Battery Protection IC, Integrated Power MOSFET, 1-Cell Lithium-Ion Battery

Overview

The LC05711ARA is a protection IC for 1-cell lithium-ion secondary batteries with integrated power MOS FET. Also it integrates highly accurate detection circuits and detection delay circuits to prevent batteries from over-charging, over-discharging, over-current discharging and over-current charging.

A battery protection system can be made by only LC05711ARA and few external parts.

Features

ON resistance (total of charge and discharge) $4.8 \text{m}\Omega$ (typ)

• Highly accurate detection voltage/current at Ta = 25°C, VCC = 3.7V

 $\begin{array}{lll} \text{Over-charge detection} & \pm 25 \text{mV} \\ \text{Over-discharge detection} & \pm 50 \text{mV} \\ \text{Charge over-current detection} & \pm 0.7 \text{A} \\ \text{Discharge over-current detection} & \pm 0.7 \text{A} \\ \end{array}$

• Delay time for detection and release (fixed internally)

 Discharge/Charge over-current detection is compensated for temperature dependency of power FET

• 0V battery charging : "Permission" • Auto wake-up function battery charging : "Permission"

Typical Applications

- Smart phone
- Tablet
- Wearable device

ON Semiconductor®

www.onsemi.com

ECP30 (1.97×4.01, 0.4Pitch)

GENERIC MARKING DIAGRAM

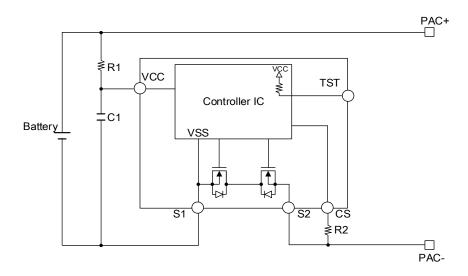
XXXXX AYYWW

A = Assembly Location

YY = Year WW = Work Week

Specifications

Absolute Maximum Ratings at Ta = 25°C (Notes 1, 2, 3, 4, 6)


Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC	Between PAC+ and VCC : R1=680 Ω	-0.3 to 12.0	V
S1 - S2 voltage	VS1-S2		20.0	V
CS terminal Input voltage	CS		VCC-20.0 to VCC+0.3	V
TST terminal input voltage	TST		−0.3 to 7	V
Storage temperature	Tstg		−55 to +125	°C
Operating ambient temperature	Topr		-40 to +100	°C
Allowable power dissipation	Pd	(Note 5)	800	mW
Junction temperature	Tj		125	°C

^{1.} Stresses exceeding those listed in the Maximum Rating table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. This device is made for power applications.

6. Please execute appropriate test and take safety measures on your board.

Example of Application Circuit

Components	Recommended value	MAX	unit	Description
R1	680	1k	Ω	
R2	1k	2k	Ω	
C1	1.0µ	-	F	

^{*} We don't guarantee the characteristics of the circuit shown above.

Absolute maximum ratings represent the values which cannot be exceeded at any given time
 If you intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for confirmation

Electrical Characteristics (Note 4, 6, 7, 8)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
etection voltage							
			Ta=25°C	Vov_set -25	Vov_set	Vov_set +25	
Over-charge detection voltage	Vov	R1=680Ω	Ta=-30 to 70°C	Vov_set -30	Vov_set	Vov_set +30	m∖
			Ta=25°C	Vovr_set -40	Vovr_set	Vovr_set +40	
Over-charge release voltage	Vovr	R1=680Ω	Ta=-30 to 70°C	Vovr_set -70	Vovr_set	Vovr_set +70	m∨
			Ta=25°C	Vuv_set -50	Vuv_set	Vuv_set +50	
Over-discharge detection voltage	Vuv	R1=680Ω	Ta=–30 to 70°C	Vuv_set -80	Vuv_set	Vuv_set +80	mV
		R1=680Ω CS=0V	Ta=25°C	Vuvr_set -100	Vuvr_set	Vuvr_set +100	
Over-discharge release voltage	Vuvr		Ta=–30 to 70°C	Vuvr_set -120	Vuvr_set	Vuvr_set +120	mV
		R1=680Ω	Ta=25°C	Vuvr2_set -100	Vuvr2_set	Vuvr2_set +100	
Over-discharge release voltage2	Vuvr2	CS=Open	Ta=-30 to 70°C	Vuvr2_set -120	Vuvr2_set	Vuvr2_set +120	mV
Discharge over overent			Ta=25°C VCC=3.7V	loc_set -0.7	loc_set	loc_set +0.7	
Discharge over-current detection current	loc	R2=1kΩ	Ta=-30 to 70°C VCC=3.7V	loc_set -1.2	loc_set	loc_set +1.2	Α
Discharge average	loc2	R2=1kΩ	Ta=25°C VCC=3.7V	loc2_set*0.8	loc2_set	loc2_set*1.2	А
Discharge over-current detection currnt2 (Short circuit)			Ta=-30 to 70°C VCC=3.7V	loc2_set*0.6	loc2_set	loc2_set*1.8	
		R2=1kΩ	Ta=25°C VCC=3.7V	loch_set -0.7	loch_set	loch_set +0.7	А
Charge over-current detection current	loch		Ta=-30 to 70°C VCC=3.7V	loch_set -1.2	loch_set	loch_set +1.2	
put voltage	•	•		•			•
Operating Voltage for 0V charging	Vchg	VCC-CS VCC-S1=0V	Ta=25°C			1.4	٧
current consumption							
Operating current	Icc	At normal state	Ta=25°C VCC=3.7V		3	6	μΑ
Standby current	Istb	At standby state	Ta=25°C VCC=2.0V			0.95	μA
tesistance	1	I.					
ON resistance 1 of integrated power MOS FET	Ron1	VCC=3.1V I=±2.0A	Ta=25°C	4.4	5.4	6.9	mΩ
ON resistance 2 of integrated power MOS FET	Ron2	VCC=3.8V I=±2.0A	Ta=25°C	4	4.9	5.8	mΩ
ON resistance 3 of	Ron3	VCC=4.0V	Ta=25°C	3.9	4.8	5.7	mΩ
integrated power MOS FET ON resistance 4 of	Ron4	I=±2.0A VCC=4.5V	Ta=25°C	3.8	4.7	5.6	mΩ
integrated power MOS FET Internal resistance (VCC-CS)	Rcsu	I=±2.0A VCC=Vuv_set CS=0V	Ta=25°C		300		kΩ
Internal resistance (VSS-CS)	Rcsd	VCC=3.7V CS=0.1V	Ta=25°C		10		kΩ
		US-0.1V		1	l	Ī	1

Continued on next page.

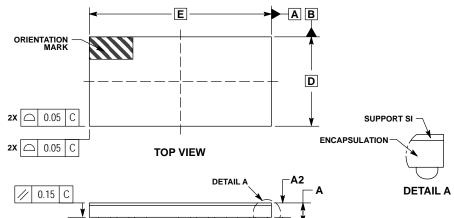
Continued from preceding page.

Parameter Symbo		Conditions		MIN.	TYP.	MAX.	Unit	
Detection and Release delay time								
Over-charge detection delay time	Tov		Ta=25°C	0.8	1	1.2	s	
Over-charge detection delay time	100		Ta=-30 to 70°C	0.6	1	1.5	5	
Over-charge release delay time	Tovr		Ta=25°C	12.8	16	19.2	ms	
ever charge release delay lime	1001		Ta=-30 to 70°C	9.6	16	24	1113	
Over-discharge detection delay time	Tuv		Ta=25°C	14	20	26	ms	
			Ta=-30 to 70°C	12	20	30	0	
Over-discharge release delay time	Tuvr		Ta=25°C	0.9	1.1	1.3	ms	
			Ta=-30 to 70°C	0.6	1.1	1.5		
Discharge over-current	Toc1	VCC=3.7V	Ta=25°C	9.6	12	14.4	- ms	
detection delay time 1	1001		Ta=-30 to 70°C	7.2	12	18		
Discharge over-current	T 4	VCC=3.7V	Ta=25°C	3.2	4	4.8	- ms	
release delay time 1	Tocr1		Ta=-30 to 70°C	2.4	4	6		
Discharge over-current	T0	VCC=3.7V	Ta=25°C	230	300	420	μs	
detection delay time 2 (Short circuit)	Toc2	VCC=3.7V	Ta=-30 to 70°C	200	300	450		
Charge Over-current	T	VCC=3.7V	Ta=25°C	12.8	16	19.2	ms	
detection delay time	Toch		Ta=-30 to 90°C	9.6	16	24		
Charge Over-current	Took-	VCC-2.7V	Ta=25°C	3.2	4	4.8		
release delay time	Tochr	VCC=3.7V	Ta=-30 to 90°C	2.4	4	6	ms	

^{7.} Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. The specification in this parameter and all specification at high and low temperature are guaranteed by design.

Package Dimensions


unit: mm

ECP30, 1.97x4.01 CASE 971BC ISSUE A

0.05 C

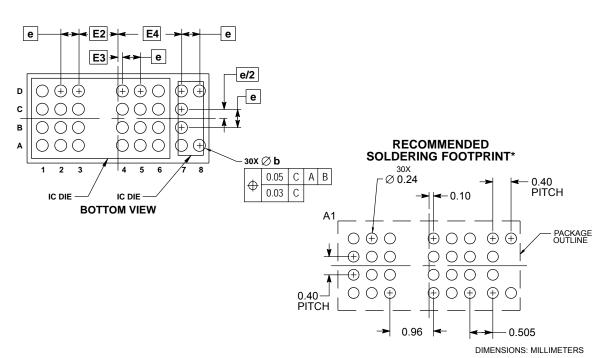
Α1

NOTE 3

SIDE VIEW

NOTES:

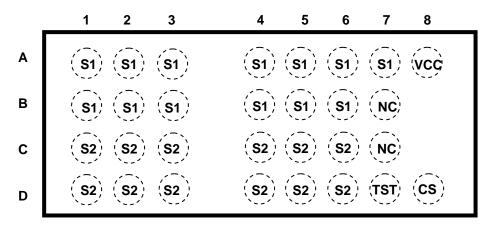
- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

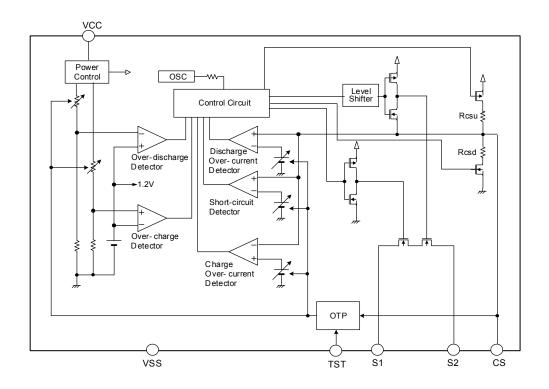
 3. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.

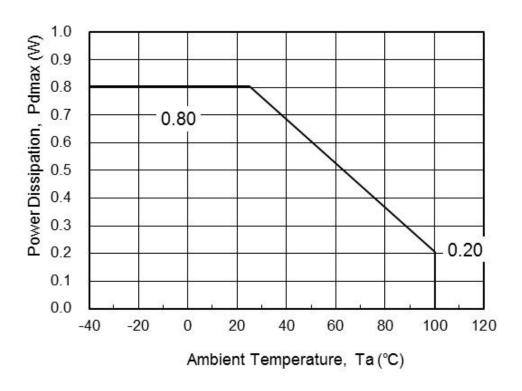
 4. DIMENSION b IS MEASURED AT THE MAXIMUM BALL DIAMETER PARALLEL TO DATUM C.


	MILLIMETERS					
DIM	MIN	MAX				
Α	0.545	0.625				
A1	0.165	0.205				
A2	0.380	0.420				
b	0.245	0.285				
D	1.970 BSC					
E	4.010 BSC					
E2	0.860 BSC					
E3	0.100 BSC					
E4	1.405 BSC					
е	0.400 BSC					

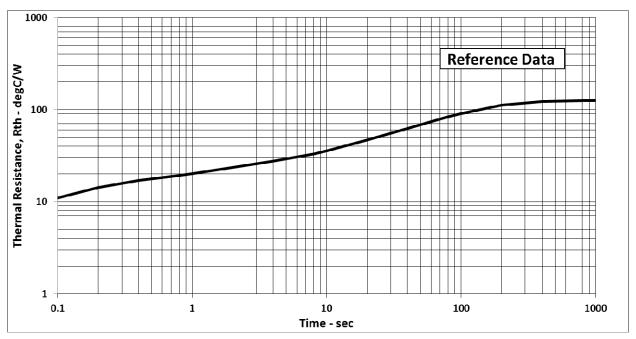
C SEATING PLANE

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


Pin Functions


TOP VIEW

Pin No.	Symbol	Pin Function	Description
A1-7 B1-6	S1	Source 1	Negative power input
A8	VCC	VCC terminal	
C1-6 D1-6	S2	Source 2	
D7	TST	Test terminal	Connected to VCC with $100k\Omega$
D8	CS	Charger minus voltage input terminal	
B7,C7	NC	Non connection	


Block Diagram

Pdmax vs Ta

Thermal Resistance vs Time

Description of operation

(1)Normal mode

•LC05711ARA controls charging and discharging by detecting cell voltage (VCC) and controls S2-S1 current. In case that cell voltage is between over-discharge detection voltage (Vuv) and over-charge detection voltage (Vov), and S2-S1 current is between charge over-current detection current (Ioch) and discharge over-current detection current (Ioc), internal power MOS FETs as CHG_SW, DCHG_SW are both turned ON. This is the normal mode, and it is possible to be charged and discharged.

(2)Over-charging mode

•Internal poer MOS FETCHG_SW turns off if cell voltage becomes greater than or equal to over-charge detection voltage (Vov) over the delay time of over-charging (Tov).

This is the over-charging detection mode.

- •The recovery from over-charging will be made after the following two conditions are satisfied.
- 1. Charger is removed from IC.
- Cell voltage decreases under over-charge release voltage (Vovr) over the delay time of over-charging releasing (Tovr) due to discharging through a load.

Consequently, internal power MOS FET as CHG_SW will be turned on and normal mode will be resumed.

•In over-charging mode, discharging over-current detection is made only when CS pin increases more than discharging over-current detection current 2(Ioc2), because discharge current flows through parasitic diode of CHG_SW FET.

If CS pin voltage increases more than discharging over-current detection current 2 (Ioc2) over the delay time of discharging over-current 2 (Toc2), discharging will be shut off, because internal power FETs as DCHG_SW is turned off. (short-circuit detection mode)

After detecting short-circuit, CS pin will be pulled down to Vss by internal resistor Rcsd.

The recovery from short circuit detection in over-charging mode will be made after the following two conditions are satisfied.

- 1. Load is removed from IC.
- CS pin voltage becomes less than or equal to discharging over-current detection current 2 (Ioc2) due to CS pin pulled down through Resd.

Consequently, internal power MOS FET as DCHG_SW will be turned on, and over-charging

detection mode will be resumed.

(3)Over-discharging mode with Auto Wake Up function

•If cell voltage drops lower than over-discharge detection voltage (Vuv) over the delay time of over-discharging (Tuv), discharging will be shut off, internal power FETs as DCHG_SW is turned off

This is the over-discharging mode.

After detecting over-discharging, CS pin will be pulled up to Vcc by an internal resistor Rcsu and the bias of internal circuits will be shut off. (Shut-down mode)

In shut-down mode, operating current is suppressed under 0.1uA (max).

- The recovery from stand-by mode will be made by internal circuits biased after the following two conditions are satisfied.
 - 1. Charger is connected.
 - 2. VCC level rise more than Over-discharge release voltage2 (Vuvr2) without charger.(Auto wake-up function)
- •By continuing to be charged, if cell voltage increases more than over-discharge detection voltage (Vuvr) over the delay time of over-discharging (Tuvr), internal power MOS FETs as DCHG_SW is turned on and normal mode will be resumed.
- •In over-discharge detection mode, charging over-current detection does not operate. By continuing to be charged, charging over-current detection starts to operate after cell voltage goes up more than over-discharge release voltage (Vuvr).

(4)Discharging over-current detection mode 1

•Internal power MOS FET as DCHG_SW will be turned off and discharging current will be shut off if CS pin voltage becomes greater than or equal to discharging over-current detection current (Ioc) over the delay time of discharging over-current (Toc1).

This is the discharging over-current detection mode 1.

In discharging over-current detection mode 1, CS pin will be pulled down to Vss with internal resistor Rcsd.

- •The recovery from discharging over-current detection mode will be made after the following two conditions are satisfied.
 - 1. Load is removed from IC.
 - 2. CS pin voltage becomes less than or equal to discharging over-current release current (Iocr) over the delay time of discharging over-current release (Tocr1) due to CS pin pulled down

through Rcsd.

Consequently, internal power MOS FET as DCHG_SW will be turned on, and normal mode will be resumed.

(5)Discharging over-current detection mode 2 (short circuit detection)

• Internal power MOS FET as DCHG_SW will be turned off and discharging current will be shut off if CS pin voltage becomes greater than or equal to discharging over-current detection current2 (Ioc2) over the delay time of discharging over-current 2 (Toc2).

This is the short circuit detection mode.

- In short circuit detection mode, CS pin will be pulled down to Vss by internal resistor Rcsd.
 The recovery from short circuit detection mode will be made after the following two conditions are satisfied.
 - a. Load is removed from IC.
 - b. CS pin voltage becomes less than or equal to discharging over-current release current (Iocr) over the delay time of discharging over-current release (Tocr1) due to CS pin pulled down through Rcsd.

Consequently, internal power MOS FET as DCHG_SW will be turned on, and normal mode will be resumed.

(6)Charging over-current detection mode

• Internal power MOS FET as CHG_SW will be turned off and charging current will be shut off if CS pin voltage becomes less than or equal to charging over-current detection current (Ioch) over the delay time of charging over-current (Toch).

This is the charging over-current detection mode.

- The recoveries from charging over-current detection mode will be made after the following two conditions are satisfied.
 - 1. Charger is removed from IC and CS pin will increase by load connection.
 - 2. CS pin voltage becomes greater than or equal to charging over-current release current (Iochr) over the delay time of charging over-current release (Tocrh).

Consequently, internal power MOS FET as CHG_SW will be turned on, and normal mode will be resumed.

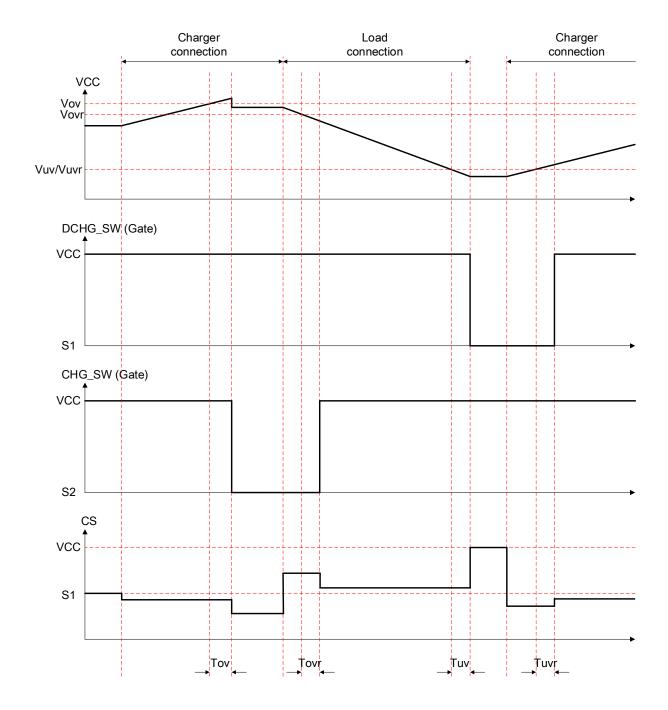
*Internal current flows out through CS and S2 terminals.

After charger is removed, it flows through

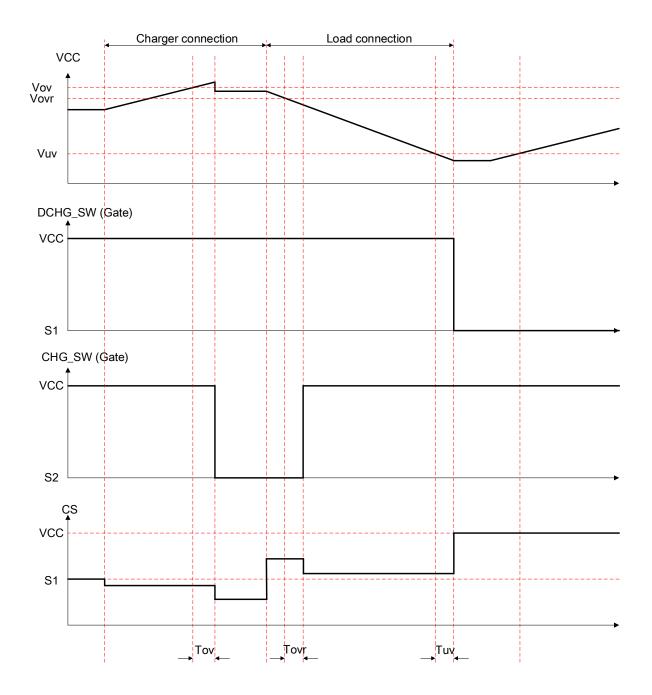
parasitic diode of CHG_SW FET.

Therefore, CS pin voltage will go up more than charging over-current release current (Iochr). So CS pin voltage is not an indispensable condition for recovery from charging over-current detection.

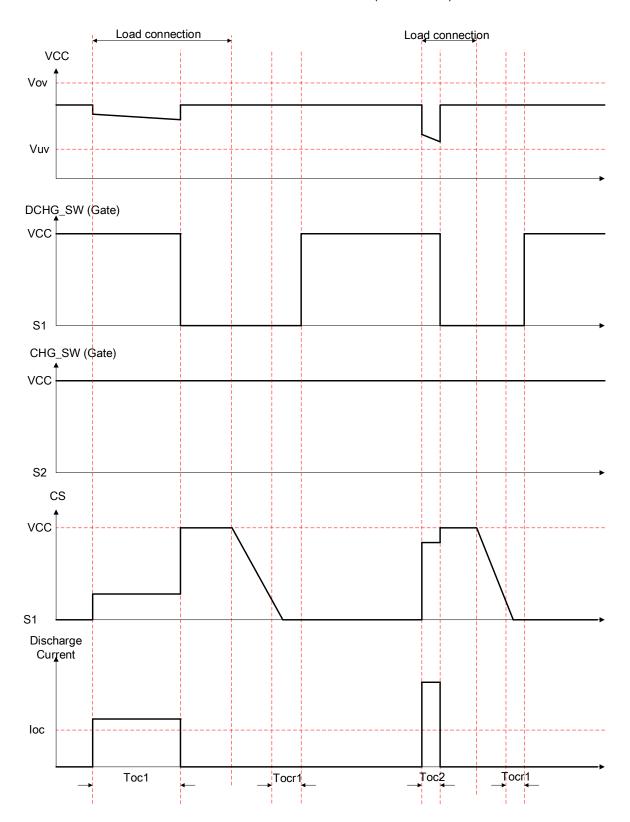
(7) Available Voltage for 0V charging

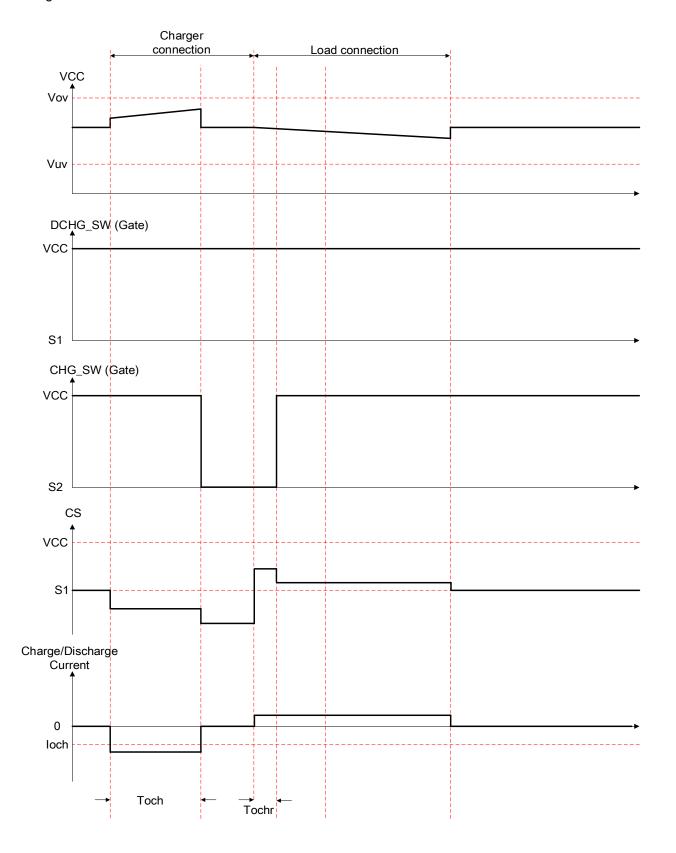

It is the function that the voltage of a connected battery can charge from the state that became 0V by self-discharge. The 0V battery charge start battery charger voltage (Vchg), it fix a gate of the charge system order FET to the VDD terminal voltage when it connect a battery charger of the above-mentioned voltage to PAC+ terminal between PAC- terminals.

Gate-source voltage of the charge control FET becomes equal to the turn-on voltage or more due to the charger voltage, the charging control FET To start charging row is turned on.


Discharge control FET is off at this time, the charge current flows through the internal parasitic diode in the discharging control FET. It is the normal state battery voltage becomes the overdischarge release voltage (Vuvr) or more.

Timing Chart


Over-charge detection/release, Over-discharge detection/release (Connect charger)


Over-charge detection/release, Over-discharge detection/release (Non-connect charger)

Discharge over-current detection1, Discharge over-current detection2 (Short circuit)

Charge over-current detection

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer