未用;位[1:0]必须设为00。 |

#### 表88. JESD204B局部多帧时钟偏移控制寄存器,地址0x08B(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                       |
|-------|------|-------------------------------------------------------------|
| [7:5] |      | 未用                                                          |
| [4:0] | RW   | 局部多帧时钟(LMFC)相位偏移值。这些位提供SYSREF±引脚置位时LMFC相位计数器的复位值,用于确定性延迟应用。 |

#### 表89. JESD204B局部帧时钟偏移控制寄存器,地址0x08C(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                                                            |
|-------|------|------------------------------------------------------------------|
| [7:0] | RW   | 局部帧时钟相位偏移值。SYSREF±引脚置位时帧时钟相位计数器的复位值。对于AD9625,仅0到7的值有效。用于确定性延迟应用。 |

#### 表90. 客户备用寄存器, 地址0x0F8(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                      |
|-------|------|----------------------------|
| [7:1] | RW   | 备用客户寄存器。                   |
| 0     | RW   | 设置ADC采样时钟与DIVCLK±之比的寄存器控制。 |
|       |      | 0=4分频。                     |
|       |      | 1 = 未使用。                   |

#### 表91. 客户备用寄存器, 地址0x0F9(默认值 = 0x00)

| 4- | 2는 (그 꽃 프) | /     |
|----|------------|-------|
| 位号 | 切門尖型       | 位功能描述 |

| [7:0]  |              | RW             | 备用客户寄存器。                     |                     |
|--------|--------------|----------------|------------------------------|---------------------|
| 表92. ፻ | <b>字户备用字</b> | 存器,地址0x0FF(默认值 | <u> </u>                     |                     |
| 位号     | 访问类型         |                |                              |                     |
| [7:1]  | W) 177.      | 未用             |                              |                     |
| 0      | RW           |                | ·<br>位。自清零位,用于同步从主机到从机寄存器的   | 数据传输。               |
|        |              | 0: 不起作用。       |                              |                     |
|        |              | 1: 从主机寄存器传输数据  | 到从机寄存器,由寄存器写入。               |                     |
| 表93 c  | b断语式(IR      | Q)状态寄存器,地址0x1  | (甲; 1 付 = 0×00)              |                     |
| 位号     | 访问类型         |                |                              |                     |
| 7      | RO           | 中断请求PLL锁定错误。   |                              |                     |
|        |              | 1: PLL未锁定。     |                              |                     |
| 6      |              | 未用             |                              |                     |
| 5      | RO           | 未用             |                              |                     |
| 4      | RO           | 未用             |                              |                     |
| 3      | RO           | 中断请求SYSREF±保持针 |                              | ち吸 0v02 A が 砂 6     |
| 2      | RO           | 中断请求SYSREF±建立领 | 发生保持错误。要清除该错误,应设置再清除寄<br>    | 丹帝UXU3A时业0。         |
| 2      | RO           |                | 庆。<br>时发生建立错误。要清除该错误,应设置再清除器 | 左哭∩v∩3∆的位6          |
| 1      |              | 未用             | 可及生产证明长。安伯阶级旧长,严权直行伯际中       | [ 行 榀 0 X 0 3 X 门 3 |
| 0      | RO           | 中断请求时钟错误。      |                              |                     |
|        | 1            |                |                              |                     |
|        | 1            | Q)屏蔽控制寄存器,地均   | Dx101(默认值 = 0xbf)            |                     |
| 位号     | 访问类型         |                | No.                          |                     |
| 7      | RW           | 屏蔽中断请求PLL锁定镇   | <b>诶</b> 。                   |                     |
|        |              | 1: 屏蔽PLL未锁定事件。 |                              |                     |
| 5      | RW           | 未用<br>必须置1。    |                              |                     |
| 4      | RW           | 必须置1。          |                              |                     |
| 3      | RW           | 中断请求SYSREF±保持  | : 면                          |                     |
| 5      | 11.00        |                | 时发生保持错误。要清除该错误,应设置再清除等       | 条存器0x03A的价6。        |
| 2      | RW           | 中断请求SYSREF±建立  |                              | 4 14 Hr 10 Ex - 0   |
|        |              |                | 时发生建立错误。要清除该错误,应设置再清除等       | 寄存器0x03A的位6。        |
| 1      |              | 未用             |                              |                     |
| 0      | RW           | 屏蔽中断请求时钟错误     |                              |                     |
|        |              | 1: 发生时钟错误,无法   | R证输出数据有效。从该错误恢复的唯一方法是复       | 位器件。                |
| 表95. ≹ | 数字控制寄存       | 存器,地址0x105(默认值 | = 0x00)                      |                     |
| 位号     |              | 访问类型           | 位功能描述                        |                     |
| [7:5]  |              |                | 未用                           |                     |
| 4      |              | RW             | 必须置0。                        |                     |
|        |              |                | 必须置0。                        |                     |
| 3      |              | RW             | 20 灰且 0。                     |                     |
| 2      |              | RW<br>RW       | 必须置0。                        |                     |
|        |              |                |                              |                     |

表96. 数字校准阈值控制寄存器,地址0x10A(默认值 = 0x10)

访问类型

位号

[7:5]

位功能描述

未用

| 4     | RW | 使能后台增益的数据集阈值逻辑。 |
|-------|----|-----------------|
| [0:3] |    | 未用              |

#### 表97. 数字校准数据集阈值寄存器, 地址0x10D(默认值 = 0x3D)

| 位号    | 访问类型 | 位功能描述         |
|-------|------|---------------|
| [7:0] | RW   | 后台增益校准的数据集阈值。 |

### 表98. 数字校准数据集阈值寄存器,地址0x10E(默认值 = 0x14)

| 位号    | 访问类型 | 位功能描述         |
|-------|------|---------------|
| [7:0] | RW   | 后台增益校准的数据集阈值。 |

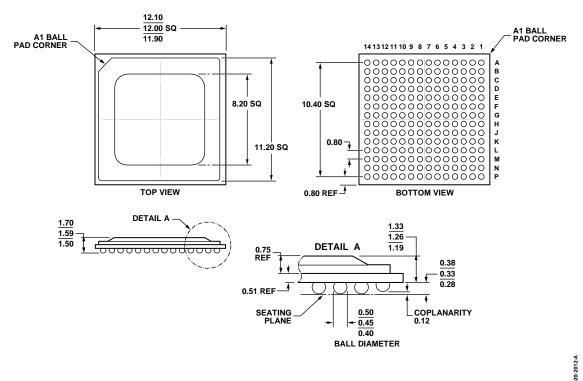
#### 表99. DIVCLK±输出控制寄存器,地址0x120(默认值 = 0x11)

| 位号    | 访问类型 | 位功能描述                      |
|-------|------|----------------------------|
| [7:5] |      | 未用                         |
| 4     | RW   | DIVCLK±输出禁用。               |
|       |      | 0: 禁用DIVCLK±输出。            |
|       |      | 1: 使能DIVCLK±输出。            |
| 3     | RW   | DIVCLK±输出端接选择。             |
|       |      | 0: DIVCLK±输出使用外部100 Ω阻性端接。 |
|       |      | 1: DIVCLK±输出不使用外部阻性端接。     |
| 2     |      | 未用                         |
| [1:0] | RW   | 控制DIVCLK±输出的差分摆幅。          |
|       |      | 00 = 100 mV p-p差分。         |
|       |      | 01 = 200 mV p-p差分。         |
|       |      | 10 = 300 mV p-p差分。         |
|       |      | 11 = 400 mV p-p差分。         |

#### 表100. 调整设置控制寄存器,地址0x121(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                           |
|-------|------|---------------------------------|
| [7:5] |      | 未用                              |
| [1:0] | RW   | 根据采样速率选择调整设置:                   |
|       |      | 00 = 调整0: 用于2.5GSPS编码速率         |
|       |      | 01 = 调整1:用于2.4GSPS至2.5GSPS编码速率  |
|       |      | 10 = 调整2: 用于2.2GSPS至2.4GSPS编码速率 |
|       |      | 11 = 调整3:用于330MSPS至2.2GSPS编码速率  |

#### 表101. 未用寄存器, 地址0x12A(默认值 = 0x05)


| 位号    | 访问类型 | 位功能描述           |
|-------|------|-----------------|
| [7:0] | RW   | 保留,维持0x05的默认设置。 |

#### 表102. DDC 0增益控制寄存器,地址0x130(默认值 = 0x00)

| 位号    | 访问类型 | 位功能描述                     |
|-------|------|---------------------------|
| [7:6] |      | 未用                        |
| [5:4] | RW   | DDC 0多相(2倍抽取)增益,以6 dB为单位。 |
|       |      | 00:0 dB增益。                |
|       |      | 01:6 dB增益。                |
|       |      | 10: 12 dB增益。              |
|       |      | 11: 18 dB增益。              |
| [3:2] |      | 未用                        |
| [1:0] | RW   | DDC 0多相(8倍抽取)增益,以6 dB为单位。 |
|       |      | 00: 0 dB增益。               |
|       |      | 01:6 dB增益。                |

| 位号                      | 2±7=     |                    | 位功能描述                                                                                       |
|-------------------------|----------|--------------------|---------------------------------------------------------------------------------------------|
| 世亏                      | M        | 天堂                 | 10: 12 dB増益。                                                                                |
|                         |          |                    | 10.12 db增益。<br>  11:18 dB增益。                                                                |
|                         |          |                    | 11.10 UD項益。                                                                                 |
| 表103.                   | DDC 0相位  | 递增最低               | 有效位寄存器,地址0x131(默认值 = 0x00)                                                                  |
| 位号                      | 访问类型     | 位功能抗               | 苗述                                                                                          |
| [7:0]                   |          |                    | CO相位递增值。DDC 0内NCO的相位增量。输出频率 =(十进制(寄存器0x132[1:0];<br> x131[7:0])× f <sub>s</sub> )/1024。     |
| 表104.                   | DDC 0相位: | 递增最高               | 有效位寄存器,地址0x132(默认值 = 0x00)                                                                  |
| 位号                      | 访问类型     | 位功能                | 描述                                                                                          |
| [7:2]                   |          | 未用                 |                                                                                             |
| [1:0]                   | RW       | DDC 0              | NCO相位递增值。DDC 0内NCO的相位增量。                                                                    |
| ±105                    | DDC 1### | <br>               | 99 MM-M-01-20(PM-2-1 /= -000)                                                               |
| 衣 105.<br>位号            |          |                    | 器,地址0x138(默认值 = 0x00)                                                                       |
| <del>地写</del><br>[7:6]  | 访问类型     | <b>! 位功能</b><br>未用 | E抽处                                                                                         |
| [5:4]                   | RW       |                    | 多相(2倍抽取)增益,以6 dB为单位。                                                                        |
| [3.4]                   | LVV      |                    | 多相区情推取净量,以OUD为单位。<br>IB增益。                                                                  |
|                         |          |                    | B增益。                                                                                        |
|                         |          |                    | dB增益。                                                                                       |
|                         |          |                    | dB增益。                                                                                       |
| [3:2]                   |          | 未用                 |                                                                                             |
| [1:0]                   | RW       |                    | 多相(8倍抽取)增益,以6 dB为单位。                                                                        |
|                         |          |                    | B增益。                                                                                        |
|                         |          | 01: 6 d            | B增益。                                                                                        |
|                         |          | 10: 12             | dB增益。                                                                                       |
|                         |          | 11: 18             | dB增益。                                                                                       |
| 主106                    | DDC 1#I# |                    | 有效位寄存器,地址0x139(默认值 = 0x00)                                                                  |
| <del>表 100.</del><br>位号 | 访问类型     | 1                  |                                                                                             |
| <del>四写</del><br>[7:0]  | RW       |                    | <b>囲</b> 处<br>NCO相位递增值。DDC 1内NCO的相位增量。输出频率 = (十进制(寄存器0x13A[1:0];                            |
| [7.0]                   | IVVV     |                    | NCO相位选增值。DDC 1月NCO的相位增重。拥山频率 - (   近前(奇仔品OX13A[1.0];<br>0x139[7:0])× f <sub>s</sub> )/1024。 |
| 表107.                   | DDC 1相位: | 递增最高               | 有效位寄存器,地址0x13A(默认值 = 0x00)                                                                  |
| 位号                      | 访问类型     | 位功能抗               | 苗述                                                                                          |
| [7:2]                   |          | 未用                 |                                                                                             |
| [1:0]                   | RW       | DDC1 No            | CO相位递增值。                                                                                    |

# 外形尺寸



COMPLIANT TO JEDEC STANDARDS MO-275-GGAA-1.

图46.196引脚球栅阵列、散热增强型封装[BGA\_ED] (BP-196-2) 图示尺寸单位:mm

#### 订购指南

| <u> </u>         |             |                                   |          |
|------------------|-------------|-----------------------------------|----------|
| 型号1              | 温度范围        | 封装描述                              | 封装选项     |
| AD9625BBPZ-2.5   | -40°C至+85°C | 196引脚球栅阵列、散热增强型封装[BGA_ED]         | BP-196-2 |
| AD9625BBPZ-2.0   | -40°C至+85°C | 196引脚球栅阵列、散热增强型封装[BGA_ED]         | BP-196-2 |
| AD9625BBPZRL-2.5 | -40°C至+85°C | 196引脚球栅阵列、散热增强型封装[BGA_ED],13卷带和卷盘 | BP-196-2 |
| AD9625BBPZRL-2.0 | -40°C至+85°C | 196引脚球栅阵列、散热增强型封装[BGA_ED],13卷带和卷盘 | BP-196-2 |
| AD9625-2.5EBZ    |             | 含AD9625的评估板                       |          |
| AD9625-2.0EBZ    |             | 含AD9625的评估板                       |          |

<sup>&</sup>lt;sup>1</sup> Z=符合RoHS标准的器件。

注释

| AD9625 |
|--------|
|--------|

注释