

ON Semiconductor®

FGH60N60SMD-F085 600V, 60A Field Stop IGBT

Features

- Maximum Junction Temperature : $T_J = 175^{\circ}C$
- Positive Temperaure Co-efficient for easy parallel operating
- High current capability
- Low saturation voltage: V_{CE(sat)} = 1.8V(Typ.) @ I_C = 60A
- High input impedance
- Tightened Parameter Distribution
- RoHS compliant
- Qualified to Automotive Requirements of AEC-Q101

General Description

Using Novel Field Stop IGBT Technology, ON Semiconductor's new series of Field Stop Trench IGBTs offer the optimum performance for Automotive chargers, Solar Inverter, UPS and Digital Power Generator where low conduction and switching losses are essential.

Applications

- Automotive chargers, Converters, High Voltage Auxiliaries
- Solar Inverters, UPS, SMPS, PFC

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		600	V	
V _{GES}	Gate to Emitter Voltage		± 20	V	
I _C	Collector Current	@ T _C = 25°C	120	А	
	Collector Current	@ T _C = 100°C	60	А	
I _{CM (1)}	Pulsed Collector Current		180	А	
I _F	Diode Forward Current	@ T _C = 25°C	60	A	
	Diode Forward Current	@ T _C = 100°C	30	А	
I _{FM(1)}	Pulsed Diode Maximum Forward Current		180	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	600	W	
· D	Maximum Power Dissipation	@ T _C = 100°C	300	W	
TJ	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
Τ _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol Parameter		Ratings	Units	
$R_{\theta JC}(IGBT)_{(2)}$	Thermal Resistance, Junction to Case	0.25	°C/W	
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case	1.1	°C/W	
Symbol	Parameter	Тур.	Units	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (PCB Mount)(2)	45	°C/W	

Ţ
Q
Ĩ
8
ž
9
0
9
F
ų
Ť
8
Ŭ
ົດ
õ
2
\geq
8
ŏ
_
Ē
eld
0
õ
G
σ
0
GE
4
•

Package Marking and Ordering Information

Device Marking Device		Package	Packing Type	Qty per Tube	
FGH60N60SMD	FGH60N60SMD-F085	TO-247	Tube	30ea	

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	600	-	-	V
ΔΒV _{CES} ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	-	0.22	-	V/ºC
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	
		I _{CES} at 80%*B _{VCES,} 175°C	-	-	1100	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \text{uA}, V_{CE} = V_{GE}$	3.5	4.7	6.0	V
		$I_{\rm C} = 60$ A, $V_{\rm GE} = 15$ V	-	1.8	2.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 60A, V_{GE} = 15V,$ $T_{C} = 175^{o}C$	-	2.14	-	V
Dynamic C	haracteristics					
C _{ies}	Input Capacitance		-	2780	3700	pF
C _{oes}	Output Capacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz	-	260	345	pF
C _{res}	Reverse Transfer Capacitance		-	80	110	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	22	29	ns
t _r	Rise Time		-	46	60	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V, I _C = 60A,	-	116	151	ns
t _f	Fall Time	$R_{G} = 3\Omega, V_{GE} = 15V,$	-	14	18	ns
E _{on}	Turn-On Switching Loss	Inductive Load, $T_C = 25^{\circ}C$	-	1.59	2.23	mJ
E _{off}	Turn-Off Switching Loss		-	0.39	0.55	mJ
E _{ts}	Total Switching Loss		-	1.98	2.78	mJ
t _{d(on)}	Turn-On Delay Time		-	22	28	ns
t _r	Rise Time		-	44	58	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V, I _C = 60A,	-	124	161	ns
t _f	Fall Time	$R_{G} = 3\Omega, V_{GE} = 15V,$	-	15	20	ns
Eon	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	2.41	3.13	mJ
E _{off}	Turn-Off Switching Loss		-	1.08	1.42	mJ
E _{ts}	Total Switching Loss]	-	3.49	4.55	mJ

Notes:

1:Repetitive rating: Pulse width limited by max junction temperature.

2:Rthjc for TO-247 : according to Mil standard 883-1012 test method. Rthja for TO-247 : according to JESD51-2, test method environmental condition and JESD51-10, test boards for through hole perimeter leaded package thermal measurements. JESD51-3 : Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Package.

Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Units
Qg	Total Gate Charge	V _{CE} = 400V, I _C = 60A, V _{GE} = 15V	-	187	280	nC
Q _{ge}	Gate to Emitter Charge		-	20	29	nC
Q _{gc}	Gate to Collector Charge		-	92	138	nC

Electrical Characteristics of the Diode $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _F = 30A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	2.1	2.7	V
			T _C = 175 ^o C	-	1.48	-	
t _{rr} Diode Reverse Recov	Diode Reverse Recovery Time	_ I _F =30A, dI _F /dt = 200A/μs	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	33	42	ns
			T _C = 175 ^o C	-	115	-	
Q _{rr}	Diode Reverse Recovery Charge		$T_{C} = 25^{\circ}C$	-	53	69	nC
			T _C = 175 ^o C	-	606	-	

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

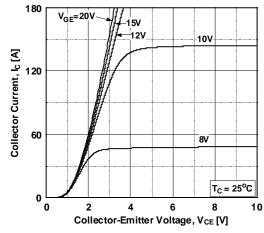


Figure 3. Typical Saturation Voltage Characteristics

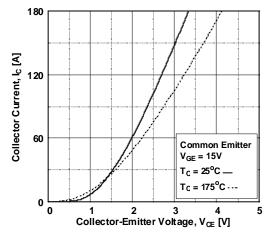
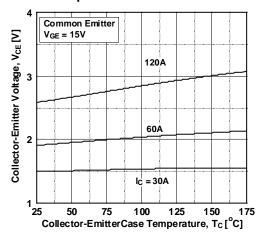



Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

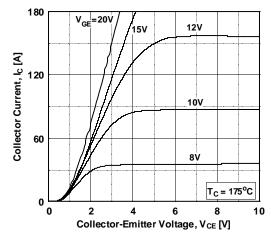
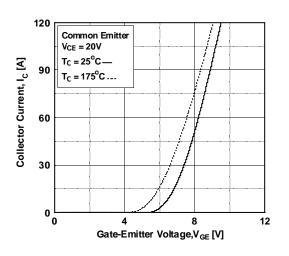
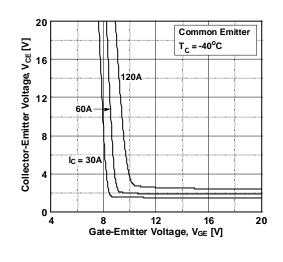
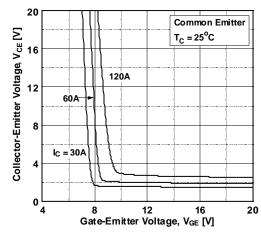




Figure 4. Transfer Characteristics



Typical Performance Characteristics

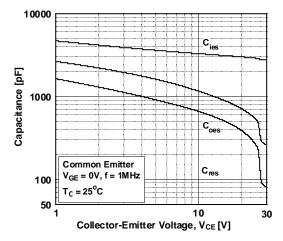


Figure 11. SOA Characteristics

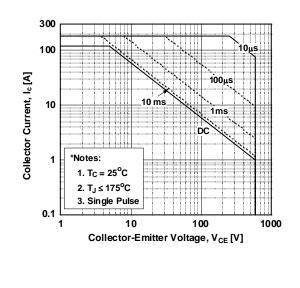


Figure 8. Saturation Voltage vs. V_{GE}

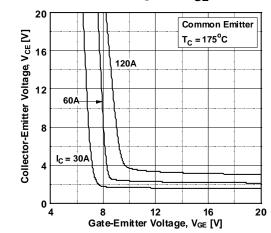


Figure 10. Gate charge Characteristics

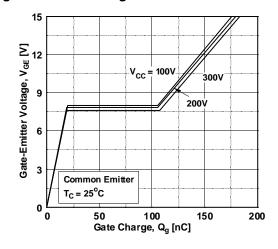
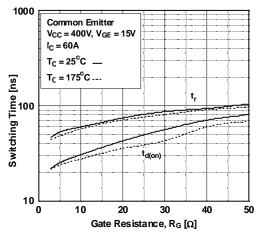
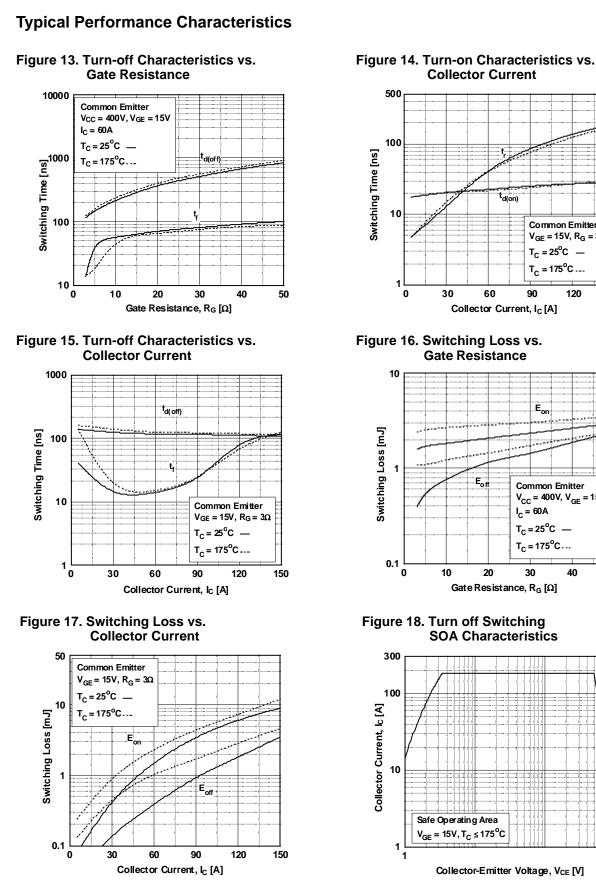
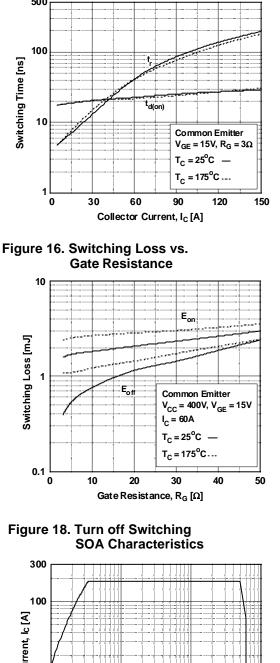
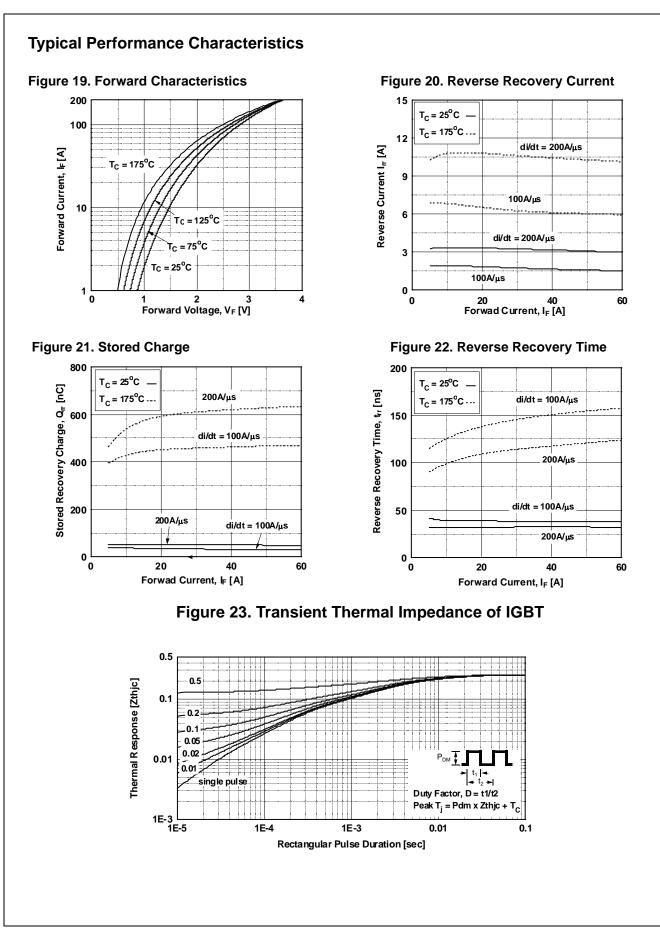
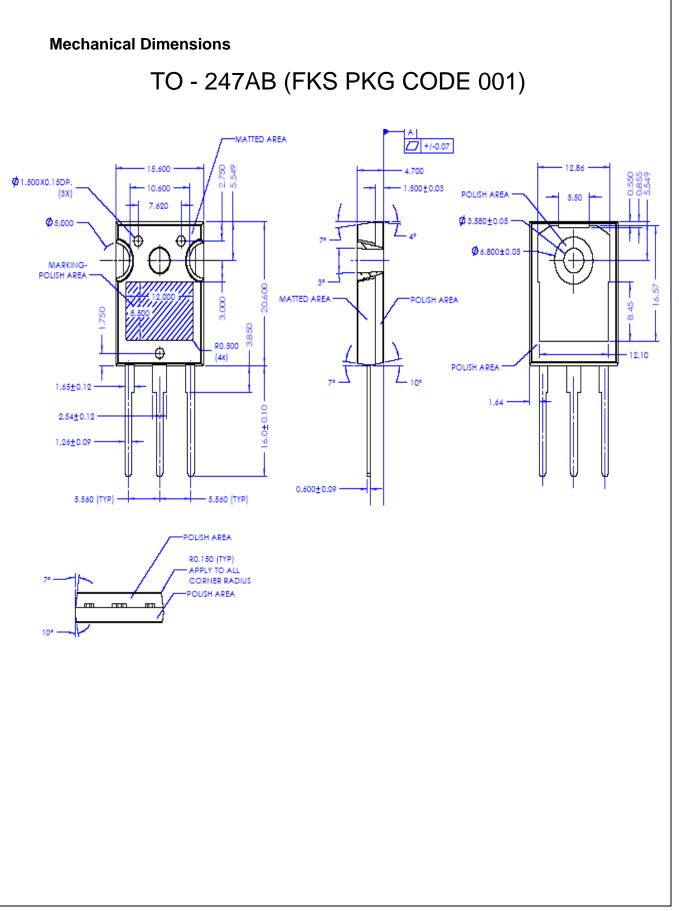





Figure 12. Turn-on Characteristics vs. Gate Resistance





Collector Current

Safe Operating Area V_{GE} = 15V, T_C ≤ 175[°]C

Collector-Emitter Voltage, VCE [V]

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative