
– 1 –

Introduction
The HP3 is the third generation of the popular HP Series transmitters
and receivers. All of the HP3 Series modules continue to offer eight
parallel selectable channels, but versions are also available that add serial
selection of 100 channels. This application note describes how to send
the serial data to the HP3 in order to select the desired channel. It does
not detail a final product, but should provide a starting point for
development.

This application note details the process of sending a channel number
to the HP3 modules using a serial link from a microprocessor. The code
for this is shown and then it is used in an example. The software in the
example will load the HP3 with channel 0 and then increment the channel
number by one each time a button is pressed.

Sending Data to the HP3
The timing for serial loading the HP3 is shown in Figure 1.

Data is sent synchronously with the LSB sent first. The packet consists of
a start period (T1), eight data bits, and a stop period (T4). Data is sent on
the Data Line, while being clocked by the Clock Line. When the Data Line
and the Clock Line are both HIGH there will be no loading. As soon as the
Data Line goes LOW while the Clock Line is HIGH (T1), loading begins.
When the Clock Line goes LOW with the Data Line (T2), clocking begins.
Data is then sent out on the Data Line, after which the Clock Line is then

Serial Load Techniques for the HP3 Series

Application Note AN-00155

Revised 8/20/12

Figure 1: Serial Data Timing Table

Variable Data

Note 3

Note 2

Note 1
1 2 3 4 5 6 7 8

T1
25µs

T2
 5µs

T3
8µs

T4
5µs

Data

Clock
T0

1ms

1) Loading begins when clock line is high
 and data line is taken low. Overall load-time is
 specified from this point.
2) Insure that edge is fully risen prior to
 high clock transition.
3) Both lines high - time to latch

(T0) Minimum time between packets or prior to data startup 1mS min.

(T1) Data-LO/Clock-HI to Data-LO/Clock-LO 25µS min.

(T2) Clock-LO to Clock-HI 5µS min.

(T3) Clock-HI to Clock-LO 8µS min.

(T4) Data-HI/Clock-HI 5µS min.

Total Packet Time 157µS min.

– 2 – Application Note AN-00155

pulsed (T3). Data is recorded by the rising edge of the clock. Clocking
continues for eight bits, then the Clock and Data lines both go HIGH
(T4). After the minimum required latch time (5µS), the packet is latched.
The HP3 requires 1mS between packets (T0), so after this time, the next
packet can be started. The total minimum time required for transmission
is 157µS.

The Example
For this example a PIC16F630 processor from Microchip was used. Other
PICs could be used with minor changes to the code. Only the three Port
A pins were used and all of the other data I/O pins were tied to ground.
The schematic is shown in Figure 2.

The PIC was configured as follows:

I/O Lines Used:

The HP3 is put into serial mode when the mode pin (pin 15) is left open or
held high. In this condition CS1(pin 11) becomes the serial clock line and
CS2 (pin 12) becomes the serial data line.

Pin 12 of the PIC is connected to a button that will trigger the interrupt.

Figure 2: Serial Load Example Schematic

A
N

T
E

N
N

A
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

N
/C

C
S

O
C

S
1

/ S
S

 C
L

O
C

K
C

S
2

/ S
S

 D
A

T
A

P
O

W
E

R
 D

O
W

N
R

S
S

I
G

N
D

/M
O

D
E

V
C

C
A

N
A

L
O

G

D
A

T
A

 O
U

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

RXM-900-HP3

VDD

RA5

RA4

RA3

RC5

RC4

RC3

VSS

RA0

RA1

RA2

RC0

RC1

RC2

1

PIC16F630

All Protection OFF

Brown-Out Detection OFF

Watch-Dog Timer OFF

Power-Up Timer OFF

MCLR Internal

Oscillator Internal

Port A, line 0 = Data Line (Output)

Port A, line 1 = Clock Line (Output)

Port A, line 2 = Ext. Interrupt (Input)

– 3 – Application Note AN-00155

The Program
Once the PIC is initialized in code, it will go to sleep until a button press
causes an interrupt. At this point it will wake-up, load the first channel
value of channel 0 into the module, and then return to sleep. Every time
the PIC is interrupted, the channel value being loaded is incremented by
one until channel 103 is reached, at which point the channel selection
will start over at channel 0.

Since channel 100 is the maximum channel, loading channels 101, 102,
and 103 will cause an error. If an error occurs, the HP3 defaults to
channel 0. Loading these channels ensures that the default Load Error is
working by switching to channel 0. This is a convenient debugging tool
since it will verify that there was serial port activity, but a problem with the
transmission.

Errors are caused when data is corrupted during transmission, or when a
channel value greater than the HP3 allows is sent into the module.

The Code
The code for loading a channel into the HP3 and for the example
described above is listed on the following pages.

– 4 –

title “PIC16F630 Synchronous-Serial-Load program”

 list p=16f630,f=inhx32

 #include <p16f630.inc>

 errorlevel -302 ;Keeps bank-select errors from showing on builds

 __CONFIG _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_OFF &

_PWRTE_OFF & _INTRC_OSC_NOCLKOUT

;PORT ALLOCATIONS

;***

;PORTA

data_ln = d’0’

clock_ln = d’1’

interrupt = d’2’

;TEMPORARY REGISTER EQUATES

;***

ch_num_temp = 40h ;Storage register for temp. channel

ch_num = 41h ;Stores selected channel

count1 = 42h ;General purpose temp counter register

count2 = 43h ;General purpose temp counter register

temp_count = 44h ;General purpose temp counter register

;START OF PROGRAM ROUTINES

;***

 ;Reset vector for start-up and BOD resets

 org 0x000

 goto Start

 ;Interrupt vector contains interrupt routine.

 org 0x004

 bcf intcon,gie

 goto send_serial

Start ;configure internal oscillator

 bsf status,rp0 ;Set file register bank to 1

 call 0x3FF ;Retrieve factory calibration value

 movwf osccal ;Update register with factory calibr.

 ;initialize control registers

 movlw b’00000000’ ;Sets portC to all outputs

 movwf trisC

 movlw b’00000100’ ;Sets portA to all outputs except RA2

 movwf trisA

 movlw b’01000000’ ;Bit-7 = 0 to enable portA pull-up resistors, &

The Code for Loading a Channel
The code listed below will load a channel number into the HP3 module.
The channel number is loaded into a register by the user’s software. This
function will then send the value in that register to the HP3.

Application Note AN-00155

– 5 –

 movwf option_reg ;---bit-6 = 1 to set RA2/Int on rising edge

 movlw b’00000100’ ;Enables weak pull-up resistor on RA2 only

 movwf wpua

 bcf status,rp0 ;Set file register bank to 0

 movlw 07h ;Sets up comparitor to digital outputs

 movwf cmcon

 ;Initialize values and wait to send data

 clrf portA

 clrf portC

 clrf ch_num_temp

 clrf intcon

 bsf portA,data_ln

 bsf portA,clock_ln

; You must first fill “ch_num_temp” with an 8-bit value

; movlw d’?’

; movwf ch_num_temp

send_serial

 movf ch_num_temp,w ;For testing only

 movwf ch_num ;Register for rotating bits

 movlw d’8’ ;Sets temporary conter for 8 bits

 movwf temp_count

 bcf portA,data_ln ;Data LOW and Clock HIGH = packet ready (T1)

 bsf portA,clock_ln

 call start_delay ;Time delay for packet ready (T1)

 bcf portA,clock_ln ;Clock goes LOW for start bit (T2)

 call data_delay

bit_move btfsc ch_num,0 ;Is bit to be sent a ‘1’ or ‘0’

 bsf portA,data_ln ;If ‘1’, then set modules data pin to ‘1’

 call data_delay

 rrf ch_num,f ;Moves in next bit. Loads LSB first

 bsf portA,clock_ln ;Set modules clock pin ‘1’: (rising edge)

 call clock_delay ;Settling delay: may be longer or shorter (T3)

 bcf portA,clock_ln ;Clears modules clock pin for clock pulse

 bcf portA,data_ln ;Initialize modules data pin to Low

 decfsz temp_count,f ;Have all 8 bits been sent?

 goto bit_move ;No? Then continue sending

done bsf portA,data_ln ;Yes? Then time to latch packet

 bsf portA,clock_ln ;Both set = Data Latched (T4)

wait btfsc portA,interrupt ;Wait until button is released

 goto wait

sleep_loop

 movlw b’10010000’ ;Sets GIE & RA2/Int, and clears INTF

 movwf intcon

 sleep ;Takes 2uS to wake up

 nop ;Allows interrupt vector to be used (0x004)

Application Note AN-00155

– 6 –

;---

;********Delay = 47uS********

start_delay

 clrf count1

 movlw 05h ;Change this value to adjust delay time

 movwf count1

loop_1 decfsz count1,f

 goto loop_1

 return

;---

;********Delay = 9uS*********

clock_delay

 clrf count2

 movlw 01h ;Change this value to adjust delay time

 movwf count2

loop_3 decfsz count2,f

 goto loop_3

 return

;---

;********Delay = 9uS**********

data_delay

 clrf count2

 movlw 01h ;Change this value to adjust delay time

 movwf count2

loop_2 decfsz count2,f

 goto loop_2

 return

;--

 end

Code for the Example
The code below is the code for the example described earlier. Each time
a button is pressed, the PIC will increment the channel number by one,
starting with channel 0 and going to channel 103.

title “PIC16F630 Synchronous-Serial-Load program”

list p=16f630,f=inhx32

#include <p16f630.inc>

errorlevel -302 ;Keeps bank-select errors from showing on builds

__CONFIG _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_OFF & _PWRTE_OFF &

_INTRC_OSC_NOCLKOUT

;PORT ALLOCATIONS

;***

;PORTA

data_ln = d’0’

clock_ln = d’1’

interrupt = d’2’

Application Note AN-00155

– 7 –

;TEMPORARY REGISTER EQUATES

;***

ch_num_temp = 40h ;Storage register for temp. channel

ch_num = 41h ;Stores selected channel

count1 = 42h ;General purpose temp counter register

count2 = 43h ;General purpose temp counter register

temp_count = 44h ;General purpose temp counter register

;START OF PROGRAM ROUTINES

;***

; Timing: (35uS) Start-Up to Send Data Packet

; (23uS) T-1

; (04uS) T-2

; (08uS) T-3

; (05uS) T-4

; (11uS) Wake-Up to Send Data Packet

 ;Reset vector for start-up and BOD resets

 org 0x000

 goto Start

 ;Interrupt vector contains interrupt routine.

 org 0x004

 bcf intcon,gie

 goto send_serial

Start ;configure internal oscillator

 bsf status,rp0 ;Set file register bank to 1

 call 0x3FF ;Retrieve factory calibration value

 movwf osccal ;Update register with factory calibr.

 ;initialize control registers

 bsf pcon,0 ;This resets the Brown-Out-Detect flag

 bsf pcon,1 ;This resets the Power-Up-Timer flag

 movlw b’00000000’ ;Sets portC to all outputs

 movwf trisC

 movlw b’00000100’ ;Sets portA to all outputs except RA2

 movwf trisA

 movlw b’01000000’ ;Bit-7 = 0 to enable portA pull-up resistors, &

 movwf option_reg ;---bit-6 = 1 to set RA2/Int on rising edge

 movlw b’00000100’ ;Enables weak pull-up resistor on RA2 only

 movwf wpua

 bcf status,rp0 ;Set file register bank to 0

 movlw 07h ;Sets up comparitor to digital outputs

 movwf cmcon

 ;Initialize values and wait to send data

 clrf portA

 clrf portC

Application Note AN-00155

– 8 –

 clrf ch_num_temp

 clrf intcon

 bsf portA,data_ln

 bsf portA,clock_ln

 goto sleep_loop

send_serial

 movf ch_num_temp,w ;For testing only

 movwf ch_num

 movlw d’8’ ;Sets temporary conter for 8 bits

 movwf temp_count

 bcf portA,data_ln ;Data LOW and Clock HIGH = packet ready (T1)

 bsf portA,clock_ln

 call start_delay ;Time delay for packet ready (T1)

 bcf portA,clock_ln ;Clock goes LOW for start bit (T2)

bit_move btfsc ch_num,0 ;Is bit to be sent a ‘1’ or ‘0’

 bsf portA,data_ln ;If ‘1’, then set modules data pin to ‘1’

rrf ch_num,f ;Moves in next bit. Loads LSB first

bsf portA, clock_ln ;Set modules clock pin ‘1’: (rising edge)

 call clock_delay ;Settling delay: may be longer or shorter (T3)

 bcf portA,clock_ln ;Clears modules clock pin for clock pulse

 bcf portA,data_ln ;Initialize modules data pin to Low

 decfsz temp_count,f ;Have all 8 bits been sent?

 goto bit_move ;No? Then continue sending

done bsf portA,data_ln ;Yes? Then time to latch packet

 bsf portA,clock_ln ;Both set = Data Latched (T4)

 incf ch_num_temp,f ;Increment channel for next send

 movlw d’104’ ;Going to CH.104 allows 3 defaults to CH.0

 subwf ch_num_temp,w ;Subtract the current ch. number value from the max

 btfsc status,2 ;---possible channels to see if it is time to start

 clrf ch_num_temp ;---over with channel-0

wait btfsc portA,interrupt ;Wait until button is released

 goto wait

 movlw 0FFh ;200mS debounce delay for button press

 movwf count2 ;Loads count_2 with b’1111 1111’

Cnt2 movlw 0FFh

 movwf count1 ;Loads count_1 with b’1111 1111’

Cnt1 decfsz count1,f ;Stay here until count1 is zero

 goto Cnt1

 decfsz count2,f ;Count_1 is empty, so decrement count_2

 goto Cnt2

sleep_loop

 movlw b’10010000’ ;Sets GIE & RA2/Int, and clears INTF

 movwf intcon

 sleep ;Takes 2uS to wake up

 nop ;Allows so interrupt vector to be used

;---

start_delay

 clrf count1

 movlw 05h

 movwf count1

Application Note AN-00155

– 9 –

loop_1 decfsz count1,f

 goto loop_1

 return

;---

clock_delay

 clrf count2

 movlw 01h

 movwf count2

 return

;---

 end

Copyright © 2012 Linx Technologies

159 Ort Lane, Merlin, OR, US 97532
Phone: +1 541 471 6256
Fax: +1 541 471 6251
www.linxtechnologies.com

Application Note AN-00155

