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Abstract ! A comprehensive thermal model for screw-termi-

nal aluminum electrolytic capacitors is developed. The test meth-

odology and data upon which the model is based are discussed.

Exact one-dimensional solutions, multi-dimensional heat equa-

tions, and finite-element analysis (FEA) model simulation results

are presented. The effects of conduction, heat sinking, natural

(free) convection, forced convection, and radiation are quanti-

fied and compared.  Complex issues, such as anisotropism and

multi-phase heat transfer, are discussed. A comparison of model

results to test data is presented. Varying capacitor construction

techniques are evaluated.

I. INTRODUCTION

The life of an aluminum electrolytic capacitor varies expo-

nentially with temperature, approximately doubling for each

10 ºC cooler the hottest place in the capacitor (the “core” or
“hot spot”) is operated [1]. Since the temperature rise of the

core is directly proportional to the core-to-ambient thermal re-

sistance, the life is also an exponential function of the thermal
resistance. In this paper, models to predict this thermal resis-

tance for various construction techniques are developed and

used.
This paper focuses on modeling computergrade, or screw

terminal, capacitors. However, the concepts can be applied to

other aluminum electrolytic capacitor constructions, such as
snap-mount, radial, and axial capacitors.

An aluminum electrolytic capacitor is generally comprised

of a cylindrical winding (“section”) of aluminum anode and
cathode foils separated by papers impregnated with a liquid

electrolyte, usually based on ethylene glycol. See Fig. 1. The

anode and cathode foils are made of aluminum, and the anode
is usually highly etched. There is a thin coating of aluminum

oxide on the surface of the anode. The anode and cathode foils

are contacted by means of aluminum tabs that are extended
from the winding. These tabs are attached to aluminum termi-

nals in a polymeric top. The wet winding is sealed into an

aluminum can.

One fact that is apparent when beginning the task of ther-

mally modeling an aluminum electrolytic capacitor in a typi-
cal operating environment is that the effort is inherently com-

plex. This complexity is due to several factors. First, all three

of the heat transfer modes (conduction, convection, and radia-
tion) are present and may be significant. Second, the conduc-

tion from the winding to the case is dependent on the method

and intimacy of contact between the two. Third, as will be
discussed later, the conductivity of the winding is different in

the axial and radial directions. Fourth, both free convection of

electrolyte-air vapor as well as two-phase heat transfer mecha-
nisms may be present internally. Finally, external to the ca-

pacitor, both radiation and convection are present as heat trans-

fer modes, the latter of which may be natural or forced, or
both.

We undertake this work by first looking at the simpler con-

duction and convection aspects of the problem. We use some
mathematical and FEA simulation techniques to compare pre-

dictions of simpler models with measurements taken on ca-

pacitors of known construction operating with known ripple
power in known thermal environments.

Fig. 1.  Typical screw terminal capacitor constructions:
pitch (left) and pitchless (right).
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II. THE WINDING

Starting from the hottest spot and working outward, we find

that the winding of an aluminum electrolytic capacitor is highly

anisotropic, due to the fact that the thermal conductivity is much
larger in the axial direction than in the radial direction. This is

because the papers are effectively in parallel in the axial direc-

tion but in series in the radial direction, and the conductivity
of the foil is much higher than that of the papers, even when

the papers are wet with electrolyte. See Table I [2]. On the

other hand, the cross-sectional area of the heat flux path is
generally larger in the radial direction, and the heat flux path

distance is usually smaller in the radial direction, depending

upon the aspect ratio (length/width ratio) of the capacitor wind-
ing. Both of these heat path geometric facts favor relatively

higher thermal conductance in the radial direction, while the

anisotropism greatly favors higher thermal conductance in the
axial direction.

Considering a general three-dimensional physical model of

the capacitor winding, we find that the symmetry lends itself
to cylindrical coordinates involving an axial component z, a

radial component r, and an angular component ψ. It is hoped

that the thermal conductivity can be modeled as an anisotropic

cylinder with no angular variation, so that ψ may be neglected.

Furthermore, it is desirable to assume position-independent,
constant axial and radial thermal conductivities. This is equiva-

lent to modeling the capacitor winding axisymmetrically as a

series of concentric cylinders, alternating foil and wet paper.
However, we realize that there is a turn-to-turn angular contri-

bution of the foil to the radial conductivity. This contribution

diminishes as the radial position is increased. See Fig. 2.

To justify the assumption of a negligible angular coupling

contribution to the radial thermal conductivity, we consider a
single representative turn of a foil-paper layer in the winding,

and compare the magnitudes of the radial thermal resistances

through the bulk versus along the angular direction. See Fig.
3. We may assume that the angular conductivity kψ is approxi-

mately that of aluminum, that the radial conductivity k
r
 is ap-

proximately that of the electrolyte, and that the aluminum plate
thickness and paper thickness are approximately the same, ∆r/

2. Since kψ >> k
r
 , the radial thermal resistance of this arbi-

trary turn is

θ
r
 ≈ ∆r / ( 4πRLk

r 
),         (1)

the angular contribution to the radial thermal resistance is

θψ ≈ 4πR / ( ∆rLkψ ),         (2)

and the ratio of these thermal resistances is

θψ / θ
r
 ≈ ( 4πR / ∆r )2 × ( k

r
 / kψ ) .         (3)

Noting that the paper thickness is approximately 100 µm, the
radial position R of concern is at least 1 cm, and kψ exceeds k

r
by less than three orders of magnitude, we find that the ratio

(3) evaluates to at least 1600. Therefore the angular contribu-
tion of the thermal conductivity is negligible, and so the radial

variation of the radial thermal conductivity is negligible. By

further appealing to the symmetry of the winding, we can dem-
onstrate that the axial conductivity k

z
 and the radial conduc-

tivity  k
r
 can be assumed to be constant.

Fig. 2.  Angular contribution to the
radial thermal conductivity.

Table I
Thermal Conductivity of Selected Materials

Material k (W/mAK)
Type IIa Diamond 2300
Silicon Carbide   490
Silver   425
Copper   398
Aluminum   240
Aluminum Oxide     36
Ice       2.0
Pyrex Glass       1.4
Water       0.65
Silicone Rubber       0.35
Ethylene Glycol       0.26
Air or steam       0.03
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We would like to use k
r
 and k

z
 as average values for a given

winding. These values need to take into account the relative
thicknesses of the foil and of the paper.  One complication with

simply calculating the k parameters as weighted averages is

that the anode foil is typically highly etched, and is often about
70% aluminum by weight and 30% aluminum oxide by weight

when dry. By volume, the anode foil is only about 50% alumi-

num, the other components being aluminum oxide and elec-
trolyte. Obviously we cannot simply use the percentage of alu-

minum to calculate the relative values of the axial and radial

thermal conductivities of the anode foil, since the etching ge-
ometry is the more dominant factor and is not uniquely deter-

mined by the aluminum volume.

Another complicating factor in calculating the axial and ra-
dial thermal conductivities is the paper compression that oc-

curs in an actual winding. It is difficult to know the compres-

sive force on a paper as it is wound, and even more difficult to
estimate this after the winding is saturated with electrolyte,

causing the paper to swell.

Because of these complicating factors and since we want to
measure the thermal conductivities of other materials used in

the construction of capacitors, we measure the thermal con-

ductivities empirically on a thermal test stand. Fig. 4 shows a
schematic of the test setup we use.  A material of thermal con-

ductivity k, uniform length L, and uniform cross-sectional area

A has a thermal resistance along its length of

θ = L / (kA).         (4)

The temperature drop ∆T across a thermal resistance θ with a

power P flowing through it is

∆T= Pθ = PL / (kA).         (5)

Therefore the thermal conductivity can be determined as

k  =  PL / (A∆T).         (6)

This simple relationship was used to determine thermal con-

ductivities of a wide variety of capacitor materials and of the
axial thermal conductivity k

z
 of the winding itself. Windings

of various sizes were drilled at 1 inch axial spacing approxi-

mately 0.5 inches deep, and thermocouples were inserted into
these holes. The injected power P was adjusted from 5 watts to

20 watts through use of a silicone rubber heater clamped be-

tween thin aluminum plates. The power source was an AC
variac, and a power meter was used to measure the dissipated

power. The plate was pressed in contact with the top of the wet

winding, and the bottom of the winding was placed in contact
with a flux-measuring device comprised of two parallel alumi-

num plates with a vacuum casting of a polymer with known

thermal conductivity. The other side of the flux measuring de-
vice was thermally bonded to an aluminum chiller plate of pro-

grammable temperature.

The entire system was enclosed in a large silicone foam rub-
ber cylinder full of styrofoam pellets to create a nearly adia-

batic environment. A computer and data acquisition system

Fig. 4.  Measuring the axial thermal conductivity
of a capacitor winding.

Fig. 3.  Angular contribution to the radial thermal
conductivity of an arbitrary turn at radial location R.
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were used to monitor the temperatures under each test condi-

tion. Generally, steady-state conditions were reached within
four hours.

Measuring the radial thermal conductivity was somewhat

more complex than measuring the axial thermal conductivity
for two reasons. First, a radial heat source to make intimate

contact with the arbor hole was not easy to design and fabri-

cate. It was necessary to use an expanding copper arbor with
thermally bonded resistors. Secondly, the radial heat flow path

prevented (6) from being used, since the cross-sectional area

varied with the radius. An expression for the thermal conduc-
tivity versus power, length, and radial position is derived as

follows. Let P represent the uniformly injected power into a

cylindrical region of radius RI centered along the axis of a cy-
lindrical winding whose outer radius is R

O
 and whose radial

thermal conductivity is k
r
. The outer surface r=R

O
 of the wind-

ing is maintained at temperature T
O
. See Fig. 5. The tempera-

ture distribution is readily derived by using a variation of (5),

where we consider the length to be an incremental radius dλ
and the cross-sectional area to be a function of the radius λ,

A(λ) = 2πλL,         (7)

Since we know the temperature at r=R
O
, we have

T(r) = T
O
 + ,         (8)

which simplifies to

T(r) = T
O
 + PAln(R

O
/r)/(2πk

r
L).         (9)

Equation (9) assumes that there is no axial heat loss.

I
r

R
O

PAdλ

Radial thermal tests were performed on a 2.5” diameter by

5” long winding with a 0.75” diameter hole bored along its
axis. Thermocouples were inserted into small holes drilled at

0.25” intervals, approximately 1.5” deep, at various radial lo-

cations. The winding was impregnated with pure ethylene gly-
col (the nonconductive, common electrolyte solvent) instead of

electrolyte to prevent ionic contamination of the copper power

resistor assembly. A large, flanged, four-piece, hollow alumi-
num cylinder with 0.75” thick walls was used to make contact

between the outside of the winding and the flat chiller plate

during these tests. The four sides of the block were clamped
with large hose clamps to establish good thermal contact to the

outside of the wet winding. The entire system was thermally

isolated as in the previous tests.
The temperature distribution was recorded on the data ac-

quisition system, and the temperatures were found to fit a loga-

rithmic plot that conformed to (9) almost perfectly. See Fig. 6.
The power was varied from 10W to 20W and the chiller refer-

ence temperature was varied from 25 ºC to 65 ºC. The value of

kr was deduced from these measurements and was found not to
vary by more than ±10% over the tested range.

Additional measurements were made of stacks of wet ca-

pacitor paper materials, of the sleeve materials, of pitch mate-
rials, and of contact resistances between the wet capacitor wind-

ing and the can bottom versus applied force.

Table II summarizes the measured values of thermal con-
ductivities. We want to use these values in a thermal model,

but we also want to be able to evaluate various sizes, shapes,

and construction techniques interactively. For example, what
is the effect of thickening the can bottom, installing an alumi-

num rod through the center of the capacitor, using an alumi-

num top, etc. Before we can answer these questions, we need to

Fig. 5.  Measuring the radial thermal conductivity
of a capacitor winding.

Fig. 6.  Model and data of  the radial temperature distribution
of a capacitor winding with power injected at the arbor.
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develop a model of how heat is transferred throughout the wind-

ing when the power generation is uniform rather than concen-
trated at an artificially established isothermal surface as in the

thermal conductivity measurement experiments. Additionally,

we need to determine how the heat is transferred from the ca-
pacitor winding to the can, and from the can to the environ-

ment. Also, we want a fast, interactive thermal model.

The general heat equation is

      (10)

where L2 is the Laplacian operator, T is the spatial temperature

distribution, δ is the material density, k is the material thermal

conductivity, g is the regional volumetric power density, C
P
 is

the specific heat, and t is time.

When the steady-state solution is sought, the transient term

on the right-hand side of (10) is zero. In rectangular coordi-
nates, the steady state, one-dimensional heat equation is

  .       (11)

The solution for the axial temperature distribution of a wind-

ing whose power is removed through conduction through its
bottom end to a reference environmental temperature T

1
 is

straightforward. See Fig. 7. In this case, g = P/(AL), and, inte-

grating (11) twice with respect to the axial coordinate z, we
obtain

T = C
1
z2 + C

2
z + C

3  .
      (12)

To obtain the value of the three constants, we  need to use three

boundary conditions. We know that since the total power flows
through the thermal resistances to the reference temperature,

C
3
 = T(0) = T

1
 + P ( θ

1
 + θ

2
 ).       (13)

Furthermore, by Fourier’s Law [3] at the bottom, we know that

      .       (14)

Finally, applying Fourier’s Law at the top, we obtain

      (15)

which yields

C
1
 = !P / 2kzLA .       (16)

In a similar manner, we may solve for the radial temperature

distribution of a winding with uniform power generation and

whose heat is removed solely in the radial direction. See Fig.
8. We first examine the steady state heat equation in cylindri-

cal coordinates:

      (17)

Here

g = P / [π(R
O

2 !R
I
2)L]  .       (18)

L2T  +       =            C
g

k
δC

P

k
MT
Mt

     +       =   0
g

k
M2T
Mz2

Fig. 7.  Deriving the axial temperature distribution of a
capacitor winding with uniform power generation.

A

C
2
 =             =

dT
dz

z=0

P
kzA

             =   0   =   2C
1
L + C

2
  .

dT
dz

z=L

Table II
Measured Thermal Conductivities

Material k (W/mAK)
k

z
  100

k
r

      0.21
Dry Paper (0.35 g/cm3)       0.046
Dry Paper (0.55 g/cm3)       0.055
Dry Paper (0.90 g/cm3)       0.076
EG-Impregnated paper       0.17 - 0.20
PVC Sleeve Material       0.093
End Disc Material       0.089
Sil Pad Material       0.34
Pitch       0.35

     C       r           +         =  0 .dT
dr

d
dr

1
r [ ] g

k
r
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Multiplying by r then integrating yields

      (19)

Dividing by r and integrating, we have

      (20)

Again solving for constants by enforcing boundary conditions,

we know that there is no flux or gradient at r=R
I
 . Therefore,

      (21)

Since we know T(R
O
) = T

1
 + P ( θ

1
 + θ

2
 ), we have

      (22)

III. WINDING TO CAN

At this stage we have sufficient models ((4), (9), (12) and

(20)) and parametric values (Table II) to perform some com-

parisons between radial and axial heat transfer for a couple of
different construction types and cooling techniques.

Let us first consider windings of various sizes whose lengths

are three times their diameters, assuming a uniform volumet-
ric power density g = 105 W/m3. Fig. 9 shows the relative effect

on the maximum core temperature of maintaining an isother-

mal surface of 25 ºC at the entire outer radial surface (radial
cooling) versus contacting the bottom only (axial cooling). Here

θ
1
 = θ

2
 = 0. It can be seen that axial cooling is much more

effective than radial cooling, especially in larger capacitors.

Now let us compare axial and radial conductances by con-

sidering  a more realistic case where the capacitor winding is
coupled through its can which is contacting slowly moving air

at a temperature T
1
= 25 ºC. The winding size is 2.5” diameter

by 5” length, dissipating 10 watts, and the can is 3.0” outside
diameter (2.95” inside diameter) by 5.6” length. Let θ

1
  repre-

sent the thermal resistance from the winding to the can, and let

θ
2
 = 2 ºC / W represent the thermal resistance from the can to

the environmental temperature T
1
. If we consider the can to be

an isothermal surface, this means that the can temperature is

45 ºC.
Generally in capacitor designs with pitch or potting com-

pound, the winding is not compressed tightly against the can

bottom, causing the axial thermal resistance from the winding
to the can bottom to be relatively high. In the best pitchless

designs, there are reinforcement ribs and integral center spikes

in the top (header) and in the bottom to keep the winding aligned
and to allow high compression of the winding. The lowest axial

thermal resistance from winding to case is achieved in high

compression pitchless designs with extended cathode, where
the cathode is wider than the anode, and is offset and exposed

on the bottom of the winding, having an effective thermal con-

ductivity that is dominated by interfacial properties (contact
resistance) rather than bulk conduction properties. This inter-

facial conductivity was measured on the thermal test stand of

Fig. 4 as being approximately 800 W/(m2K). Notice the units
indicate that the effective conductivity is obtained by multiply-

ing the interfacial conductivity by the thickness of the inter-

face.
For the case of axial conduction, we find for compressed wet

paper between the winding bottom and the can, assuming a

thickness of 0.062” and referring to (4) and Table II, θ
1
 = 2.8

T(r)    =                   +  C
4
 ln(r) + C

5
  .

!Pr2

4π(R
O

2 !R
I
2)Lkr

L/Ro = 6

g = 105 W/m3

Ri =0.2 in

Outer Radial
Surface at  25 ºC

Bottom Surface at  25 ºC

Fig. 9.  Relative effects of heatsinking the outer radial
surface of winding vs heatsinking the bottom of winding.
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4
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C
5
 = T

1
 + P ( θ

1
 + θ

2
 ) +      .

P[R
O

2 + 2R
I
2 ln(R

O
) ]

4π(R
O

2 !R
I
2)Lk

r

r          =                   +  C
4
  .
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2π(R
O

2 !R
I
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Fig. 8.  Deriving the radial temperature distribution of a
capacitor winding with uniform power generation.
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ºC/W; for uncompressed paper, assuming the thickness is 0.125

inches, θ
1
 = 5.6 ºC/W.  For compressed extended cathode wind-

ing of this size in a pitchless design, we obtain 0.4 ºC/W. Us-

ing (12), we calculate the axial thermal resistance of the wind-

ing as θ
a
 = 0.20 ºC/W.

In the radial direction, in a design which is half-filled with

pitch, the winding-to-can thermal resistance due to the pitch is

calculated using (9) as 1.2 ºC/W. We have not yet derived the
expressions for coupling via free convection and radiation of

the winding to the can in the case of a pitchless design, but let

us take this (to be justified later) as θ
1
 = 2.7 ºC/W for the entire

winding to the can. Twice this thermal resistance would ap-

pear in parallel with the pitch resistance of 1.2 ºC, since the

pitch only fills half of the space between the winding and can,
giving a revised value of θ

1
 = 1.2 // 5.4 = 0.98 ºC/W for the

radial winding-to-can thermal resistance of the pitch design.

Using (20) we find the radial thermal resistance of the wind-
ing to be θ

r
 = 3.1 ºC/W.

Employing the thermal resistances above, we obtain the re-

sults summarized in Table III. Since both radial and axial heat
transfer modes are present, and the can is virtually an isother-

mal surface, we may approximate the simultaneous effects of

both axial and radial conduction by computing the result of the
axial and radial thermal resistances in parallel. We conclude

that the pitchless design with extended paper has a slight ad-

vantage over the pitch design, and that the extended cathode
design has a very large advantage. In actual practice, the can

temperature is not truly isothermal. In the case of the pitchless,

extended cathode design, the can bottom is somewhat hotter
than the sides, erasing some of the advantage of the pitchless

design over that of the pitch design.

Even though our simple one-dimensional thermal models

have already led to useful results, showing that axial conduc-

tion offers the best opportunity for heat removal and allowing
us to quantify the effects of heatsinking, we have so far only

considered axial and radial thermal conductivity separately,

and then lumped the average thermal resistances in parallel to
examine the simultaneous effect. To precisely model the axial

and radial heat conduction, we need to revisit (10). In cylindri-

cal coordinates, for the steady-state solution, we multiply by k
to obtain

      (23)

Since we are considering an anisotropic medium, we must as-

sociate the axial and radial conductivities separately. Fortu-
nately, (23) is in a separable form with respect to the spacial

variables and this is straightforward. We have

      (24)

Unfortunately, (24) is impossible to solve in closed form for
most interesting cases. If we assume g=0 (no internal power

generation) and provide surfaces with simple boundary condi-

tions, we obtain solutions of the form

,      (25)

where J
0
 and Y

0
 are the zeroth-order Bessel and Weber func-

tions, respectively. It was therefore concluded fairly early in

our thermal modeling development work that computer solu-

tions would need to be employed.

IV. CAN TO ENVIRONMENT

The heat transfer modes from the can to the ambient envi-

ronment may include conduction, convection, and radiation.

Conduction is a volumetric parameter, and includes path length
as well as cross-sectional area effects, as has already been dis-

cussed. Externally, conduction is a significant mode only when

the capacitor is attached to a heat sink.
Convection, on the other hand, is generally modeled as a

surface effect, although the localized film thickness and veloc-

ity (hydrodynamic) and temperature (thermodynamic) distri-
butions extend beyond the surface. The parameter that describes

the degree of thermal heat transfer coupling from a surface of

3T(r,z) =                   a
i
 J

0
           + b

i
 Y

03 { [ ]C))  ((
i j

4 4
λr
okr

λr
okr

c
j
 J

0
           + d

j
 Y

0 [ ]}))  ((λz
ok

z

λz
ok

z

Table III
Results from 1-D Models

θ
2
 = 2 ºC/W, T

1
 = 25 ºC, P = 10 W, 2.5” dia × 5” L winding

Construction     θ
1

     θ
1

Heat Flow Direction
     r      z Radial Axial r // z
ºC/W  ºC/W T

CORE
T

CORE
T

CORE

Pitch 0.98 5.6 86 ºC 103 ºC 67 ºC

Pitchless, 2.7 2.8 103   75 65
Extended Paper

Pitchless, 2.7 0.4 103   51 50
Extended Cathode

     C        r          +  k          + g  =  0 .MT
Mr

M
Mr

k
r [ ] M2T

Mz2

     C        r          +  k
z
          + g  =  0 .

MT
Mr

M
Mr

kr
r [ ] M2T

Mz2
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area A to the ambient fluid is known as the convection or film

coefficient, h, which is a strong function of the fluid velocity
and mass transfer properties, such as density and viscosity. If

the surface is at a higher temperature than the environment by

an amount ∆T, the power P
CONV

 dissipated through convection

is given by

P
CONV

 = hA∆T.       (26)

Although (26) holds for virtually any fluid, this paper deals

only with the fluid being air at standard atmospheric pressure

and at a temperature between 25 ºC and 85 ºC.
An approximate value of h versus velocity which is com-

monly used in the capacitor industry is

h
TOT

 ≈ 11     (v+0.25)/(0.25) [W/m2K]       (27)

where the velocity v is in units of [m/s]. Other sources also use
a square-root dependence of h on airstream velocity [4,5]. We

note that h has the same units as the interfacial conductance,

and analogously, is also associated with a thickness (the “film”
thickness) to calculate a relevant thermal conductivity. The film

thickness is not used directly in our calculations, but it varies

from about 3 cm in natural convection to less than 1 mm in
high-velocity air flows [6].

Equation (27) lumps together the effects of natural (free) con-

vection, forced convection, and radiation. The velocity of  “still”
air, or natural convection, is taken as 0. The equation above

does not take into account many factors, such as capacitor gravi-

metric orientation, the aspect ratio (D/L), the ambient and sur-
face temperatures, laminar versus turbulent flow, etc. The re-

sults when using (27) to predict heat rise ∆T are generally within

about 20% of the measured value. For more exact solutions,
we need to use heat transfer theory.

Let us denote the unitless average Reynolds, Nusselt, and

Rayleigh numbers as Re, Nu, and Ra, respectively. A subscript
of D or L is generally used along with the numbers to indicate

application to a cylinder or plate, respectively. Additionally,

there is a unitless number Pr, the Prandtl number, which de-
scribes the medium. Pr is 2/3 for monatomic gasses, 5/7 for

diatomic gasses, and has little temperature variation in our re-

gion of interest [7]. For airstream velocity v, cylinder diameter
D, and kinematic viscosity ν,

Re
D
 = vD/ν       (28)

and

Nu
D
 = 0.3 +             1 +

0.62 Re
D
   Pr

[ 1 + (0.4/Pr)    ]

1/31/2

2/3 1/4 ][ ( )Re
D

28,200

5/8 4/5

      (29)

and finally

h = k Nu
D
 / D       (30)

for a cylinder in cross-flow, where k is the thermal conductiv-
ity of air at the film temperature, taken as the average of the

surface and airstream temperatures [8]. Notice that (29) con-

tradicts the assumption of a strictly square-root relationship
between the convection coefficient and the airstream velocity.

For natural (free) convection of aluminum electrolytic ca-

pacitors,

h = 1.32 (∆T/D)1/4 [W/m2K]       (31)

where ∆T is the difference in temperature between the can sur-

face and the ambient air temperature in ºC, and D is the diam-

eter in meters [9].
Some general comments should be made about convection

at this time. In general, the convection coefficient h is some-

what larger for small capacitors than for large ones, especially
for free convection, as indicated in (31). Over the size range of

aluminum electrolytic screw terminal capacitors, h may be up

to 40% higher for the smallest caps (35 × 40 mm) than for the
largest capacitors (90 × 220 mm), due to size alone. Also, h for

forced air decreases slightly at elevated temperatures, due to

the positive temperature coefficient of the ν factor, which in-
creases about 0.5%/ºC [2]. There is some gravitational depen-

dence, but it has been found by this author to be slight.

Radiation, like convection, is also a surface-to-environment
effect. The radiation heat transfer is dependent not only on the

temperature difference between a surface and its environment,

but also on the absolute temperatures involved. The surface
“darkness” or emissivity ε is also important in radiation heat

transfer. The power P
RAD

 transferred from a surface area A at

temperature T
S
 to an environment at temperature T4 due to

radiation is

P
RAD

 = εσA ( T
S
4 ! T4

4 )       (32)

where ε is the surface emissivity  (0-1) or “darkness” in the

infrared region of the electromagnetic spectrum, and σ = 5.67
× 10!8 W/m2K4 is the Stefan-Boltzmann constant [9]. For

sleeved capacitors, ε = 0.85 is a good approximation [9]. For

√
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bare capacitors, ε = 0.4 approximately [9]. Equation (32) may

be put into a form equivalent to (26) by factoring out ∆T = ( T
S

! T4), yielding

P
RAD

 = h
RAD

A∆T       (33)

where

h
RAD

 = εσ( T
S
 + T4 )( T

S
2 + T4

2 ).       (34)

It can be seen from (34) that the radiation coefficient h
RAD

 in-
creases with both increasing surface and environmental tem-

peratures, and it increases slightly as the ∆T is increased while

maintaining the same average temperature. This effect is often
offset by the decrease in h (convection) with increasing tem-

perature when both radiation and convection are significant

heat transfer modes.
Radiation heat transfer can be significant compared to natu-

ral convection alone. Generally, the convection coefficient h

for natural convection varies from about 5 to about 7 W/m2K,
while h

RAD
 varies from about 5 to 9 W/m2K for capacitors of

this size and temperature range. This gives a total h range for

natural convection plus radiation of about 10 to 15 W/m2K,
agreeing with (27).

Fig. 10 compares the values of h found for actual capacitors

under natural convection conditions versus the model result-
ing from adding (31) and (34). Fig 11 compares the values of h

found for capacitors under forced convection conditions com-

pared to (27) and to (30) evaluated at two diameters. A new
model is proposed as

h
TOT

 = 5 + 17 (v + 0.1)0.66                    (35)

and this is also shown in Fig. 11.

V. OTHER INTERNAL CONSIDERATIONS

Now that we have discussed both radiation and natural con-

vection, we may consider their combined effects in radially cou-
pling the outer surface of the winding to the inside of the can

wall. If we assume the outer surface of the winding of radius

R
W
 and length L to be at absolute temperature T

W
 and to have

an emissivity of ε
W
 = 0.85, and the inner surface of the can of

radius R
C
 to be at absolute temperature T

C
 and have an emis-

sivity of ε
C
 = 0.40, we may calculate the transferred power via

radiation [10] as

    .       (36)

We may also calculate the power transferred from the winding
radially to the can wall via convection by using [11]

k
EFF

 = 0.386 k
AIR

 [PrRa
C 

/ (0.861+Pr)]1/4       (37)

where K
AIR

 is the conductivity of still air, and

Ra
C
 = 8Ra

L
 [ ln(R

C
 / R

W
) ]4  / [ L3 ( R

C
-3/5 + R

W
-3/5 )5 ]       (38)

where R
C
 is the inner radius of the can wall, R

W
 is the outer

radius of the winding,  L = R
C
 ! R

W
 , and Ra

L
 is given by
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Fig. 10.  Data and model for total heat transfer coefficient h
versus diameter for natural convection cooling.

Fig. 11.  Data and model for total heat transfer coefficient h
versus air velocity for convection cooling.

P
RAD

 =
σA ( T

W
4 ! T

C
4 )

1 1!ε
C

ε
W

ε
C

+
R

W

R
C

[ ]

 Eq. (30), D=1.4”

Eq. (30), D=3.0”
Eq. (35)

Eq. (27)
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Ra
L
 = gL3/(T

F
να)       (39)

where T
F
 is the absolute film temperature and α is the thermal

diffusivity, which has about the same temperature coefficient

as the kinematic viscosity ν. Equation (37) is recommended
for use in the range of 102 < Ra

L
 < 107, but has been found by

this author to give reasonably accurate estimates below the lower

range. After examining the combined effects of (36) and (37)
for capacitors of the sizes and temperatures under consider-

ation, this author suggests using a simplified combined radial

transfer thermal conductivity of

         .       (40)

Another postulated contributing factor to promoting radial

heat transfer from the winding to the case as well as possibly
increasing the effective axial thermal conductivity of the can

wall is the so-called “heat pipe” effect, which is augmented

heat transfer due to phase change of the electrolyte. The effect
has a gravitational dependency, and is most effective when used

with a fluid with a large latent heat of vaporization which evapo-

rates and condenses readily at the device and heatsink tem-
peratures, respectively. Heat pipes transfer heat most readily

from a hot area (heat source) below a cooler area (environ-

ment), and can achieve extremely high effective thermal con-
ductivity, over 100 times that of silver [12]. Because this effect

was potentially significant but was difficult to calculate, we

decided to measure it experimentally using a thermal conduc-
tivity test stand similar to that of Fig. 4. We measured the can

wall conductivity of a 3” diameter by 8.63” length, empty ca-

pacitor, sealed with a capacitor top and gasket. Then we punc-
tured the side wall, injected approximately 10 cm3 electrolyte,

resealed the can, and measured the thermal conductivity again.

We performed the same procedure for a capacitor that was empty
except for a single turn of foil taped to form a hollow cylinder

of approximate size 2.7” diameter by 5” length. We wrapped

several turns of capacitor paper around the hollow form to pro-
duce a wick. We also measured capacitors of the same size

with large and small winding diameters. To summarize the

results, we found an improvement in axial conductivity of only
10 - 25 % in this series of experiments.

VI. OTHER EXTERNAL CONSIDERATIONS

The test stand of Fig. 4 was used to measure interfacial con-

ductivities between the can and a heatsink. These data are sum-

marized in Table IV. The forces are based on the calculations
from the torque applied to the 4 threaded rods used to clamp

the capacitors to the chiller plate.

It is postulated that the air trapped between the capacitor
and the chiller plate gives rise to the largest effects that are

observed. The flatness of the capacitor can bottom is also im-

portant and presumably interacts with the clamping technique
employed. For example, if the capacitor bottom surface were

concave, clamping via the can walls would not be as effective

in driving out the air pockets as mounting via a stud in the
center of the can bottom.

Although a bare aluminum capacitor can offers the highest

interfacial conductance from the can bottom to the heat sink,
generally, electrical isolation is needed between these two sur-

faces. In this case, the best thermal interfacial conductance is

achieved with a Sil-Pad Material or with thermal grease, along
with flat surfaces and at least 20 pounds of force per square

inch of can bottom area.

VII. M ODEL RESULTS

Early in this project we were using a finite-element analysis
(FEA) software package which did not allow direct simulation

of anisotropic material properties. Instead, a large number of

individual paper and foil layers had to be drawn. A change in
construction (paper thickness, capacitor length, etc.) usually

required a complete redraw, taking two hours. Rerunning the

software for a new condition took about 20 minutes. This meant
we could run about 4 simulations per day. For these reasons,

this author began investigating other alternatives and decided

the best solution was to automatically draw the capacitor and

k
RWC

 = 0.030 + 1.3
σ R

W
( T

W
4 ! T

C
4 )ln(R

C
 / R

W
)

1 1!ε
C

ε
W

ε
C

+
R

W

R
C

[ ] ∆T[ ]

Table IV
Measured Thermal Contact Resistances

3-inch Diameter Capacitor Bottom to Flat Plate

Sleeve/ Bare
Force (lbs) End Disc Aluminum
0 1.62 ºC/W 0.62
90 1.30 0.33
180 1.22 0.33
360 1.12 0.30

Sleeve/ Bare  Aluminum
End Disc/ plus
Sil Pad Sil Pad

0 1.52 0.62
90 1.20 0.48
180 1.13 0.42
360 1.07 0.40
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solve the partial differential equations and boundary conditions

with an FEA equation solver.
The equation solver we use allows the capacitor to be “drawn”

by connecting coordinates with line segments and arcs. Each

component of the capacitor— the can, the bottom of the wind-
ing, the inactive turns (with no anode) at the arbor, the active

winding, the top of the winding, the header, the header ribs,

the dead space around the winding, the dead space in the ar-
bor, the sleeve, the end disc, etc., are all drawn symbolically

with their dimensions as user-editable inputs in the text-based

source file. Axial and radial conductivities are assigned to each
of the components, as are any boundary conditions, such as

flux at the outer edge of the sleeve, end discs, and top. The

main advantage of this approach is the speed with which  modi-
fications are made and evaluated. For example, to evaluate a

sleeve thickness change, only the sleeve thickness dimension

needs to be edited, as all other dimensions are adjusted auto-
matically, working in from the outside dimensions, since they

are variables. This change is made in about 15 seconds, and

the program generally executes in about 30 seconds.
As other examples, the can bottom thickness, can wall thick-

ness, sleeve conductivity, dead turns thickness, arbor conduc-

tivity, header conductivity, air velocity, heat sink properties,
etc. are all changed and evaluated within minutes instead of

hours. The output is graphical, showing a color plot of the

right half of a cross-section of the axisymmetric temperature
distribution.  See Fig. 12.

The equations and measured values presented in this paper

are used as inputs, and there appears to be good correlation
between the model results and actual data. See Table V. These

capacitors are all of extended cathode construction, but the

model was found to fit well to capacitors of extended paper
construction as well, as EC/EP (extended cathode / extended

paper) is programmed as a parameter within the simulation.

The model takes into account the winding diameter, which var-
ies in this data from about 50% full to over 90% full. The model

is generally  within 10% of predicting the actual heat rise. The

repeatability of the experimental data is not much less than
10%, especially for low air velocity and/or low heat rise. Re-

finement of the model and of the measurement techniques con-

tinues.
The relative benefit of various constructions are shown in

Table VI. The base assumptions are a capacitor of can size 3”

diameter by 5.625” length, dissipating 10 watts in a 45 ºC en-
vironment with an air flow velocity of 2 m/s. All of the EP

simulations, including those  of pitch-containing capacitors,

assume the construction to be of the high-compression type,
which gives a somewhat lower core-to-can-bottom thermal re-

sistance than would be expected from a typical uncompressed

pitch design.  The poorest construction from a thermal stand-
point is the pitchless construction with extended paper (NP/

Fig. 12.  Typical graphical output from thermal model. The
isotherms are shown and are labeled and color-coded.

This particular model has a heatsink, and 2 m/s moving air.

Table V
Measured versus Modeled Temperatures

Miscellaneous Production Capacitors
(Tc and Tb are core and bottom temperatures (ºC), respectively.)

Measured Modeled
D(in) L(in) Ta(ºC) v(m/s) P(W) Tc Tb Tc Tb
2.0 3.1 24.6 1.0 5.0 45.6 41.0 45.3 39.5
2.0 3.1 26.7 1.8 5.3 43.2 39.5 45.0 39.0
2.0 3.1 27.3 3.6 5.5 41.6 35.9 42.9 36.5
2.5 5.6 27.1 0.76 9.1 52.0 44.4 51.0 42.5
2.5 5.6 27.6 1.8 9.4 48.5 39.9 47.5 38.5
2.5 5.6 28.1 3.6 9.5 46.8 37.7 45.3 36.5
2.5 5.6 27.8 0.76 4.3 40.6 38.3 39.3 35.1
2.5 5.6 29.4 1.8 4.4 39.3 36.5 38.8 34.5
2.5 5.6 30.2 3.6 4.4 38.9 35.8 38.3 33.9
2.0 3.1 59.6 0.76 3.8 76.8 73.5 76.7 72.5
2.0 3.1 58.8 1.0 3.8 76.6 70.9 75.0 71.0
3.0 5.6 32.0 1.0 7.7 46.3 43.0 47.0 41.5
3.0 5.6 29.9 1.8 8.0 42.1 37.6 43.6 38.0
3.0 5.6 32.3 3.3 7.9 42.5 38.2 44.0 38.5
2.0 3.1 58.8 0.60 3.8 78.2 75.0 77.0 72.5
3.0 5.6 64.6 0.90 2.2 69.2 68.1 69.5 67.4
2.5 5.6 30.2 0.76 8.4 54.1 46.4 52.1 44.0
2.5 5.6 29.0 1.5 9.0 49.3 40.5 48.8 40.5
2.5 5.6 30.1 3.0 9.3 48.0 38.9 47.5 38.5
3.0 5.6 67.3 1.0 4.9 76.9 74.0 78.0 73.5
2.5 4.1 31.0 1.0 5.7 46.4 43.6 46.3 42.0
2.5 4.1 31.8 1.8 5.8 43.7 40.9 45.1 40.5
2.5 4.1 33.0 3.6 5.8 42.2 40.1 44.0 39.5
3.0 4.1 27.0 0.76 6.4 44.5 40.2 44.1 38.0
3.0 4.1 30.0 1.8 6.4 43.6 39.0 43.8 38.0
3.0 4.1 28.9 3.6 6.6 41.1 36.3 40.9 35.0
1.4 4.6 24.8 5.1 5.3 41.6 33.1 40.1 33.0
1.4 4.1 25.0 5.1 4.1 38.2 33.0 37.6 32.0
2.5 4.1 25.4 5.1 4.6 32.6 29.1 33.7 29.7
3.0 4.1 25.8 5.1 5.9 37.5 31.7 37.5 30.0
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Table VI
Modeled Temperatures

Various Capacitor Constructions
Construction Tcore Tbottom Tside
P/EP 68.1 54.0 52.0
NP/EP 73.1 55.0 52.0
NP/EC 61.4 56.5 52.5
NP/AR/EC 61.2 56.5 51.5
P/CW/EP 62.2 53.0 52.5
NP/CW/EC 57.5 54.0 52.0
NP/EC/HS 54.4 49.0 49.0
NP/EP/HS 68.4 52.0 51.0
NP/EP/CW/HS 59.9 51.5 51.5
NP/EC/CW/HS 56.0 52.2 51.0
NP/EC/DB 61.0 56.0 51.5
NP/EC/DB/DW 59.8 54.5 52.5
NP/EC/DB/DW/AT 58.8 54.0 52.0

Legend
P=10 W, D=3.0”, L=5.63”, Winding D=2.55”, Ta = 45 ºC, v=2 m/s
EC— Extended Cathode
EP— Extended Paper
HS— Heat Sink aty capacitor bottom, ID=1.2”, OD=3.0”,

Theta = 1.0 ºC/W plus 1.0 ºC/W contact resistance
CW— Core Winding: Inactive 1.4” inactive diameter (paper and

cathode only). Winding OD=2.90”
P— Outside of winding is filled completely with pitch
NP— Contains no pitch. Outside of winding is empty.
AR— Aluminum arbor rod. Diameter = 0.3”.
AT— Aluminum top.
DW— Double the can wall thickness.
DB— Double the can bottom thickness.

EP). The core temperature in this case is 73.1 ºC. Adding

enough pitch to fill the entire area outside the winding lowers
this by 5 ºC, adding 40% to the life. However, a pitchless ex-

tended cathode design drops the core an additional 7 ºC to 61.4

ºC. No other construction changes, including doubling the can
bottom thickness, wall thickness, arbor rod, etc. are of much

help, with the exception of the core winding [13] technique,

which allows the pitch/EP design performance to approach that
of the pitchless/EC design. Although more expensive than ex-

tended cathode and not always feasible due to volume restric-

tions, this technique is useful in improving performance in ca-
pacitor designs that would normally have empty space around

the winding. This space is instead occupied by additional wind-

ing area by first winding many “dead” turns of cathode and
paper at the beginning of the winding process before introduc-

ing the anode. The core winding technique is successful due

not as much by having a conductive core as by moving the
active, power-generating area outward to an area of larger ra-

dius, and by placing the outer area of the winding in closer

radial proximity to the can wall. If a core winding is combined
with a high-compression extended cathode, the core tempera-

ture can be further reduced by 4-5 ºC versus either technique

alone.
Additional improvement in capacitor performance can be

achieved through the use of a heat sink, especially when the

capacitor construction is extended cathode, the thermal con-
tact is intimate, and the heat sink thermal resistance is low.

VIII. CONCLUSIONS

We have explored the issues and theory behind thermal mod-

eling of aluminum electrolytic capacitors and have developed
and presented a model that has simulation and predictive value.
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