
GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 20 GHz

Typical Applications

The HMC451LC3 is ideal for use as a medium power amplifier for:

- Microwave Radio & VSAT
- Military & Space
- Test Equipment & Sensors
- Fiber Optics
- LO Driver for HMC Mixers

Functional Diagram

Features

Gain: 19 dB

Saturated Power: +21 dBm @ 21% PAE

Output IP3: +30 dBm

Single Supply: +5V @ 114 mA 50 Ohm Matched Input/Output

RoHS Compliant 3 x 3 mm SMT package

General Description

The HMC451LC3 is an efficient GaAs PHEMT MMIC Medium Power Amplifier housed in a leadless RoHS compliant SMT package. Operating between 5 and 20 GHz, the amplifier provides 19 dB of gain, +21 dBm of saturated power and 21% PAE from a single +5V supply. This 50 Ohm matched amplifier does not require any external components and the RF I/O's are DC blocked, making it an ideal linear gain block or driver for HMC SMT mixers. The HMC451LC3 allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ} \text{ C}$, $Vdd_1 = Vdd_2 = +5V$

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		5 -15			15 - 18			18 - 20		GHz
Gain	16	19		15	18		14	17		dB
Gain Variation Over Temperature		0.015	0.025		0.015	0.025		0.015	0.025	dB/ °C
Input Return Loss		13			13			12		dB
Output Return Loss		12			8			8		dB
Output Power for 1 dB Compression (P1dB)	16.5	19.5		16	19		16.5	19.5		dBm
Saturated Output Power (Psat)		21			20.5			21		dBm
Output Third Order Intercept (IP3)		32			29			29		dBm
Noise Figure		7			6.5			7		dB
Supply Current (Idd)		114			114			114		mA

HMC451LC3* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

HMC451LC3 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC451LC3 Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC451LC3 S-Parameters

REFERENCE MATERIALS 🖳

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: PHEMT-F (QTR: 2013-00269)

DESIGN RESOURCES 🖵

- HMC451LC3 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC451LC3 EngineerZone Discussions.

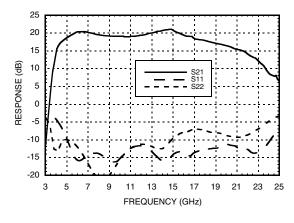
SAMPLE AND BUY 🖵

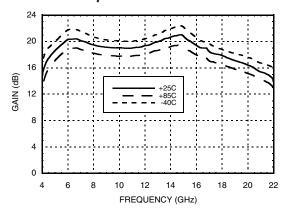
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

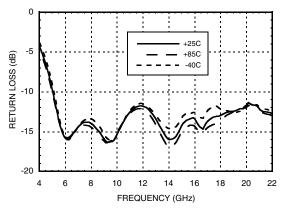
Submit a technical question or find your regional support number.

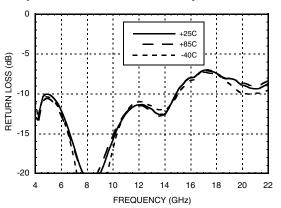
DOCUMENT FEEDBACK 🖳

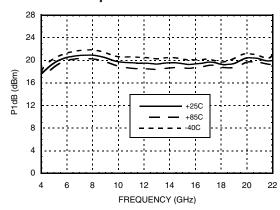

Submit feedback for this data sheet.

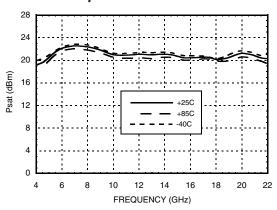


GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 20 GHz


Broadband Gain & Return Loss

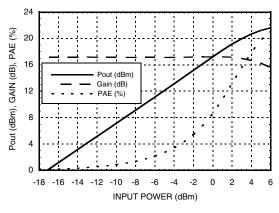

Gain vs. Temperature

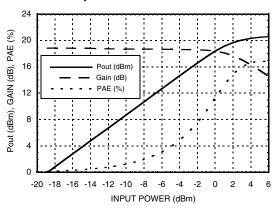

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

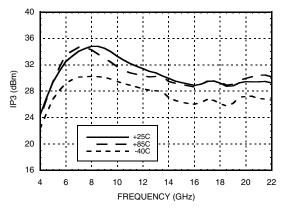
P1dB vs. Temperature

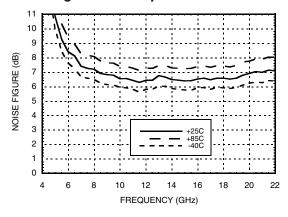
Psat vs. Temperature

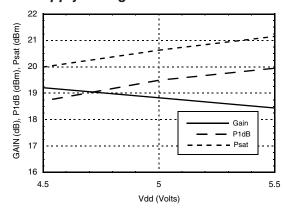


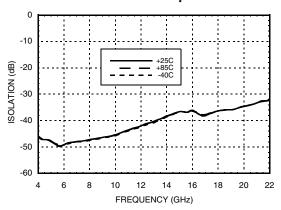


GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 20 GHz


Power Compression @ 10 GHz


Power Compression @ 20 GHz


Output IP3 vs. Temperature


Noise Figure vs. Temperature

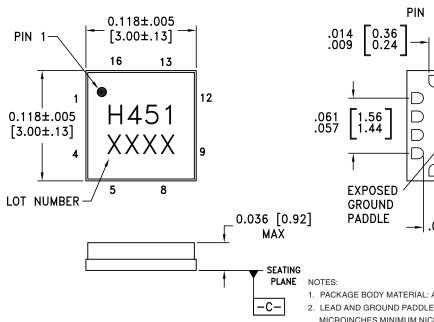
Gain, P1dB & PSAT vs. Supply Voltage @ 11 GHz

Reverse Isolation vs. Temperature

GaAs PHEMT MMIC MEDIUM **POWER AMPLIFIER, 5 - 20 GHz**

Absolute Maximum Ratings

Drain Bias Voltage (Vdd ₁ = Vdd ₂)	+5.5 Vdc
RF Input Power (RFIN)(Vdd = +5Vdc)	+10 dBm
Channel Temperature	175 °C
Continuous Pdiss (T = 85 °C) (derate 12.4 mW/°C above 85 °C)	1.1 W
Thermal Resistance (channel to ground paddle)	80 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C


Typical Supply Current vs. Vdd, = Vdd,

$Vdd_1 = Vdd_2(V)$	$Idd_1 = Idd_2 (mA)$
+4.5	111
+5.0	114
+5.5	116

Note: Amplifier will operate over full voltage range shown above

Outline Drawing

BOTTOM VIEW PIN 16 .013 [0.32] **REF** PIN 1 \subset .059 [1.50] SQUARE .083 [2.10]

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC451LC3	Alumina, White	Gold over Nickel	MSL3 ^[1]	H451 XXXX

^[1] Max peak reflow temperature of 260 °C

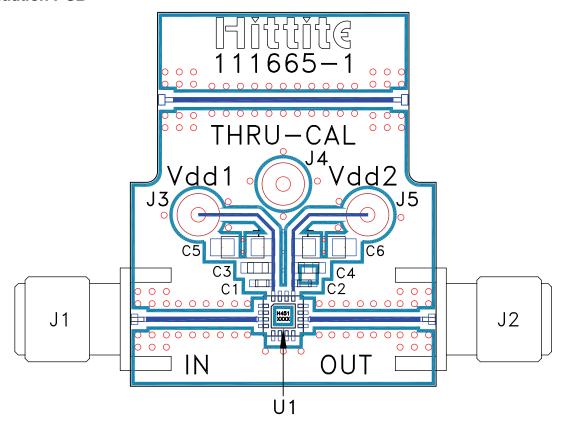
^{[2] 4-}Digit lot number XXXX

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 20 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4 - 9, 11, 12, 14, 15	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.	
3	RFIN	This pin is AC coupled and matched to 50 Ohms from 5 - 20 GHz.	RFIN O—
10	RFOUT	This pin is AC coupled and matched to 50 Ohms from 5 - 20 GHz.	— —○ RFOUT
13	Vdd2	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	Vdd2
16	Vdd1	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	Vdd1
	GND	Package bottom must be connected to RF/DC ground.	GND

Application Circuit


Component	Value				
C1, C2	100 pF		,	⊋ Vdd1	
C3, C4	1,000 pF			Vaar	
C5, C6	2.2 μF		C1=	C3 — C5	
					=
					∨Vdd2
				C2	C4 C6
			1	6	
	_		_ 3	1	3
	K	RFIN >	3		10 RFOUT

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 5 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB 111667 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J5	DC Pin
C1, C2	100 pF Capacitor, 0402 Pkg.
C3, C4	1000 pF Capacitor, 0603 Pkg.
C5, C6	2.2 µF Capacitor, Tantalum
U1	HMC451LC3 Amplifier
PCB [2]	111665 Evaluation PCB, 10 mils

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.