

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="mailto:www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="mailto:Fairchild\_questions@onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

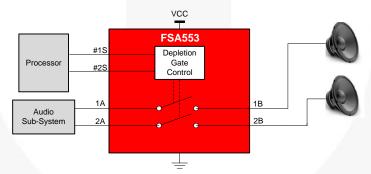


# FSA553 Dual SPST Depletion Audio Switch with Negative Swing

## Features

- Dual SPST Depletion Switch
- Normally Closed when VCC < 0.2 V</li>
- Switches Configurable through Select Pins
- V<sub>SW</sub>: -1.5 V to +1.5 V
- R<sub>ON</sub>: 0.4 Ω (Typical)
- R<sub>FLAT</sub> < 0.01 Ω (Typical)</li>
- THD+N: -104 dB (Typical)
- OIRR: -78 dB (Typical)

# Description

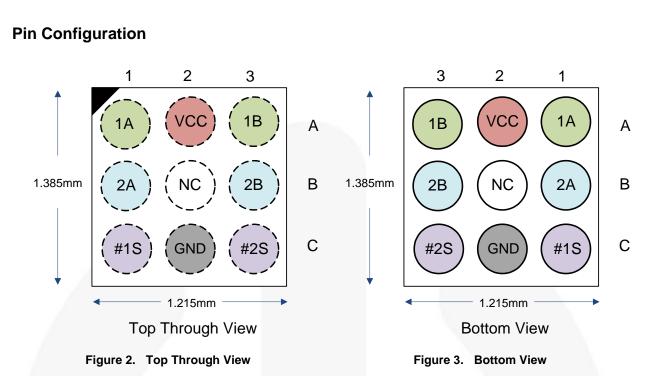

The FSA553 is a high-performance dual single-pole single-throw (SPST x 2) audio switch. The Depletion technology allows the device to conduct signals when there is no  $V_{CC}$  available and to isolate signals when  $V_{CC}$  is present. During signal conduction, the Depletion gate control allows the FSA553 to achieve excellent THD+N performance while consuming minimal power.

## **Related Resources**

FSA553 Evaluation Board

# **Applications**

- Smart Phones
- Tablets, Ultra Books






# **Ordering Information**

| Part Number | Operating<br>Temperature Range | Top<br>Mark | Package                                                           | Packing Method               |
|-------------|--------------------------------|-------------|-------------------------------------------------------------------|------------------------------|
| FSA553UCX   | -40 to 85°C                    | NG          | 9-Ball WLCSP, 0.40 mm Pitch, 1.215 x<br>1.385 x 0.58 mm (Nominal) | 3000 Units on<br>Tape & Reel |

April 2015



# **Pin Descriptions**

| Pin # | Name | Туре                   | Description                               |
|-------|------|------------------------|-------------------------------------------|
| A1    | 1A   | Depletion I/O          | A-Port of Switch 1 (Normally Closed)      |
| A3    | 1B   | Depletion I/O          | B-Port of Switch 1 (Normally Closed)      |
| C1    | #1S  | Control                | Select to Enable/Disable SW1 (Enable LOW) |
| A2    | Vcc  | Power Supply / Control | Power Supply Input                        |
| B2    | NC   | No Connect             | Do Not Connect                            |
| C2    | GND  | Ground                 | Ground                                    |
| B1    | 2A   | Depletion I/O          | A-Port of Switch 2 (Normally Closed)      |
| B3    | 2B   | Depletion I/O          | B-Port of Switch 2 (Normally Closed)      |
| C3    | #2S  | Control                | Select to Enable/Disable SW2 (Enable LOW) |

### Table 1.Switch Truth Table

| V <sub>cc</sub> | #1S  | #2S  | Switch 1 | Switch 2 |
|-----------------|------|------|----------|----------|
| LOW             | Х    | Х    | ON       | ON       |
| HIGH            | HIGH | HIGH | OFF      | OFF      |
| HIGH            | LOW  | HIGH | ON       | OFF      |
| HIGH            | HIGH | LOW  | OFF      | ON       |

# **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                      | Parameter                                 | Min.                                               | Max. | Unit |      |
|-----------------------------|-------------------------------------------|----------------------------------------------------|------|------|------|
| Vcc                         | Supply/Control Voltage                    |                                                    |      | 4.3  | V    |
| V <sub>CNTRL</sub>          | Select Input Voltage                      | #1S, #2S                                           | -0.5 | 4.3  | V    |
| V <sub>SW(ON)</sub>         | DC Switch I/O Voltage (Switch Conducting) | 1A, 1B, 2A, 2B                                     | -2.0 | 2.0  | V    |
| $V_{\text{SW}(\text{OFF})}$ | DC Switch I/O Voltage (Switch Isolated)   | 1A, 1B, 2A, 2B                                     | -2.0 | 2.0  | V    |
| I <sub>SW</sub>             | Switch I/O Current                        | V <sub>CC</sub> =0 V (Switch Conducting)           |      | 350  | mA   |
| ISWPEAK                     | Peak Switch Current                       | Pulsed at 1 ms Duration, <a>&lt;10% Duty Cycle</a> |      | 500  | mA   |
|                             | Human Body Model, ANSI/ESDA/JEDEC         | I/O Ports                                          |      | 7    |      |
|                             | JS-001-2012                               | All Other Pins                                     |      | 4    |      |
| ESD                         | Charged Device Model, JEDEC: JESD22-C10   | 1                                                  |      | 2    | kV   |
|                             |                                           | Contact                                            |      | 8    |      |
|                             | IEC 61000-4-2 System                      | Air Gap                                            |      | 15   |      |
| T <sub>A</sub>              | Absolute Maximum Operating Temperature    |                                                    | -40  | +85  | °C   |
| $\Theta_{JA}$               | Thermal Resistance, Junction-to-Ambient   | 2S2P JEDEC std. PCB                                |      | 97   | °C/W |
| T <sub>STG</sub>            | Storage Temperature                       |                                                    | -65  | +150 | °C   |

# **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding these ratings or designing to Absolute Maximum Ratings.

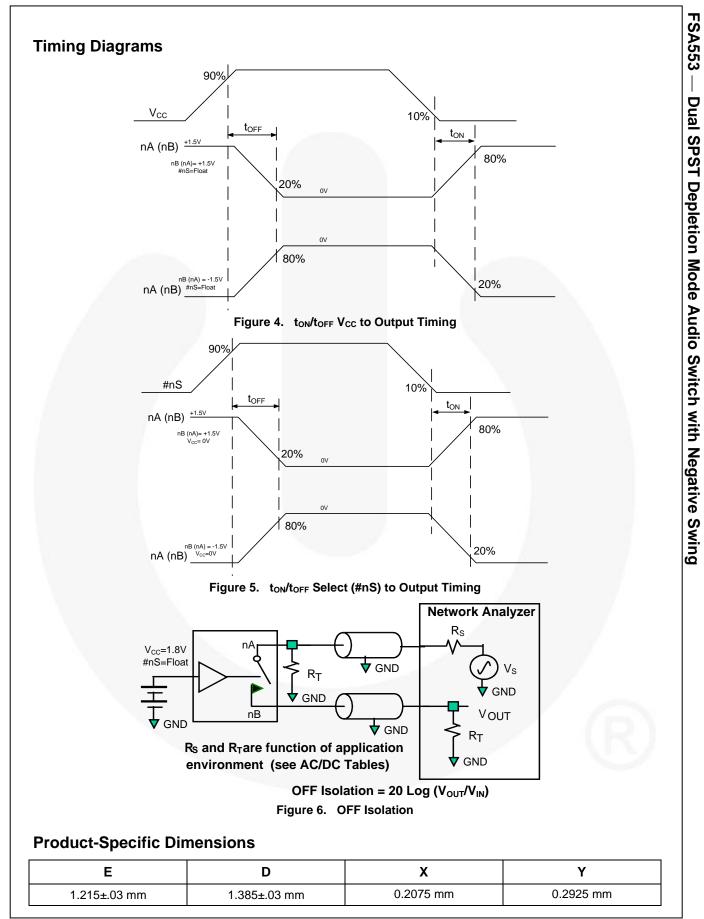
| Symbol               | Parameter                                                                     |         |   | Max. | Unit |
|----------------------|-------------------------------------------------------------------------------|---------|---|------|------|
| V <sub>CC(ON)</sub>  | Supply Voltage with Depletion Switch Conducting (1A=1B; 2A=2B)                |         |   | 0.2  | V    |
| V <sub>CC(OFF)</sub> | Supply Voltage with Depletion Switch Isolated (1A≠1B; 2A≠2B;<br>#1S=#2S=HIGH) |         |   | 3.0  | V    |
| V <sub>SW(ON)</sub>  | DC Switch I/O Voltage Switch Conducting                                       |         |   | 1.5  | V    |
| V <sub>SW(OFF)</sub> | DC Switch I/O Voltage Switch Isolated                                         |         |   | 1.5  | V    |
| V <sub>CNTRL</sub>   | Select Input Voltage #*                                                       | 1S, #2S | 0 | 3.0  | V    |

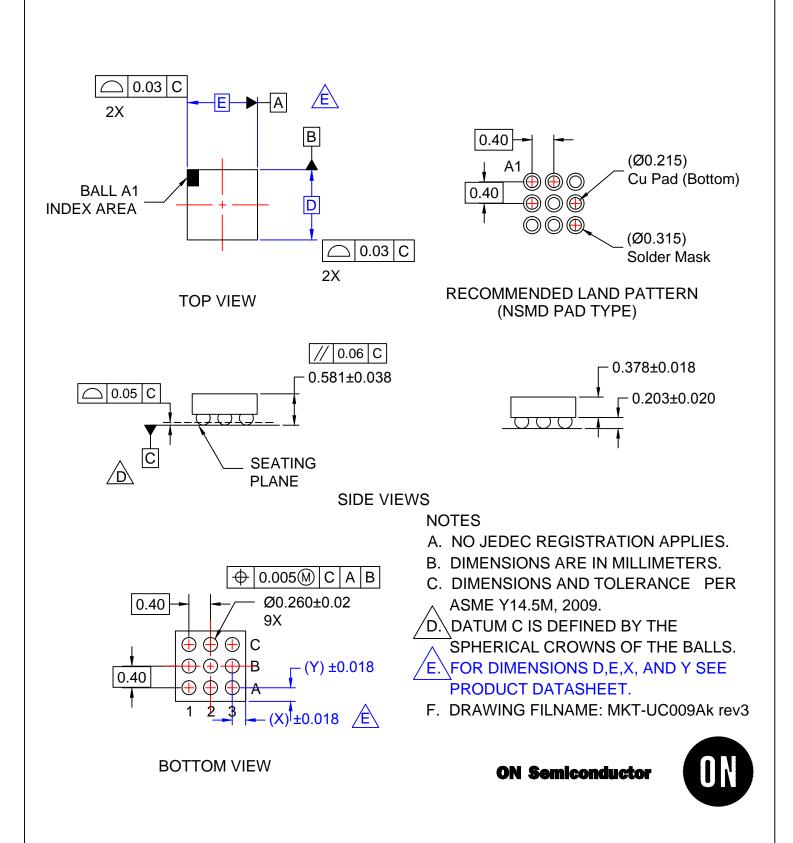
# **DC Electrical Characteristics**

Unless otherwise specified, typical values are for  $T_A=25$  °C.

| Symbol                | Parameter                                                 | Condition                                    |                                                            | V <sub>cc</sub> (V) | T <sub>A</sub> =-40°C to<br>+85°C |      |      | Unit |
|-----------------------|-----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|---------------------|-----------------------------------|------|------|------|
| -                     |                                                           |                                              |                                                            | Min.                | Тур.                              | Max. |      |      |
| V <sub>CC(HYS)</sub>  | Supply Voltage Hysteresis                                 |                                              |                                                            |                     |                                   | 450  |      | mV   |
| I <sub>ON</sub>       | Switch ON Leakage Current                                 | nA=-0.5 V, 0.5 \<br>nB=Float, #1S=           | 0                                                          |                     | 0.1                               |      | μA   |      |
| I <sub>OFF</sub>      | Switch OFF Leakage Current                                | nA=-0.5 V, 0.5 \<br>nB=GND, #1S=             | 1.8                                                        |                     | 0.5                               |      | μA   |      |
| I <sub>CCT</sub>      | Increase in I <sub>CC</sub> for each<br>Select Pin        | #1S=V <sub>CC</sub> , #2S=<br>#1S=1.2 V, #2S | 3.0                                                        |                     | 7                                 |      | μA   |      |
| Ron                   | Switch On Resistance                                      | I <sub>SW</sub> =100 mA, V <sub>S</sub>      | I <sub>SW</sub> =100 mA, V <sub>SW</sub> =-1.5 V to +1.5 V |                     |                                   | 0.40 | 0.80 | Ω    |
| $\Delta R_{ON}$       | Switch On Resistance<br>Difference, Channel to<br>Channel | $I_{SW}$ =100 mA, $V_{SW}$ =-1.5 V to +1.5 V |                                                            | 0                   |                                   | 0.01 |      | Ω    |
| R <sub>FLAT(ON)</sub> | On Resistance Flatness                                    | $I_{SW}$ =100 mA, $V_{S}$                    | w=-1.5 V to +1.5 V                                         | 0                   |                                   | 0.01 |      | Ω    |
| R <sub>PD</sub>       | V <sub>CC</sub> Pull-Down Resistance                      |                                              |                                                            | <0.2                |                                   | 5.0  |      | MΩ   |
| R <sub>PU</sub>       | Select Pull-Up Resistance                                 |                                              |                                                            | <0.2                |                                   | 3.0  |      | MΩ   |
|                       | Quiescent Quanty Quancet                                  | #1S=#2S=0 V                                  | Switch Isolated                                            | 1.5 – 3.0           |                                   | 80   |      |      |
| Icc                   | Quiescent Supply Current                                  | or Float                                     | Switch Conducting                                          | 0.2                 |                                   | 0.5  |      | μA   |
| VIH                   | Select Pin Input High Voltage                             |                                              |                                                            | 1.5 – 3.0           | 1.2                               |      |      | V    |
| VIL                   | Select Pin Input Low Voltage                              |                                              |                                                            | 1.5 – 3.0           |                                   |      | 0.55 | V    |

FSA553 — Dual SPST Depletion Mode Audio Switch with Negative Swing


| Unless othe       | erwise specified, typic                | al values are for T <sub>A</sub> =25°C                                                                               |                                                                                       |                     |                     |               |      |      |
|-------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|---------------------|---------------|------|------|
| Symbol            | Parameter                              | Condition                                                                                                            |                                                                                       |                     | T <sub>A</sub> =- 4 | 40°C to +85°C |      | Unit |
| Symbol            | Farameter                              | Condition                                                                                                            | V <sub>cc</sub> (V)                                                                   | Min.                | Тур.                | Max.          | Unit |      |
| <b>t</b>          | Turn-On Time V <sub>CC</sub> to Output | R <sub>L</sub> =32 Ω, C <sub>L</sub> =10 pF,                                                                         | V <sub>SW</sub> =1.5 V                                                                | $1.8 \rightarrow 0$ |                     | 450           |      | μs   |
| t <sub>ON</sub>   |                                        | #nS=Float, Figure 4                                                                                                  | V <sub>SW</sub> =-1.5 V                                                               | $1.8 \rightarrow 0$ |                     | 350           |      |      |
| +                 | Turn-Off Time V <sub>CC</sub>          | $R_L=32 \Omega, C_L=10 pF,$                                                                                          | V <sub>SW</sub> =1.5 V                                                                | $0 \rightarrow 1.8$ |                     | 250           |      | μs   |
| t <sub>OFF</sub>  | to Output                              | #nS=Float, Figure 4                                                                                                  | V <sub>SW</sub> =-1.5 V                                                               | $0 \rightarrow 1.8$ |                     | 150           |      |      |
| <b>t</b>          | Turn-On Time                           | $\begin{array}{l} R_L{=}32 \; \Omega, \; C_L{=}10 \; pF, \\ \#nS{=}V_{CC} \rightarrow 0, \; Figure \; 5 \end{array}$ | $V_{SW}=1.5 V$                                                                        | 1.8                 |                     | 350           |      | - µs |
| t <sub>ONS</sub>  | Select Pin                             |                                                                                                                      | V <sub>SW</sub> =-1.5 V                                                               | 1.8                 |                     | 300           |      |      |
| +                 | Turn-Off Time<br>Select Pin            | R <sub>L</sub> =32 Ω, C <sub>L</sub> =10 pF,                                                                         | $V_{SW}=1.5 V$                                                                        | 1.8                 |                     | 150           |      | μs   |
| t <sub>OFFS</sub> |                                        | #nS=0 $\rightarrow$ V <sub>CC</sub> , Figure 5                                                                       | V <sub>SW</sub> =-1.5 V                                                               | 1.8                 |                     | 50            |      |      |
| BW                | -3 dB Bandwidth                        | $V_{SW}$ = 600 m $V_{p-p}$ , R <sub>L</sub> =50 G                                                                    | V <sub>SW</sub> = 600 mV <sub>p-p</sub> , R <sub>L</sub> =50 Ω; C <sub>L</sub> =5 pF, |                     |                     | 200           |      | MHz  |
| THD+N             | Total Harmonic<br>Distortion + Noise   | V <sub>SW</sub> =1 V <sub>RMS</sub> , R <sub>L</sub> =32 Ω,<br>f=1 kHz                                               | Non A-<br>weighted                                                                    | 0                   |                     | -104          |      | dB   |
|                   |                                        |                                                                                                                      | A-weighted                                                                            |                     |                     | -107          |      | dB   |
| O <sub>IRR</sub>  | Port Off Isolation                     | V <sub>SW</sub> = 0.707 V <sub>RMS</sub> , R <sub>L</sub> =32<br>100 kHz, Figure 6                                   | $\Omega$ , f=20 Hz to                                                                 | 1.8                 | -70                 | -82           |      | dB   |
| V                 |                                        | $V_{SW}$ =1 $V_{RMS}$ , f=100 kHz, RL=32 $\Omega$                                                                    |                                                                                       | 4.0                 |                     | -75           |      |      |
| X <sub>TALK</sub> | Cross Talk                             | $V_{SW}=1 V_{RMS} f = 20 \text{ kHz}, F$                                                                             | R <sub>L</sub> =32 Ω                                                                  | 1.8                 |                     | -100          |      | dB   |
|                   |                                        | Switch Isolating, $V_{\text{Ripple}}=V_{\text{CC}}+300 \text{ mV}_{\text{p-p}}$ , $R_{\text{L}}=32 \Omega$           | 217Hz                                                                                 |                     |                     | -80           |      |      |
| PSRR              | Power Supply                           |                                                                                                                      | 1 kHz                                                                                 | 1.8                 |                     | -77           |      | dB   |
|                   | Rejection Ratio                        |                                                                                                                      | 20 kHz                                                                                |                     |                     | -73           |      |      |


# **AC Electrical Characteristics**

# Capacitance

Unless otherwise specified, typical values are for  $T_A=25^{\circ}C$ .

| Symbol           | Deremeter              | Condition                                                                   |                     | T <sub>A</sub> =- 40°C to +85°C |      |      | Unit |
|------------------|------------------------|-----------------------------------------------------------------------------|---------------------|---------------------------------|------|------|------|
|                  | Parameter              |                                                                             | V <sub>cc</sub> (V) | Min.                            | Тур. | Max. | Unit |
| Con              | On Capacitance         | $V_{SW}$ =400 m $V_{PP}$ , f=1 MHz,                                         | 0                   | 1                               | 21   |      | pF   |
| C <sub>OFF</sub> | Off Capacitance        | V <sub>SW</sub> =400 mV <sub>PP</sub> , f=1 MHz,<br>#1S=#2S=V <sub>CC</sub> | 1.8                 |                                 | 25   |      | pF   |
| CCTRL            | Select Pin Capacitance | #nS=400 mV <sub>PP</sub> , f=1 MHz,                                         | 1.8                 |                                 | 5    |      | pF   |





ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC