

ON Semiconductor®

FFSH20120ADN-F155 Silicon Carbide Schottky Diode 1200 V, 20 A

Features

- Max Junction Temperature 175 °C
- · Avalanche Rated 100 mJ
- · High Surge Current Capacity
- · Positive Temperature Coefficient
- · Ease of Paralleling
- No Reverse Recovery / No Forward Recovery

Applications

- · General Purpose
- SMPS, Solar Inverter, UPS
- · Power Switching Circuits

Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

Absolute Maximum Ratings T_C = 25 °C unless otherwise noted. (per leg)

Symbol	Parameter	Ratings	Unit	
V _{RRM}	Peak Repetitive Reverse Voltage	1200	V	
E _{AS}	Single Pulse Avalanche Energy	100	mJ	
l _F	Continuous Rectified Forward Current @ Tc <	10* / 20**	Α	
I _{F, Max}	Non-Repetitive Peak Forward Surge Current	T _C = 25 °C, 10 μs	630	Α
		T _C = 150 °C, 10 μs	560	Α
I _{F,SM}	Non-Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	96	Α
I _{F,RM}	Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	46	Α
Ptot	Power Dissipation	T _C = 25 °C	150	W
		T _C = 150 °C	25	W
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +175	°C	
	TO247 Mounting Torque, M3 Screw	60	Ncm	
Thermal Ch	naracteristic	·		
Symbol	Parameter	Ratings	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	1* / 0.44**	°C/W	

Per leg, ** Per Device

Part Number		Top Mark	Package	Packing Method Tube	Reel Size	Tape Width	Quantity 30 units	
FFSH20120ADN-F155		FFSH20120ADN	TO-247 Long Lead		N/A	N/A		
Electrica	al Chara	cteristics T _C	= 25 °C unless othe	rwise noted. (per leg)				
Symbol		Parameter		Test Conditions	Mi	n. Typ.	Max.	Unit
V _F			I _F = 1	0 A, T _C = 25 °C	-	1.45	1.75	
	Forward Voltage		I _F = 1	0 A, T _C = 125 °C	-	1.7	2	V
			I _F = 1	0 A, T _C = 175 °C	-	2	2.4	
I _R			V _R =	1200 V, T _C = 25 °C	-	-	200 300 μA	
			V _R =	1200 V, T _C = 125 °C	-	-		
			V _R =	1200 V, T _C = 175 °C	-	-	400	
Q _C	Total Capacitive Charge			00 V	-	62	-	nC
С			V _R =	1 V, f = 100 kHz	-	612	-	
	Total Capacitance		V _R =	400 V, f = 100 kHz	-	58	-	pF
			V _R =	800 V, f = 100 kHz	-	47	-	1

Notes: 1: EAS of 100 mJ is based on starting T_J = 25 °C, L = 0.5 mH, I_{AS} = 20 A, V = 150 V.

Typical Characteristics $T_J = 25 \ ^{\circ}C$ unless otherwise noted (per leg).

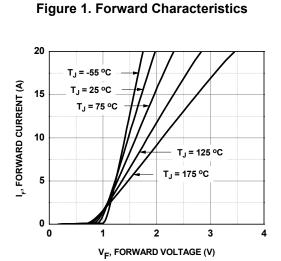


Figure 3. Reverse Characteristics

T_J = -55 °C

T_J = 25 °C

T_J = 75 °C

1300

V_R, REVERSE VOLTAGE (V)

1400

1500

T_J = 125 °C

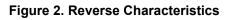
T_{.1} = 175 °C

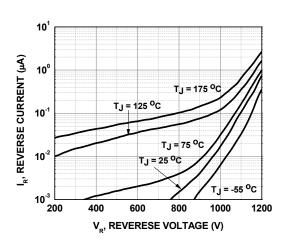
1200

1.0

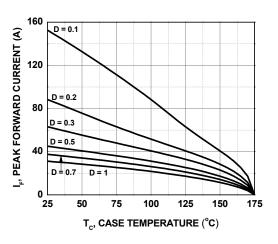
0.8

0.6

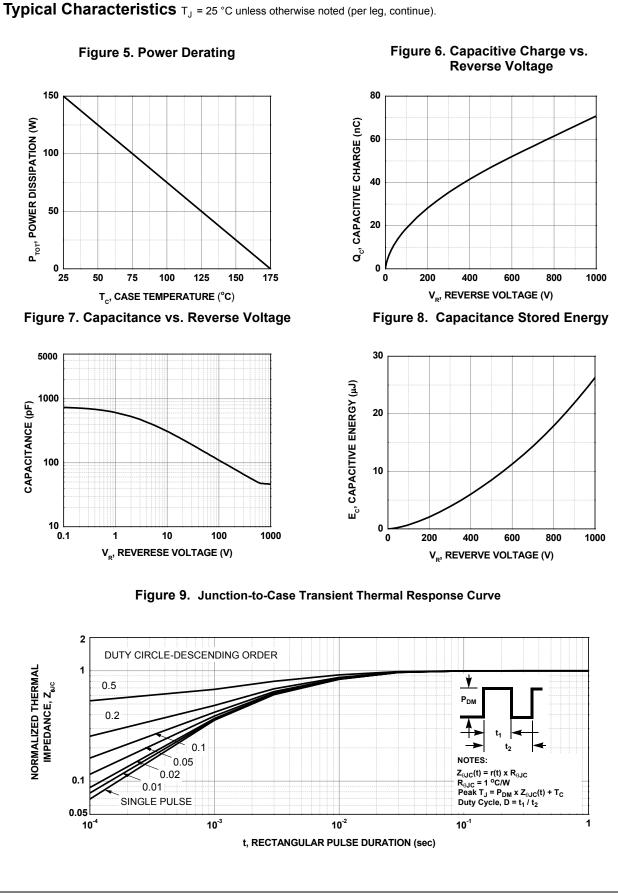

0.4

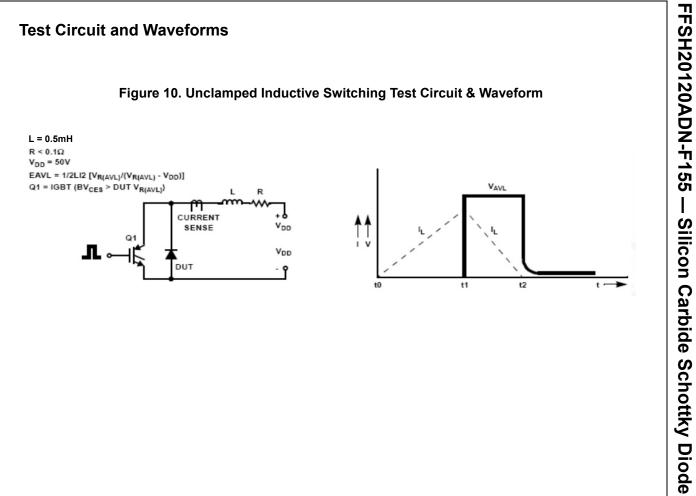

0.2

0.0


1100

IR, REVERSE CURRENT (mA)





www.onsemi.com 2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative