

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

June 2016

FSA3051 — High Performance SPDT Analog Switch with Over-Voltage Tolerance

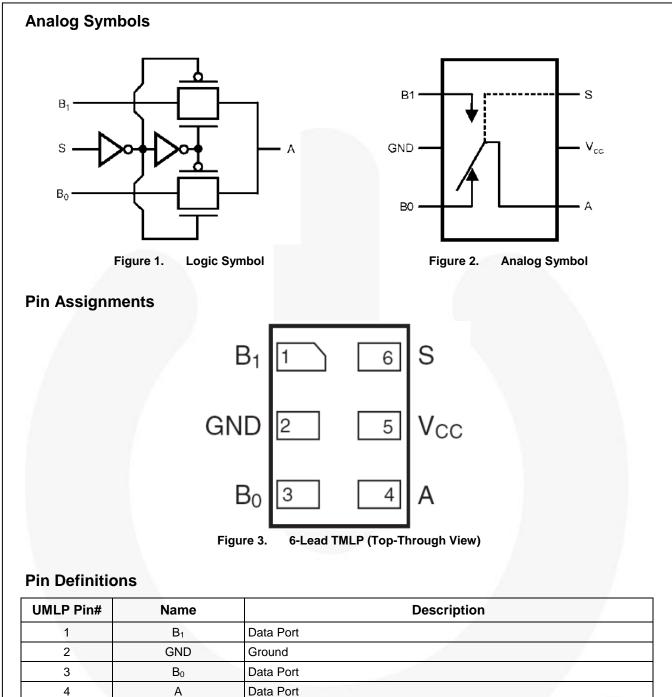
Features

- Low On Capacitance: 7.7 pF Typical
- Low On Resistance: 6 Ω Typical
- Low Power Consumption: 1 µA Maximum
 - 15 μA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN}=1.8 V, V_{CC}=5.5 V)
- Wide -3 db Bandwidth: 1.0 GHz
- Packaged in Ultra Small 6-Lead TMLP
- Broad V_{CC} Operating Range: 1.6 V to 5.5 V
- Over-Voltage Tolerance (OVT) on all Data Ports up to 6 V without External Components

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description


The FSA3051 is a 6 Ω , bi-directional, low-power, two-port, high-speed, Single Pole / Double Throw (SPDT) analog switch. It features an extremely low on capacitance (C_{ON}) of 7.7 pF and wide bandwidth of 1.0 GHz.

The FSA3051 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC} =0 V), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the select (S) pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package		
FSA3051TMX	NT	-40 to +85°C	6-Lead, Dual, Ultra-ultrathin Molded Leadless Package (TMLP), 1.0 x 1.0 mm. Top left unit orientation in carrier tape.		
FSA3051TMX_F147	NT	NT -40 to +85°C 6-Lead, Dual, Ultra-ultrathin Molded Leadless P (TMLP), 1.0 x 1.0 mm. Bottom left unit orientation tape.			

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2014 Fairchild Semiconductor Corporation FSA3051 • Rev. 1.8

5

6

Truth Table

S

LOW

HIGH

LOW ≤V_{IL}.

HIGH ≥V_{IH}.

Notes:

1. 2. Vcc

S

Function

B₀ connected to A

B₁ connected to A

Supply Voltage

Switch Select

FSA3051 — High Performance SPDT Analog Switch with Over Voltage Tolerance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit		
Vcc	Supply Voltage		-0.5	6.0	V	
V _{CNTRL}	DC Input Voltage ⁽³⁾		-0.5	V _{cc}	V	
Vsw	DC Switch I/O Voltage ⁽³⁾		-0.50	6.00	V	
I _{IK}	DC Input Diode Current	-50		mA		
I _{OUT}	DC Output Current		50	mA		
T _{STG}	Storage Temperature	-65	+150	°C		
MSL	Moisture Sensitivity Level (JEDEC J-STD-020		1	Level		
		All Pins	2			
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	I/O to GND	2			
E2D		Power to GND	2		kV	
	Charged Device Model, JEDEC: JESD22-C101					

Note:

3. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	1.6	5.5	V
V _{CNTRL}	Control Input Voltage (S) ⁽⁴⁾	0	Vcc	V
V _{SW}	Switch I/O Voltage	-0.5	5.5	V
T _A	Operating Temperature	-40	+85	°C

Note:

4. The control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

All typical value are at $T_A=25^{\circ}C$ unless otherwise specified.

0	Demonstra			T _A =- 40°C to +85°C				
Symbol	Parameter	Condition	V _{cc} (V)	Min.	Тур.	Max.	Unit	
VIK	Clamp Diode Voltage	I _{IN} =-18 mA	3.0			-1.2	V	
M	lanut) (altana linh		1.8 to 4.3	1.3			V	
V _{IH}	Input Voltage High		4.3 to 5.5	1.7			V	
N/	Input Voltage Low		1.8 to 4.3			0.5		
V _{IL}	Input Voltage Low		4.3 to 5.5			0.7	V	
			1.8	-1		1	μA	
I _{IN}	Control Input Leakage	V _{CNTRL} =0 to V _{CC}	5.5	-1		1		
		$V_{SW}=0$ V to V_{CC}	1.8	-2		2		
l _{oz}	Off State Leakage	$V_{SW}=0$ V to 3.6 V	5.5	-2		2	μA	
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	$V_{SW}{=}0$ V to 4.3 V, $V_{CC}{=}0$ V Figure 5	0	-2		2	μA	
	(5)	V _{SW} =0.4 V, I _{ON} =-8 mA Figure 4	3.0		4	10	6	
R _{ON}	Switch On Resistance ⁽⁵⁾	V _{SW} =1.8 V, I _{ON} =-8 mA Figure 4	3.0		6	10	Ω	
_	Desite to Desistence (5)	V _{SW} =0.4 V, I _{ON} =-8 mA Figure 4	1.8		6	10	0	
R _{ON}	Switch On Resistance ⁽⁵⁾	V _{SW} =1.8 V, I _{ON} =-8 mA Figure 4	1.8		14	25	Ω	
	On Resistance Match	V _{SW} =0.4 V, I _{ON} = -8 mA	3.0		35		- mΩ	
ΔR _{ON}	Between Channels ^(5,6)		1.8		40			
Icc	Quiescent Supply Current	V _{CNTRL} =0 or V _{CC} , I _{OUT} =0	5.5			1	μA	
		V _{CNTRL} =1.8 V	3.0			10		
Ісст	Increase in I _{CC} Current per Control Voltage and V _{CC}	V _{CNTRL} =2.6 V	5.5			10	μA	
	ge and too	V _{CNTRL} =1.8 V	5.5			15		

Notes:

5. Measured by the voltage drop between A and Bn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or Bn ports).

6. $\Delta R_{ON} = R_{ON}$ maximum - R_{ON} minimum measured at identical V_{CC}, temperature, and voltage levels.

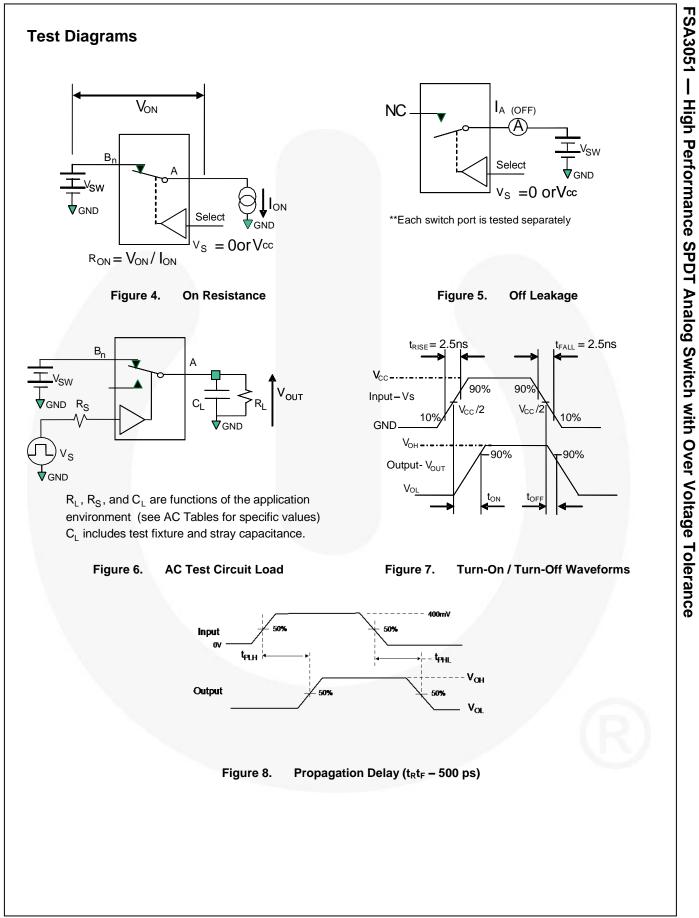
7. Guaranteed by characterization.

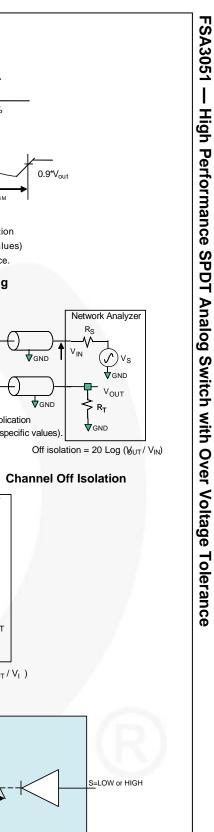
AC Electrical Characteristics⁽⁸⁾

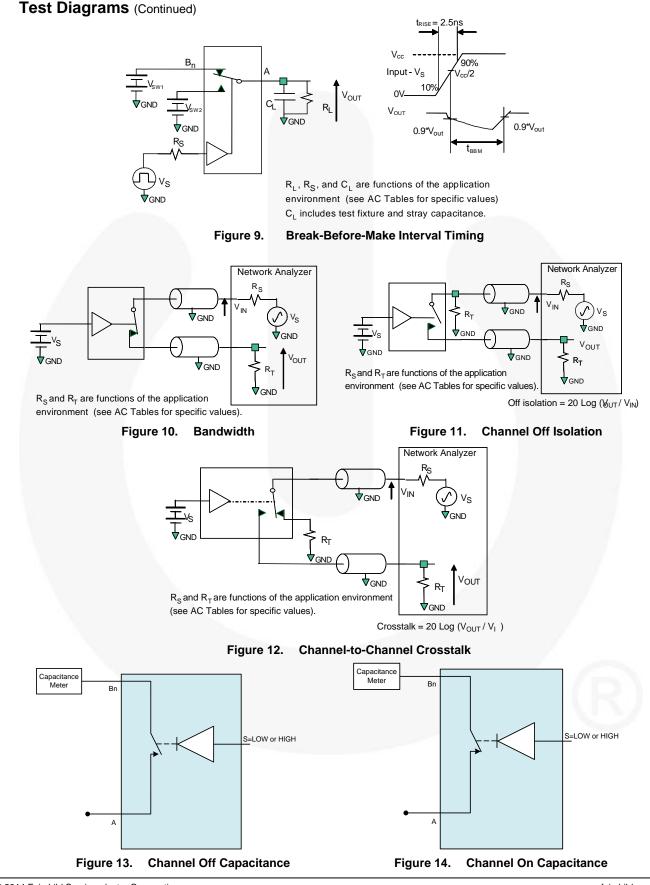
All typical value are for V_{CC} =3.3 V at T_A=25°C unless otherwise specified.

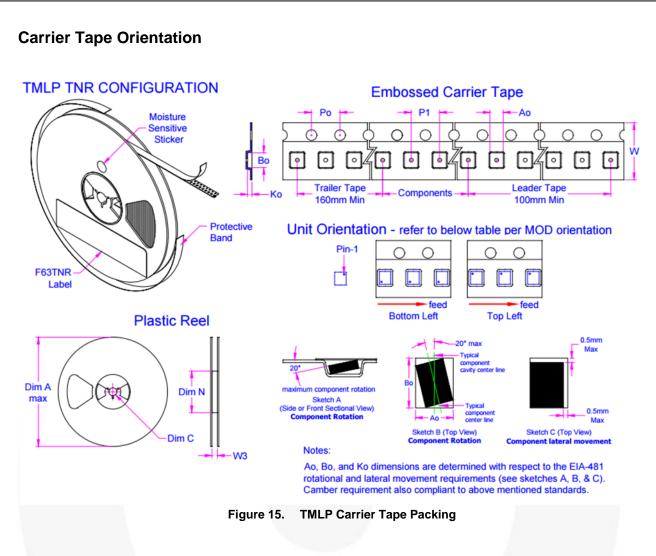
Cumhal	Devementer	Condition	V 00	T _A =- 40°C to +85°C			11
Symbol	Parameter	Condition	V _{cc} (V)	Min.	Тур.	Max.	Unit
+	Turn-On Time	R _L =50 Ω, C _L =5 pF, V _{SW} =0.8 V,	3.0 to 3.6		34		20
t _{ON}	S to Output	Figure 6, Figure 7	1.8		110		ns
t	Turn-Off Time	R _L =50 Ω, C _L =5 pF, V _{SW} =0.8 V,	3.0 to 3.6		23		
t _{OFF}	S to Output	Figure 6, Figure 7	1.8		50		ns
+	Propagation Dolay	C∟=5 pF, R∟=50 Ω, Figure 6, Figure 8	3.3		0.2		ns
t _{PD}	Propagation Delay		1.8		0.3		
	Break-Before-Make	R _L =50 Ω, C _L =5 pF,	3.0 to 3.6	15		50	
t _{BBM} Break-Befor	Dreak-Delore-make	$V_{SW1}=V_{SW2}=0.8$ V, Figure 9	1.8	0		100	ns
0	Off Isolation		1.8		-20		dB
O _{IRR}	On Isolation	R _L =50 Ω, f=240 MHz, Figure 11	3.0 to 3.6		-23		
Vtalk	Crasstall		1.8		-18		dB
Xtalk Cros	Crosstalk	R _L =50 Ω, f=240 MHz, Figure 12	3.0 to 3.6		-23		dB
BW -		R _L =50 Ω, C _L =0 pF, V _{SW} =0.4 V	1.8		810		MHz
	-3 db Bandwidth	$R_L=50 \Omega$, $C_L=0 pF$, Figure 10	0.04-0.0		1		GHz
		$R_L=50 \Omega$, $C_L=5 pF$, Figure 10	3.0 to 3.6		750		MHz

Note:

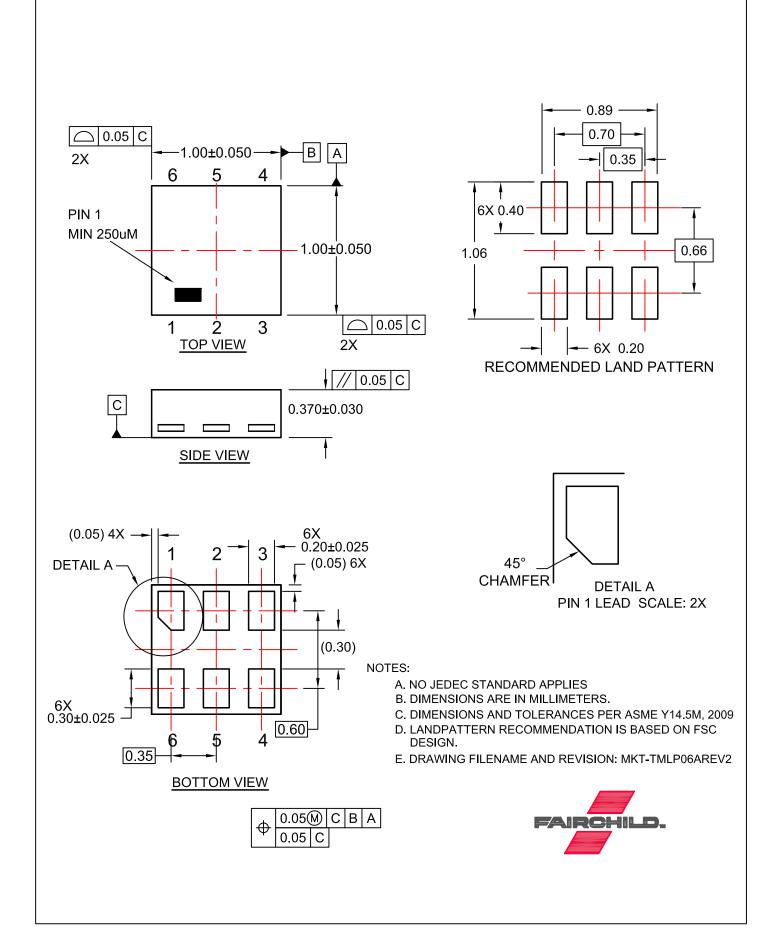

8. Guaranteed by characterization. Not production tested.


Capacitance ⁽⁹⁾


Symbol	_	Condition	V _{cc} (V)	T _A =- 40°C to +85°C			
	Parameter			Min.	Тур.	Max.	Unit
C _{IN}	Control Pin Input Capacitance		0		1.5		
0	A Port On Capacitance	f=1 MHz,	3.0		7.7		
		f=240 MHz, Figure 14	3.3		7.7		
CON		f=1 MHz,	1.8		10.0		_
		f=240 MHz, Figure 14	1.8		5.0		pF
C _{OFF}	Bn Port Off Capacitance	f=1 MHz	3.0		3.3	1	
		f=240 MHz, Figure 13	3.3		3.3	11	
		f=1 MHz	1.8		5.0		< J
		f=240 MHz, Figure 13	1.8		4.0		-


Note:

9. Not production tested.



Part Number	Unit Orientation
FSA3051TMX	Top Left
FSA3051TMX_F147	Bottom Left

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC