Connecting to the Serial Interface on the
MT Series Transcoders Lo X

Application Note AN-00157 INX

TECHNOLOGIES

Introduction

The MT Series transcoder is a remote control encoder and decoder

in a single package. It is designed for bidirectional remote control
applications such as Remote Keyless Entry (RKE) with confirmation.
However, the MT Series is capable of much more thanks to a Serial
Interface Engine (SIE). While basic operation can be accomplished easily
with the hardware control lines, the SIE enables full software control
without using any of the hardware control lines and also enables
several advanced features. This application note provides details on the
advanced features and serial command set of the MT. Sample code is
provided as an example and without any warranty.

Serial Output

Upon reception of every valid packet, the transcoder outputs a serial
data stream consisting of a start byte, TX ID byte, status line state byte,
custom data byte and a stop byte. The start byte is always 0x00 and the
stop byte is always OxFF.

The bytes are output on the SER_IO line asynchronously, Least Significant
Bit (LSB) first with one start bit, one stop bit, and no parity at the baud
rate determined by the SEL_BAUD line. The line follows convention and

is high when no data is being output (note that this line becomes an input
when the transcoder goes to sleep).

The TX ID byte is a number that identifies which learned transcoder

sent the transmission. The number normally corresponds to the order in
which the transcoder was learned, so the first transcoder learned will get
number ‘1’ (binary 0000 0001), the second will get number ‘2’ (binary
0000 0010), and so on. An exception arises when the memory is full, in
which case the memory wraps around and the first numbers are
overwritten, and if the SIE is used to write an address to a specific
location.

SER_IO 00| TXID |STATUS |CUSTOM] FF

start| bO | b1 | b2 | b3 | b4 | b5 | b6 | b7 |stop|start] bO | b1 | b2 | b3 | b4 | b5 | b6 | b7 |stop

Figure 1: MT Series Transcoder Serial Output

-1- Revised 8/20/12



The status line byte reflects the states of the status lines, ‘1’ for on and
‘0’ for off. This represents the current logic states of the outputs, not the
command that was received, so that the states of latched lines

are correctly represented. Line DO corresponds to bit b0 in the byte, D1
corresponds to b1, and so forth. This allows applications that use an
embedded microcontroller to read the transmitted commands without
having to monitor eight hardware lines.

The custom data byte is a 1-byte value that is programmed on the
transmitting side by the user through the SIE. If the option is disabled and
no custom data is sent, this byte will be all high (binary 1111 1111).

Appendix A has sample code to read the bytes with a microcontroller and
with a PC using the USB module interface as described in the Hardware
Interface section.

Serial Interface Engine (SIE)

One of the most powerful features of the MT Series is its serial interface
engine. The SIE allows the user to monitor and control the transcoder
configuration settings through an automated system rather than manually
through the hardware lines. While serial programming is not required for
basic operation, it enables the advanced features offered by the MT, such
as Targeted Device Addressing and Custom Data transmissions.

The SIE consists of twenty commands grouped into eight categories.
The transcoder outputs an acknowledgement once it has received each
command, and then a response of up to four additional bytes if required
by the command. We will start with a description of each command and
the features or options associated with them.

This command reads and writes the transcoder’s local 24-bit address
and status line input/output configuration. This allows the option for the
user to program all transcoders with the same address and status line
configuration, or increment the address for each transcoder to utilize the
full range of addresses.

The Read Local Settings command returns three bytes of the local
address and one byte representing the input/output states of the status
lines. Line DO corresponds to bit b0 in the 1/O state byte, D1 corresponds
to b1, and so forth. A ‘0’ means that the line represented by that bit is set
to an output, a ‘1’ means it is an input.

The Write Local Settings command allows the user to write a specific
3-byte address and 1-byte status line configuration to the transcoder.

—o_ Application Note AN-00157 Llnx



NEXCUSErID e
This command reads and writes the next available location that will be
given to the next user that is manually learned by the transcoder. The
Read Next User ID command returns the 1-byte ID that will be given to
the next transcoder. The Write Next User ID command allows the user to
assign the ID that will be given to the next transcoder that is learned. The
transcoder will increment the ID from that point, overwriting the following
IDs. For example, if there are 20 users learned and the Write Next User ID
command is used to set the next user to 15, then then next transcoder
learned manually will get ID 15. The one after that will get ID 16,
overwriting the user that was already there.

This command reads and writes the address and Control Permissions of
a specific device that has been learned in memory. This command can be
used to change or remove a device that has been lost or stolen without
having to re-learn all of the other devices in the system.

The Read Specific User command returns the three address bytes and
one byte representing the status line permissions of the ID sent in the
command. The Write Specific User command writes the address

and permissions to the ID specified in the command. To remove an
existing user, write OxFF into the address and status line values. OxFF is
the default value for an empty ID, so it should not be used as a learned
user.

Target Address
These commands enable, disable, read, and write the 24-bit address of
the specific transcoder to which the transmission will be directed. Al
transcoders within range will get the transmission, but only the device

with the address that matches the target address will take action and
respond. This option requires that the addresses of all necessary system
components are known in advance. There are many different ways of

doing this, so it is up to the designer to determine the best method for

their application.

The Read Device Targeting EN command returns the current state of

the option, (‘0’ is disabled, ‘1’ is enabled, disabled by default). The Write
Device Targeting EN command allows the user to change the state of

the option. The Read Target Address returns the address that is currently
targeted. The Write Target Address allows the user to write the address of
the device to be targeted.

Custom Data Value . . . .
These commands enable, disable, read, and write a custom data value
that is sent with every packet. Care must be used if OXFF (binary 1111
1111) is used as a legitimate value since this is the default output of the
serial line when this option is disabled. The Read Custom Data EN
command returns the current state of the option (‘0’ is disabled, ‘1’ is

enabled, disabled by default). The Write Custom Data EN command

_3- Application Note AN-00157 Llnx



allows the user to change the state of the option. The Read Custom

Data Value returns the byte that is currently in memory to be sent in the
transmission. The Write Custom Data Value allows the user to write a new
value to the transcoder.

Latch Mask e
The MT Series has the ability to make each status line that is set as an
output be either latched or momentary. Momentary means that the line

will only be high for as long as a valid signal is received. Once the signal

stops and the transcoder times out, the lines are pulled low.

Latched means the transcoder will pull a data line high upon reception of
a valid signal and hold it high until the signal is received a second time,
at which point the transcoder will pull it low. The transcoder must see a
break and time out between valid transmissions before it will toggle the
outputs.

The Read Latch Mask Value command returns a byte corresponding to
the current setting of each line, ‘0’ for momentary or ‘1’ for latched (bit bO
in the byte corresponds to line DO and so forth). The Write Latch Mask
command allows the user to write a byte to the transcoder to individually
set the status lines as latched or momentary.

Status Value
This command reads the current state of the status line outputs and

writes the state of the status line inputs for automatic transmission of a
specified number of packets. The Read Status Outputs returns a byte that
corresponds to the state of the status line outputs. The Write Status Line
Inputs command writes a byte that corresponds to the desired state of

the inputs and a byte that represents the number of packets to send. The
transcoder will automatically send the specified number of packets as

soon as the command is received.

Confirmation
This command enables and disables the automatic confirmation.

The confirmation is enabled by default, but some users may want to
disable it to reduce the chance for interference in systems with multiple

transcoders.

The Read Confirmation EN command returns the current state of the
option (‘0" is disabled, ‘1’ is enabled, disabled by default). The Write
Confirmation EN command allows the user to change the state of the
option.

—4_ Application Note AN-00157 Llnx



Serial Programming

The data structure sent into and coming out of the transcoder follows
standard serial communication convention. Each byte is sent LSB first
with one start bit, one stop bit, and no parity at the baud rate determined
by the SEL_BAUD line. After the last command byte is received, there
will be a 5mS pause while the transcoder processes the command, then
it outputs the acknowledgement and a response if appropriate. Figure 2
shows the order and timing of the serial interface.

CRT_LRN (INPUT) | |

MODE_IND (OUTPUT) | |

——— SER_IO=INPUT | SER_IO = OUTPUT
}7 Command 4{ ‘ }7 Acknowledge/Response 4{

SER_IO (INPUT/OUTPUT) |00|C|C|C|C|C|C|FF|1ms 4ms |00|A|A|A|H|H|H|H|FF|
~ - T ==

|5tarl| bo |m |b2 | b3 | b4 | bs |b6 |b7 |slop|starl| b0 |b1 |b2 |b3 |b4 |b5 |b6 |b? Islop

Figure 2: MT Series Transcoder Serial Programming

The MODE_IND line goes high for as long as the SER_IO line is an output,
allowing it to be used with RS-232 style handshaking.

Appendix B has sample code for writing commands to the transcoder
and receiving the acknowledgement and response.

Hardware Interface

The serial interface on the MT Series can be connected to any device
capable of serial communication, including microcontrollers, RS-232
drivers, and computers. Figure 3 gives an example of connecting the MT
to the Linx QS Series USB module for connection to a computer.

USB Type B
Connector
: vce
GND | GND —
omTIl 1 5{useop RIR 16 ] wle
o oaT-P2 2 7]USBDM DCD[3 15 .
z 5 s |||-2¢]aND DSAX 14 2 Q
= = 4 5|vee DATA_IN[Z 13 3 : x ole
ﬂ“ 5 5|SUSP_IND  DATA OUT([t 12 P .
= 6 5] RX_IND F\Tsé 11 [Hene NG
7 I TX_IND cTs[ 10 =
8 3]485_TX DTR[g 9 MAX4544
SDM-USB-QS
vce
g 20
I——vcc GND |
2 pe xrm
2y, D5 g
4 | GRTALAN pa 17
—5 'EnG_SEL LATCH |16
6 |seR_I0 SEL_BAUD 12
7 | GONFIRM MODE_IND |14
—2 |TR_PDN D2 |12
_8 |TR_SEL D112
19 1R _paTA po 11
LICAL-TRC-MT

Figure 3: MT Series Transcoder Serial Interface to a PC

_5_ Application Note AN-00157 Llnx



The USB module follows the RS232 convention of using separate lines
for data input and data output while the transcoder has a single line for
all data. This requires a switch to alternatively connect the transcoder’s
SER_IO line to the data lines on the module.

The RTS line is used to throw the switch as well as to activate the CRT/
LRN line placing the transcoder into Serial Mode. This gives the PC the
ability to control when communication is initiated.

The MODE_IND line will go high when the transcoder is prepared to
send data, so the CTS line on the USB module is used to monitor the
MODE_IND line. This allows the computer to know when to throw the
switch and look for data from the transcoder.

One point of note is that voltage translation may be necessary if the 5V
USB module is used to communicate with a transcoder operating at 3V.
There are many components and methods for implementing level shifting,
S0 it is up to the designer to determine the best solution for the product.

Application Note AN-00157 L

INX



Appendix

A

This software example is provided as a courtesy in “as is” condition. Linx
Technologies makes no guarantee, representation, or warranty, whether
express, implied, or statutory, regarding the suitability of the software for
use in a specific application. The company shall not, in any circumstanc-
es, be liable for special, incidental, or consequential damages, for any

reason whatsoever.

Visual Basic Code .,

This Studio Visual Basic code uses the Linx SDM-USB-QS USB module
to read the serial output of the transcoder with a PC.

‘Setup the QS module for use.

' Open the device

Call Open_USB Device By Description (“LINX SDM-USB-QS-S”)

' Reset device
Call Reset USB Device()
' Set baud rate to 9600

Call set USB Device Baud Rate (FT_BAUD 9600)

‘' 8 data bits, 1 stop bit,

‘' no flow control

Call sSet USB Device Flow_Control (FT_FLOW NONE,
25mS write timeout

‘' 25mS read timeout,

Call Set USB Device Timeouts (25,

' RX-buffer size

Call Set USB Device Parameters (9,
' Latency ranges 2-255mS and defaults to 16mS
Call set USB Device Latency Timer (2)

‘Purge the RX buffer
Call Purge USB Device RxBfr ()
‘Purge the TX buffer
Call Purge USB Device TxBfr ()

no parity
Call Set USB Device Data Characteristics (FT DATA BITS 8,

25)
9 bytes and TX-buffer size
8)

‘Clear SER_IO & CRT_LRN pin for RXD

Call Set USB Device RTS()

Dim n As Integer 0

Dim TX ID As Byte 0

Dim StatusOutputs As Byte =
Dim CustomData As Byte 0
Dim DataReceived As Boolean

0

‘If the Mode Ind is set (HIGH),

‘Output Low

As Boolean

False

0, 0)

‘Function for monitoring SER IO data during MT-Receive-Mode.
Public Function RxSerialOutput ()

receive data

FT STOP BITS 1,

8 bytes for max packets size

If ((Get USB Device Modem Status() And FT MODEM STATUS CTS) <> FT MODEM STATUS CTS)
‘Perform Read on expected 5-bytes
n = Read Data Bytes(5)
‘Make sure all 5 were received
If (n = 5) Then
‘Test the Start and Stop bytes
If (FT In Buffer(0) = &HO) And (FT In Buffer(4) = &HFF) Then
‘Make sure expected UserID is in range
If (FT In Buffer(l) > 0) And (FT In Buffer(l) < 61) Then
‘Assign RX values
TX ID = FT_In Buffer (1)
StatusOutputs = FT_In Buffer(2)
Custombata FT _In_Buffer (3)
DataReceived = True
End If
End If
End If
‘Clear RX buffer for next receive
Call Purge USB Device RxBfr ()
. Application Note AN-00157 L

FT PARITY NONE)

Then

INX



‘Return true if data was received
RxSerialOutput = DataReceived

End If

End Function

Microcontroller Code

This C code can be used by a microcontroller to monitor the serial output
of the transcoder.

void RxSerialOut 2PC(void)
{

int8 i = 0;

char RxIn[5];

// Get the 5 byte packet from MT RxSerialOut
for (i=0; i<5; i++) RxIn[i] = Get Byte();

// 1If start and stop byte are good, send RX data to PC
1if ((RXIn[0] == 0x00)&&(RxIn[4] == OxFF)) {
for (i=0; i<5; i++) putc(RxIn[i]);

}

// Clear RxIn buffer

for (1i=0; i<5; i++) RxIn[i] = 0;
}
//****************************************************************
Kk hkkkkkkhkhkkhkkkkkk
void Put Byte (int8 Data)
{

// 100us for 9600baud or 30us for 28800baud

int8 BitTm = 100;

// Start bit

output low(Ser IO); delay us(BitTm);
// 8 data bits

output bit (Ser IO, bit test (Data,0

’ ’

delay us (BitTm

’

( )) ( )
output bit (Ser IO, bit test(Data,1l)); delay us(BitTm);
output bit(Ser IO, bit test(Data,2)); delay us(BitTm);
output bit(Ser IO, bit test(Data,3)); delay us(BitTm);
output bit (Ser IO, bit test(Data,4)); delay us(BitTm);
output bit(Ser IO, bit test(Data,5)); delay us(BitTm);
output bit (Ser IO, bit test(Data,6)); delay us(BitTm);

( )) ( )

output bit (Ser IO, bit test (Data,?”
// Stop bit
output high(Ser IO); delay us(BitTm);

; delay us(BitTm

}

//****************************************************************
Kk hkkkhkkkkhkhkkhkkkkkk
int8 Get Byte (void)
{
// 100us for 9600baud or 30us for 28800baud
int8 BitTm = 100;
int8 DataByte = 0;

// Wait for Ser IO to drop for start bit
while (input (Ser I0)) {}

// Start bit
delay us(BitTm/2);
// 8 data bits

delay us (BitTm); if (input(Ser IO)) bit set (DataByte,0);
delay us (BitTm); if (input(Ser I0)) bit set (DataByte,1);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,2);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,3);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,4);
delay us (BitTm); if (input(Ser IO0)) bit set (DataByte,5);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,6);

-8- Application Note AN-00157 Llnx



delay us(BitTm); if (input(Ser I0)) bit set(DataByte,7);
// Stop bit
delay us(BitTm);
// Return received value
return (DataByte) ;
}

//******************************************************************************

Appendix B

This software example is provided as a courtesy in “as is” condition. Linx
Technologies makes no guarantee, representation, or warranty, whether
express, implied, or statutory, regarding the suitability of the software for
use in a specific application. The company shall not, in any circumstanc-
es, be liable for special, incidental, or consequential damages, for any
reason whatsoever.

Visual Basic Code

This Visual Studio Visual Basic code uses the Linx SDM-USB-QS USB
module to write commands to the transcoder from a PC and to receive
the response from the transcoder.

‘Setup the QS module for use.
' Open the device
Call Open USB Device By Description(GetFTDeviceDescription (0)
' Reset device
Call Reset USB Device()
' Set baud rate to 9600
Call Set USB Device Baud Rate (FT BAUD 9600)
‘' 8 data bits, 1 stop bit, no parity
Call Set USB Device Data Characteristics(FT DATA BITS 8, FT STOP BITS 1, FT PARITY NONE)
' no flow control
Call Set USB Device Flow Control (FT_FLOW NONE, 0, 0)
Y 25mS read timeout, 25mS write timeout
Call Set USB Device Timeouts (25, 25)
‘' RX-buffer size = 9 bytes and TX-buffer size = 8 bytes for max packets size
Call set USB Device Parameters (9, 8)
' Latency ranges 2-255mS and defaults to 16mS
Call Set USB Device Latency Timer (2)
‘Purge the RX buffer
Call Purge USB Device RxBfr()
‘Purge the TX buffer
Call Purge USB Device TxBfr ()
‘Clear SER_IO & CRT_LRN pin for RXD
Call Set USB Device RTS() ‘Output Low

‘Function for transmitting packets and receiving confirmation.
Public Function TransferData(ByVal Wr Cnt As Integer, ByVal Rd Cnt As Integer) As Boolean
Dim i As Integer = 0
Dim n As Integer = 0
Dim blnACK Rcvd As Boolean = False

‘Purge the QS RX/TX buffers
Call Purge USB Device RxBfr()
Call Purge USB Device TxBfr()

‘Set SER IO & CRT _LRN pin to trigger MT for serial data and set switch to QS-TX-
Data pin
Call Clear USB Device RTS() ‘Output HIGH

‘Allow time (ms) for MT to finish possible RX or PDN modes
Sleep (50)

‘If Mode Ind is clear, send the data

_9- Application Note AN-00157 Llnx



If (Get USB Device Modem Status() And FT_MODEM STATUS CTS) Then

Call Write Data Bytes (Wr Cnt)

‘Wait for Mode Ind to go HIGH indicating MT command reception

Do While ((Get USB Device Modem Status() And FT MODEM STATUS CTS) And (i < 10000)

i+=1
Loop
End If

‘Clear SER IO & CRT LRN pin to flip switch for QS-RX-Data pin
Call Set USB Device RTS() ‘Output LOW

‘Make sure Write-Wait loop didn’t timeout
If (i < 10000) Then
‘Read the QS RX buffer
n = Read Data Bytes (Rd Cnt)
If (n > 4) Then
‘Test Start and Stop bytes
If (FT_In Buffer(0) = 0 And FT In Buffer(n - 1)
bInACK Rcvd = True
End If
End If
End If

‘Return true if ACK message was received from MT device
TransferData = bInACK Rcvd

End Function

‘Functions used to fill the QS TX buffers with each command.
Public Function DoRdLocalSettings () As Boolean

FT Out Buffer (0) = &HO

FT Out Buffer(l) = &HI1

FT Out Buffer(2) = &HO

FT Out Buffer (3) = &HO

FT Out Buffer (4) = &HO

FT Out Buffer (5) = &HO

FT Out Buffer (6) = &HO

FT Out Buffer(7) = &HFF

If TransferData (8, 9) = True Then
DoRdLocalSettings = True

Else
DoRdLocalSettings = False

End If

End Function

Then

Public Function DoWrLocalSettings (ByVal Al As Byte, ByVal A2 As Byte, ByVal A3 As Byte, ByVal IO As Byte)

As Boolean

FT Out Buffer (0) = &HO

FT Out Buffer(l) = &H2

FT Out Buffer(2) = Al

FT Out Buffer(3) = A2

FT Out Buffer (4) = A3

FT _Out Buffer (5) = IO

FT Out Buffer (6) = &HO

FT Out Buffer(7) = &HFF

If TransferData (8, 5) = True Then
DoWrLocalSettings = True

Else
DoWrLocalSettings = False

End If

End Function

Public Function DoRdNextUserID() As Boolean

FT Out Buffer (0) = &HO
FT Out Buffer(l) = &HII
FT Out Buffer(2) = &HO

-10- Application Note AN-00157 Llnx



FT Out Buffer (3)
FT Out Buffer (4)
FT Out Buffer (5)
FT Out Buffer (6)
FT Out Buffer (7)

If TransferData (8, 6)
DoRdNextUserID =

Else

DoRdNextUserID =

End If

End Function

Public Function DoWrNextUserID(ByVal ID As Byte)

= &HO
= &HO
= &HO
= &HO
= &HFF

= True Then
True

False

FT Out Buffer (0) = &HO
FT_Out_Buffer( ) = &HI12
FT Out Buffer(2) = ID
FT Out Buffer (3) = &HO
FT Out Buffer (4) = &HO
FT Out Buffer (5) = &HO
FT Out Buffer (6) = &HO
FT Out Buffer(7) = &HFF
If TransferData (8, 5) = True Then
DoWrNextUserID = True
Else
DoWrNextUserID = False
End If

End Function

Public Function DoRdSpec1ﬁcUser(ByVal ID As Byte)

FT Out Buffer (0) = &HO
FT_Out_Buffer( ) = &H21
FT Out Buffer(2) = ID
FT Out Buffer (3) = &HO
FT Out Buffer (4) = &HO
FT Out Buffer (5) = &HO
FT Out Buffer (6) = &HO
FT Out Buffer(7) = &HFF
If TransferData (8, 9) = True Then
DoRdSpecificUser = True
Else
DoRdSpecificUser = False
End If

End Function

Public Function DoWrSpecificUser (ByVal Al As Byte,

Byte,

ByVal ID As Byte)

As Boolean

FT Out Buffer (0) = &HO

FT Out Buffer(l) = &H22

FT Out Buffer(2) = Al

FT Out Buffer(3) = A2

FT Out Buffer (4) = A3

FT _Out Buffer(5) = IO

FT Out Buffer(6) = ID

FT Out Buffer(7) = &HFF

If TransferData (8, 5) = True Then
DoWrSpecificUser = True

Else
DoWrSpecificUser = False

End If

End Function

Public Function DoRdTargetAddr ()

As Boolean

As Boolean

As Boolean

ByVal A2 As Byte,

—-11-

ByVal A3 As Byte,

ByVal IO As

Application Note AN-00157 Llnx



FT Out Buffer (0) = &HO
FT Out Buffer(l) = &H31
FT Out Buffer (2) = &HO
FT Out Buffer (3) = &HO
FT Out Buffer (4) = &HO
FT Out Buffer (5) = &HO
FT Out Buffer (6) = &HO
FT Out Buffer(7) = &HFF

If TransferData (8, 8)
DoRdTargetAddr
Else
DoRdTargetAddr
End If
End Function

Public Function DoWrTargetAddr (ByVal Al As Byte,

True Then
True

False

ByVal A2 As Byte,

FT Out Buffer (0) = &HO

FT Out Buffer(l) = &H32

FT Out Buffer(2) = Al

FT Out Buffer(3) = A2

FT Out Buffer (4) = A3

FT Out Buffer (5) = &HO

FT Out Buffer (6) = &HO

FT Out Buffer(7) = &HFF

If TransferData (8, 5) = True Then
DoWrTargetAddr = True

Else
DoWrTargetAddr = False

End If

End Function

Public Function DoRdCustomData()

As Boolean

FT Out Buffer (0) = &HO
FT_Out_Buffer( ) = &HA41
FT Out Buffer (2) = &HO
FT Out Buffer (3) = &HO
FT Out Buffer (4) = &HO
FT Out Buffer (5) = &HO
FT Out Buffer (6) = &HO
FT Out Buffer(7) = &HFF
If TransferData (8, 6) = True Then
DoRdCustomData = True
Else
DoRdCustomData = False
End If

End Function

Public Function DoWrCustomData (ByVal CB As Byte)

As Boolean

FT Out Buffer (0) = &HO

FT Out Buffer(l) = &H42

FT Out Buffer(2) = CB

FT Out Buffer (3) = &HO

FT Out Buffer (4) = &HO

FT Out Buffer (5) = &HO

FT Out Buffer (6) = &HO

FT Out Buffer(7) = &HFF

If TransferData (8, 5) = True Then
DoWrCustombData = True

Else
DoWrCustomData = False

End If

End Function

-12-

ByVal A3 As Byte)

Application Note AN-00157 L

As Boolean

INX



Public Function DoRdLatchMask() As Boolean
FT Out Buffer (0) = &HO
FT_Out_Buffer( ) = &H51
FT Out Buffer(2) = &HO
FT Out Buffer (3) = &HO

FT Out Buffer (4) = &HO

FT Out Buffer (5) = &HO

FT Out Buffer (6) = &HO

(7)

FT Out Buffer = &HFF

If TransferData (8, 6) = True Then
DoRdLatchMask = True

Else
DoRdLatchMask = False

End If

End Function

Public Function DoWrLatchMask(ByVal LM As Byte) As Boolean
FT Out Buffer (0) = &HO

FT_Out_Buffer(l) = &H52
FT Out Buffer(2) = LM
FT Out Buffer (3) = &HO
FT Out Buffer (4) = &HO
FT Out Buffer (5) = &HO
FT Out Buffer (6) = &HO
FT Out Buffer(7) = &HFF
If TransferData (8, 5) = True Then
DoWrLatchMask = True
Else
DoWrLatchMask = False
End If

End Function

Public Function DoRdStatusOuputs() As Boolean
FT Out Buffer (0) = &HO
FT_Out_Buffer = &H61
FT Out Buffer = &HO

(1)
(2)
FT Out Buffer (3) = &HO
FT Out Buffer (4) = &HO
FT Out Buffer (5) = &HO
FT Out Buffer (6) = &HO
FT Out Buffer(7) = &HFF
If TransferData (8, 6) = True Then
DoRdStatusOuputs = True
Else
DoRdStatusOuputs = False
End If

End Function

Public Function DoWrStatusInputs (ByVal Data As Byte, ByVal Num As Byte) As Boolean
FT Out Buffer (0) = &HO

FT Out Buffer(l) = &H62

FT Out Buffer(2) = Data

FT Out Buffer(3) = Num

FT Out Buffer (4) = &HO

FT Out Buffer (5) = &HO
(6)
(7)

FT Out Buffer = &HO
FT Out Buffer = &HFF
If TransferData (8, 5) = True Then
DoWrStatusInputs = True
Else
DoWrStatusInputs = False
End If

End Function

13- Application Note AN-00157 Llnx



Public Function DoRdConﬁrmEn() As Boolean

FT Out Buffer (0)
FT_Out_Buffer()
FT Out Buffer (2)
FT Out Buffer (3)
FT Out Buffer (4)
FT Out Buffer (5)
FT Out Buffer (6)
FT Out Buffer (7)

If TransferData (8,

&HO
&HT71
&HO
&HO
&HO
&HO
&HO
&HEFE

6) = True Then

DoRdConfirmEn = True

Else

DoRdConfirmEn = False

End If
End Function

Public Function DoWrConfirmEn (ByVal CfEn As Byte) As Boolean

FT Out Buffer (0)
FT Out Buffer (1)
FT Out Buffer (2)
FT Out Buffer (3)
FT Out Buffer (4)
FT Out Buffer (5)
FT Out Buffer (6)
FT Out Buffer (7)

If TransferData (8,

&HO
&H72
CfEn
&HO
&HO
&HO
&HO
&HFF

5) = True Then

DoWrConfirmEn = True

Else

DoWrConfirmEn = False

End If
End Function

Public Function DoRdTargetEn() As Boolean

FT Out Buffer (0)
FT_Out_Buffer()
FT Out Buffer (2)
FT Out Buffer (3)
FT Out Buffer (4)
FT Out Buffer (5)
FT Out Buffer (6)
FT Out Buffer (7)

If TransferData (8,

&HO
&H81
&HO
&HO
&HO
&HO
&HO
&HEF

6) = True Then

DoRdTargetEn = True

Else

DoRdTargetEn = False

End If
End Function

Public Function DoWrTargetEn(ByVal TgEn As Byte) As Boolean

FT Out Buffer (0)
FT_Out_Buffer(

FT Out Buffer (2
FT Out Buffer (3
FT Out Buffer (4
FT Out Buffer (5
FT Out Buffer (6
FT Out Buffer (7

If TransferData (8,

&HO
&H82
TgEn
&HO
&HO
&HO
&HO
&HFF

5) = True Then

DoWrTargetEn = True

Else

DoWrTargetEn = False

End If

—14-

Application Note AN-00157 L

INX



End Function

Public Function DoRdCustomDataEn () As Boolean
FT Out Buffer (0) = &HO

FT Out Buffer (1)
FT Out Buffer (2)
FT Out Buffer (3)
FT Out Buffer (4) = &HO
FT Out Buffer (5)
FT Out Buffer (6)
(7)

= &HOL
= &HO
= &HO

= &HO
= &HO

FT Out Buffer = &HFF\
If TransferData (8, 6) = True Then
DoRdCustomDataEn = True
Else
DoRdCustomDataEn = False
End If

End Function

Public Function DoWrCustomDataEn (ByVal CdEn As Byte) As Boolean

FT Out_Buffer (0) = &HO

FT Out Buffer(l) = &H92

FT Out Buffer(2) = CdEn

FT Out Buffer (3) = &HO

FT Out Buffer (4) = &HO

FT Out Buffer(5) = &HO

FT Out_Buffer (6) = &HO

FT Out Buffer(7) = &HFF

If TransferData (8, 5) = True Then

DoWrCustomDataEn = True

Else

DoWrCustomDataEn = False

End If

End Function

Microcontroller Code

This C code can be used by a microcontroller to write commands to the
transcoder and receive the response.

// Constant Arrays

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

RdLocSttngs[8] = {0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrLocSttngs[8] = {0x00, 0x02, 0x11l, 0x22, 0x33, 0xOF, 0x00, OxFF};
RdNxtUser[8] = {0x00, 0Ox11, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrNxtUser[8] = {0x00, 0x12, 0x09, 0x00, 0x00, 0x00, 0x00, OxFF};
RdSpecUser[8] = {0x00, 0x21, 0x3C, 0x00, 0x00, 0x00, 0x00, OxFF};
WrSpecUser[8] = {0x00, 0x22, 0x12, 0x34, 0x56, 0x78, 0x3C, OxFF};
RdTrgtAddr[8] = {0x00, 0x31, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrTrgtAddr[8] = {0x00, 0x32, O0x11l, O0x22, 0x33, 0x00, 0x00, OxFF};
RdCstmbata[8] = {0x00, 0x41, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrCstmbData[8] = {0x00, 0x42, OxAA, 0x00, 0x00, 0x00, 0x00, OxFF};
RdLatchMsk[8] = {0x00, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrLatchMsk[8] = {0x00, 0x52, 0x55, 0x00, 0x00, 0x00, 0x00, OxFF};
RdStatus Out[8] = {0x00, Ox61, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrStatus In[8] = {0x00, O0x62, OxFF, 0x00, 0x00, 0x00, 0x00, OxFF};
RACnfrmEN[8] = {0x00, 0x71, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrCnfrmgEN[8] = {0x00, 0x72, 0x01, 0x00, 0x00, 0x00, 0x00, OxFF};
RdTrgtngEN[8] = {0x00, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF};
WrTrgtngEN[8] = {0x00, 0x82, 0x01, 0x00, 0x00, 0x00, 0x00, OxFF};

-15- Application Note AN-00157 L

INX



const char RdACstmDtaEN[8] =
const char WrCstmDtaEN[8] =

{0x00,
{0x00,

0x91,
0x92,

0x00,
0x01,

// Variable Arrays
char TxCmdDta[8];
char RxCmdDta[9];

// Constants
const int8 SerIO IN = 0b11000111;
const int8 SerIO OUT = 0b11000011;

0x00,
0x00,

0x00,
0x00,

0x00,
0x00,

0x00,
0x00,

0xFF};
0xFF};

//******************************************************************************

void ProcessCmd (void)

{
int8 i = 0;

f (input (Cmd_RW)) {
// Determine which write command to send

if (input(Cmd 1)) { for(i=0; i<8; i++) TxCmdDtal[i] = WrLocSttngs[ 1; 1}
else if (input(Cmd 2)) { for(i=0; 1i<8; i++) TxCmdDta[i] = WrSpecUser[i]; }
else if (input(Cmd 3)) { for(i=0; i<8; i++) TxCmdDta[i] = WrTrgtAddr([i]; }
else if (input(Cmd 4)) { for(i=0; i<8; i++) TxCmdDta[i] = WrCstmData[i]; }
else if (input(Cmd 5)) { for(i=0; 1i<8; i++) TxCmdDta[i] = WrLatchMsk[i]; }
else if (input(Cmd 6)) { for(i=0; 1<8; i++) TxCmdDta[i] = WrCnfrmEN[i]; }
else if (input(Cmd 7)) { for(i=0; i<8; i++) TxCmdDta[i] = WrTrgtngEN[i]; }
else if (input(Cmd 8)) { for(i=0; 1i<8; i++) TxCmdDta[i] = WrCstmDtaEN[i]; }
else { for(i=0; i<8; i++) TxCmdDta[i] = WrNxtUser[i]; }

}

else {
// Determine which read command to send
if (input(Cmd 1)) { for(i=0; i<8; i++) TxCmdDta[i] = RdLocSttngs[i]; }
else if (input(Cmd 2)) { for(i=0; 1i<8; i++) TxCmdDta[i] = RdSpecUser[i]; }
else if (input(Cmd 3)) { for(i=0; 1i<8; i++) TxCmdDta[i] = RdATrgtAddr[i]; }
else if (input(Cmd 4)) { for(i=0; 1i<8; i++) TxCmdDta[i] = RdCstmData[i]; }
else if (input(Cmd 5)) { for(i=0; 1i<8; i++) TxCmdDta[i] = RdLatchMsk[i]; }
else if (input(Cmd 6)) { for(i=0; 1<8; i++) TxCmdDta[i] = RACnfrmEN[i]; }
else if (input(Cmd 7)) { for(i=0; i<8; i++) TxCmdDta[i] = RdATrgtngEN[i]; }
else if (input(Cmd 8)) { for(i=0; 1<8; i++) TxCmdDta[i] = RdACstmDtaEN[i]; }
else { for(i=0; i<8; i+4++4+) TxCmdDta[i] = RdNxtUser[i]; }

}
// Make SerIO pin an output
set tris a(SerIO OUT);
// Set both lines HIGH at the same time
output high (CrtLrn);
output high (Ser IO);
// Allow MT time to enter SIE command mode
delay ms (50);
output low(CrtLrn);
// Send the command to the MT
for(i=0; i<8; i++) { Put Byte(TxCmdDtal[il]); }
delay ms(1);
// Make SerIO an input
set tris a(SerIO_IN);

delay ms(4);
// Get the ACK/reply from the MT
for (1=0; 1i<9; i++) RxCmdDta[i] = Get Byte();

}

//******************************************************************************

void Put Byte (int8 Data)

{
// 100us for 9600baud or 30us for 28800baud
int8 BitTm = 100;

// Start bit
output low (Ser_ IO0);
// 8 data bits
output bit(Ser IO, bit test(Data,0));

delay us(BitTm);

-16 -

delay us(BitTm);

Application Note AN-00157 Llnx



output bit(Ser IO, bit test(Data,1l

output bit(Ser IO, bit test(Data,2)); delay us(BitTm);
output bit(Ser IO, bit test(Data,3)); delay us(BitTm);
(
(
(

( )) delay us(BitTm)
( )) ( )
( )) ( )
output bit(Ser IO, bit test(Data,4)); delay us(BitTm);
( )) ( )
( )) ( )
( )) ( )

’ ’

’

output bit(Ser IO, bit test(Data,5)); delay us(BitTm
output bit(Ser IO, bit test(Data,6)); delay us(BitTm
output bit(Ser IO, bit test(Data,7)); delay us(BitTm
// Stop bit

output high(Ser I0); delay us(BitTm);

’

’

}

//******************************************************************************
int8 Get Byte (void)
{

// 100us for 9600baud or 30us for 28800baud

int8 BitTm = 100;

int8 DataByte = 0;

// Wait for Ser IO to drop for start bit
while (input (Ser I0)) {}

// Start bit

delay us(BitTm/2);

// 8 data bits

delay us (BitTm); if (input(Ser IO)) bit set (DataByte,0);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,1);
delay us(BitTm); if (input(Ser I0)) bit set(DataByte,2);
delay us(BitTm); if (input(Ser IO)) bit set(DataByte,3);
delay us (BitTm); if (input(Ser I0)) bit set (DataByte,4);
delay us (BitTm); if (input(Ser I0)) bit set (DataByte,5);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,6);
delay us (BitTm); if (input(Ser IO)) bit set (DataByte,7);
// Stop bit

delay us(BitTm);

// Return received value

return (DataByte) ;

}

//******************************************************************************

Copyright © 2012 Linx Technologies

159 Ort Lane, Merlin, OR, US 97532
Phone: +1 541 471 6256

Fax: +1 541 471 6251 - ) L' =
www.linxtechnologies.com —17- Application Note AN-00157 |nX



