ON Semiconductor ${ }^{\text {® }}$

BAV99
 200 mA 70 V High Conductance Ultra-Fast Switching Diode

Features

- High Conductance: $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$
- Fast Switching Speed: $\mathrm{t}_{\mathrm{rr}}<6 \mathrm{~ns}$ Maximum
- Small Plastic SOT-23 Package
- Series-Pair Configuration

Applications

- High-Speed Switching Applications

Description

The BAV99 is a 350 mW high-speed switching diode array with series-pair diode configuration. It achieves high-current conductivity, up to 200 mA , in a very small $7 \mathrm{~mm}^{2}$ footprint. These features make the BAV99 optimal for area-constrained applications that need a little extra power capability.

For common cathode and common anode high-speed switching diodes, explore Fairchild's BAV70 and BAW56. Looking for more options in the SOT-23 package? Check Fairchild's MMBD family.

Ordering Information

Part Number	Marking	Package	Packing Method
BAV99	A7	SOT-23 3L	Tape and Reel, Reel 7 inch
BAV99-D87Z	A7	SOT-23 3L	Tape and Reel, Reel 13 inch

Absolute Maximum Ratings ${ }^{(1)}$

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {RRM }}$	Maximum Repetitive Reverse Voltage	70	V
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average Rectified Forward Current	200	mA
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	Pulse Width $=1.0$ Second	Pulse Width $=300$ Microseconds
	$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	1.0
A			
	Operating Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Note:

1. These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.

These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or low-duty cycle operations.

Thermal Characteristics ${ }^{(2)}$

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
P_{D}	Power Dissipation	350	mW
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction to Ambient	357	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:
2. PCB size: FR-4, $76 \mathrm{~mm} \times 114 \mathrm{~mm} \times 1.57 \mathrm{~mm}$ (3.0 inch $\times 4.5$ inch $\times 0.062$ inch) with minimum land pattern size.

Electrical Characteristics

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V_{R}	Breakdown Voltage, per Diode	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	70		V
V_{F}	Forward Voltage, per Diode	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$		715	mV
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		855	
		$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$		1.00	V
		$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$		1.25	
I_{R}	Reverse Leakage, per Diode	$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$		2.5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		30.0	
		$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		50.0	
C_{T}	Total Capacitance, per Diode	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		1.5	pF
t_{rr}	Reverse-Recovery Time, per Diode	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{RR}}=1 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$		6.0	ns

Typical Performance Characteristics

Figure 1. Reverse Voltage vs. Reverse Current

Figure 3. Forward Voltage vs. Forward Current $V_{F}-1$ to $100 \mu \mathrm{~A}$

Figure 5. Forward Voltage vs. Forward Current V_{F} - $\mathbf{1 0}$ to $\mathbf{8 0 0} \mathrm{mA}$

Figure 2. Reverse Current vs. Reverse Voltage

Figure 4. Forward Voltage vs. Forward Current $\mathrm{V}_{\mathrm{F}}-\mathbf{0 . 1}$ to 10 mA

Figure 6. Total Capacitance vs. Reverse Voltage

Typical Performance Characteristics (Continued)

Figure 7. Reverse-Recovery Time vs. Reverse Current

Figure 9. Power Derating Curve

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED
A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H
B) ALL DIMENSIONS ARE IN MILLIMETERS
C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.
E) DRAWING FILE NAME: MA03DREV10

DETAIL A
SCALE: 2X

Figure 10. 3-LEAD, SOT23, JEDEC TO-236, LOW PROFILE

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

