

ON Semiconductor®

BAV99 200 mA 70 V High Conductance Ultra-Fast Switching Diode

Features

- High Conductance: I_F = 200 mA
- Fast Switching Speed: t_{rr} < 6 ns Maximum
- Small Plastic SOT-23 Package
- Series-Pair Configuration

Applications

· High-Speed Switching Applications

Description

The BAV99 is a 350 mW high-speed switching diode array with series-pair diode configuration. It achieves high-current conductivity, up to 200 mA, in a very small 7mm² footprint. These features make the BAV99 optimal for area-constrained applications that need a little extra power capability.

For common cathode and common anode high-speed switching diodes, explore Fairchild's BAV70 and BAW56. Looking for more options in the SOT-23 package? Check Fairchild's MMBD family.

Connection Diagram

Ordering Information

Part Number	Marking	Package	Packing Method	
BAV99	A7	SOT-23 3L	Tape and Reel, Reel 7 inch	
BAV99-D87Z	A7	SOT-23 3L	Tape and Reel, Reel 13 inch	

Absolute Maximum Ratings(1)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter		Value	Unit
V _{RRM}	Maximum Repetitive Reverse Voltage		70	V
I _{F(AV)}	Average Rectified Forward Current		200	mA
I _{FSM}	Non-Repetitive Peak Forward Surge Current	Pulse Width = 1.0 Second	1.0	А
		Pulse Width = 300 Microseconds	8.0	
T _{STG}	Storage Temperature Range		-55 to +150	°C
T _J	Operating Junction Temperature Range		-55 to +150	°C

Note:

These ratings are based on a maximum junction temperature of 150°C.
 These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or low-duty cycle operations.

Thermal Characteristics⁽²⁾

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Value	Unit
P_{D}	Power Dissipation	350	mW
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W

Note:

2. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _R	Breakdown Voltage, per Diode	I _R = 100 μA	70		V
V _F	Forward Voltage, per Diode	I _F = 1 mA		715	mV
		I _F = 10 mA		855	
		I _F = 50 mA		1.00	V
		I _F = 150 mA		1.25	
I _R	Reverse Leakage, per Diode	V _R = 70 V		2.5	μА
		$V_R = 25 \text{ V}, T_A = 150^{\circ}\text{C}$		30.0	
		$V_R = 70 \text{ V}, T_A = 150^{\circ}\text{C}$		50.0	
C _T	Total Capacitance, per Diode	V _R = 0 V, f = 1.0 MHz		1.5	pF
t _{rr}	Reverse-Recovery Time, per Diode	$I_F = I_R = 10 \text{ mA},$ $I_{RR} = 1 \text{ mA},$ $R_L = 100 \Omega$		6.0	ns

Typical Performance Characteristics

Figure 1. Reverse Voltage vs. Reverse Current

Figure 2. Reverse Current vs. Reverse Voltage

Figure 3. Forward Voltage vs. Forward Current V_F - 1 to 100 μA

Figure 4. Forward Voltage vs. Forward Current V_{F} - 0.1 to 10 mA

Figure 5. Forward Voltage vs. Forward Current $\rm V_F$ - 10 to 800 mA

Figure 6. Total Capacitance vs. Reverse Voltage

Typical Performance Characteristics (Continued)

Figure 7. Reverse-Recovery Time vs. Reverse Current

Figure 8. Average Rectified Current ($I_{F(AV)}$) vs. Ambient Temperature (I_A)

Figure 9. Power Derating Curve

Physical Dimensions

SOT-23

NOTES: UNLESS OTHERWISE SPECIFIED

- A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- SEATING E) DRAWING FILE NAME: MA03DREV10

DETAIL A

Figure 10. 3-LEAD, SOT23, JEDEC TO-236, LOW PROFILE

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative