

v00.0808

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 18 GHz

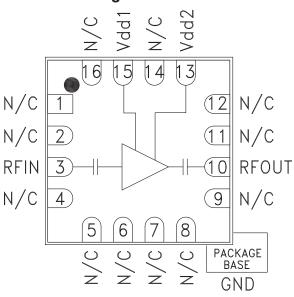
Typical Applications

The HMC451LP3(E) is ideal for:

- Microwave Radio & VSAT
- Military & Space
- Test Equipment & Sensors
- Fiber Optics
- LO Driver for HMC Mixers

Features

Gain: 18 dB


Saturated Power: +21 dBm @ 18% PAE

Output IP3: +28 dBm

Single Supply: +5V @ 120 mA 50 Ohm Matched Input/Output

16 Lead 3x3mm SMT Package: 9mm²

Functional Diagram

General Description

The HMC451LP3(E) is an efficient GaAs PHEMT MMIC Medium Power Amplifier housed in a leadless RoHS compliant SMT package. Operating between 5 and 18 GHz, the amplifier provides 18 dB of gain, +21 dBm of saturated power and 18% PAE from a single +5V supply. This 50 Ohm matched amplifier does not require any external components and the RF I/O's are DC blocked, making it an ideal linear gain block or LO driver for HMC mixers. The HMC451LP3(E) eliminates the need for wire bonding, and allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ} \text{ C}$, $Vdd_1 = Vdd_2 = +5V$

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	5 - 16		16 - 18			GHz	
Gain	15	18		12.5	16		dB
Gain Variation Over Temperature		0.02	0.03		0.02	0.03	dB/ °C
Input Return Loss		13			13		dB
Output Return Loss		12			8		dB
Output Power for 1 dB Compression (P1dB)	16.5	19.5		16	19		dBm
Saturated Output Power (Psat)		21			20		dBm
Output Third Order Intercept (IP3)		28			25		dBm
Noise Figure		7			7		dB
Supply Current (Idd)		120	150		120	150	mA

HMC451LP3* PRODUCT PAGE QUICK LINKS

Last Content Update: 07/13/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC451LP3 Evaluation Board

DOCUMENTATION

Application Notes

- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC451LP3 Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC451LP3 S-Parameters

REFERENCE MATERIALS 🖳

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: PHEMT-F (QTR: 2013-00269)

DESIGN RESOURCES

- HMC451LP3 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS 🖳

View all HMC451LP3 EngineerZone Discussions.

SAMPLE AND BUY 🖵

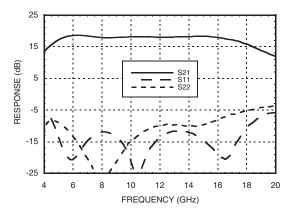
Visit the product page to see pricing options.

TECHNICAL SUPPORT

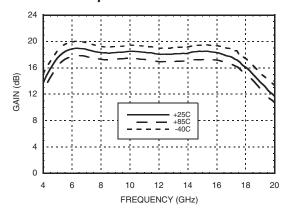
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK \Box

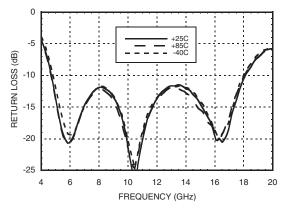
Submit feedback for this data sheet.



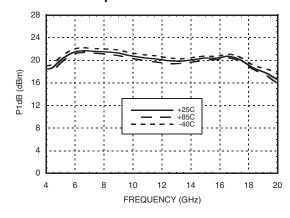
v00.0808

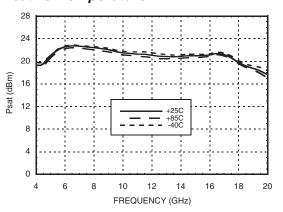


GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 18 GHz


Broadband Gain & Return Loss

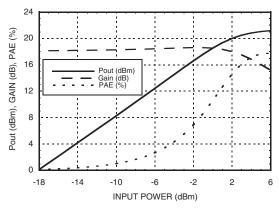

Gain vs. Temperature


Input Return Loss vs. Temperature

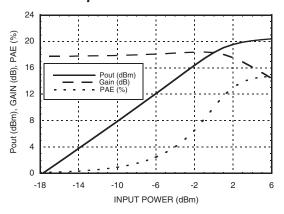

Output Return Loss vs. Temperature

P1dB vs. Temperature

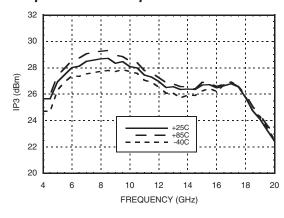
Psat vs. Temperature

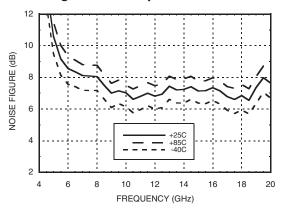


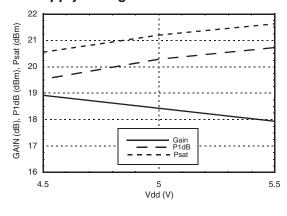
v00.0808

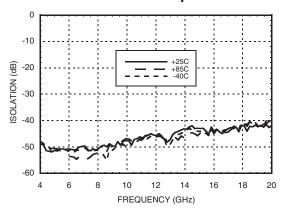


GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 18 GHz


Power Compression @ 10 GHz


Power Compression @ 17 GHz


Output IP3 vs. Temperature


Noise Figure vs. Temperature

Gain, P1dB & PSAT vs. Supply Voltage @ 11 GHz

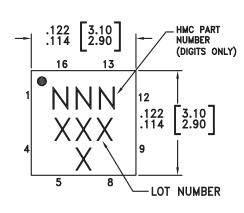
Reverse Isolation vs. Temperature

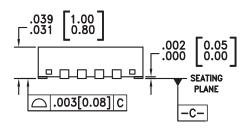
v00.0808

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 18 GHz

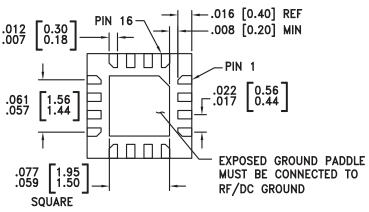
Absolute Maximum Ratings

Drain Bias Voltage (Vdd ₁ = Vdd ₂)	+5.5V
RF Input Power (RFIN)(Vdd = +5Vdc)	+10 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 12.8 mW/°C above 85 °C)	0.83 W
Thermal Resistance (channel to ground paddle)	78 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C


Typical Supply Current vs. Vdd, = Vdd,


$Vdd_1 = Vdd_2(V)$	Idd ₁ + Idd ₂ (mA)
+4.5	120
+5.0	122
+5.5	124

Note: Amplifier will operate over full voltage range shown above



Outline Drawing

BOTTOM VIEW

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC451LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1] 451 XXXX	
HMC451LP3E	IC451LP3E RoHS-compliant Low Stress Injection Molded Plastic		MSL1 [2]	451 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

v00.0808

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 18 GHz

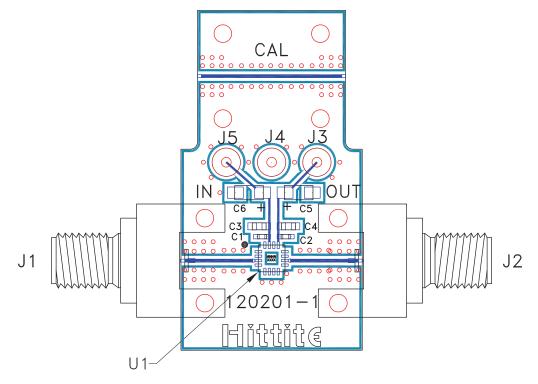
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4 - 9, 11, 12, 14, 16	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.	
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O——
10	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
13	Vdd2	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	Vdd2
15	Vdd1	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	Vdd1
	GND	Package bottom must be connected to RF/DC ground.	○ GND =

Application Circuit

Component	Value	J5 \circ Vdd1
C1, C2	100 pF	
C3, C4	1,000 pF	C1 — C3 — C6—
C5, C6	2.2 µF]
		J3
		J1 RFIN 3 10 RFOUT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.0808

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 18 GHz

Evaluation PCB

List of Materials for Evaluation PCB 120202 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J5	DC Pin
C1, C2	100 pF Capacitor, 0402 Pkg.
C3, C4	1000 pF Capacitor, 0603 Pkg.
C5, C6	2.2 µF Capacitor, Tantalum
U1	HMC451LP3(E) Amplifier
PCB [2]	120201 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR