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ABsTRAcT

An analytical approximate solution is developed for predicting

the thermal resistance of bolted joints between two square plates
.

of the same material but different thicknesses. The plates are as-

sumed to have perfectly flat and smooth surfaces, and they are

joined by a bolted connection at the center of the square, forming

a concentric annular contact region at the interface. The entire

surface area of the plates are insulated, except for the surfaces

where the heat source/sink is applied and where the interracial

contact is formed. The heat flows from one edge of a plate to the

opposite edge of the other plate through the contact area. The re-

sults are presented over a wide range of variables commonly found

in most electronic packaging applications. Comparisons with pub-

lished numerical results show excellent agreement, and satisfactory

to good agreement is obtained between the analytical predictions

and” experimental data.

N O M E N CL AT U R E

a bolt-hole radius, m

b plate radius, m

c contact radius, m

d washer or pressure radius, m

j. factor given by Eq. (7)

J,, x Bessel functions of the first and second kinds of order i

k thermal conductivity, W/mK

L plate dimension, m

qo.  q2 heat-flux specified surfaces

R thermal resistance, OC/W

r radial coordinate, m
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To, T1, T2 temperature specified surfaces

t plate thickness, m

Greek Symbols

a angle shown in Fig. 2, 7r/4

6 thickness of inner-ring plate, see Eq. (6), m

An eigen value, m -1

di function defined by Eq. (4)

Subscripts

h harmonic mean

i inner-ring plate

J joint

~ l o r 2

m material

o outer-ring plate

t total

1 upper plate

2 lower plate

I N T R O D U C T I O N

Bolted joint is a simple mechanism commonly found in many

parts of electronic equipment. Heat sinks such as liquid cooled cold

plates and fins of various shapes and types are often fastened to

heat generating electronic components by means of bolted joints.

In such assemblies heat is dissipated into a heat sink through a

conduction path formed at the interface of the joint, and the per-

formance of a. heat sink is directly affected by the geometry and

arrangement of bolted joints. As a result, determination of the
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c) Thermal Problem

a) Schematic b) Pressure Distribution
(Lower Plate)

Figure 1: Bolted Joint

thermal constriction resistance incurred by having bolted joints

becomes an important integral part of the overall design of heat

sinks and their attachment.

The analysis of thermal phenomena occurring in a bolted joint

is complex as heat flow depends on many independent parameters

such as surface roughness, surface waviness, thermal conductivity,

Poisson’s ratio, yield stress, hardness, applied load, and geome-

try of the system. In analyzing heat transfer in bolted joints the

task can be divided primarily into two components; i) mechanical

component for determining interracial pressure distribution and

cent act size and ii) thermal component for determining thermal

constriction resistance for given thermal boundary conditions and

a contact size.

In earlier studies, conducted by the current authors on thermal

contact resistance (Song et al., 1992 and Lee et al., 1993), a bolted

joint between two plates of the same material and the same thick-

ness has been investigated. Analytical models have been developed

for both mechanical and thermal problems, and simple correlations

were developed for accurate estimation of the contact radius and

the thermal constriction resistance. In those studies, the thermal

problem was composed of two concentric plates fastened by a sin-

gle bolted joint in the center, and a heat source was assumed to

be located on the top plate whereas a heat sink is placed on the

bottom plate in such a way that heat flows axisymmetrically down

and across the bolted joint. During the past few decades, many

other experimental, numerical and analytical investigations have

been carried out, as referred to in the aforementioned papers, ex-

amining macro as well as micro contact resistances of bolted joints

for different geometries and thermal conditions.

In this work, additional model is developed for predicting the

total thermal resistance of a bolted joint with a geometry and ther-

mal boundary conditions that have not been previously examined.

A schematic of the proposed problem is shown in Fig. la. Two

square plates of the same size but different thicknesses, denoted

as tl and t2, are placed in such a way that they overlap each other

over the entire square region. The plates are fastened by a bolted

connection at the center, The dimensions a and L are the bolt-hole

radius and the plate dimension, respectively. Figure lb shows the

lower plate with a schematic representation of the normal pressure

distributions at the interface and the bottom surface. The center

region of the interface which experiences the compressive pressure

represents the contact zone as indicated by the contact radius c in

the figure. The pressure distributions for the upper plate are, of

course, symmetrical about the interface.

If the two plates are made of the same thickness and the

same material then the interracial contact zone can be predicted

closely using the simple correlation equation proposed by Song et

al. (1992) and it becomes possible to determine the thermal con-

striction resistance. On the other hand, if two plates are made of

different thicknesses, the interracial contact area can be estimated

from the correlation equation (Song et al., 1993b) which uses the

harmonic mean thickness of the two plates.

Figure 1C shows the thermal boundary conditions imposed on

the present problem with a schematic representation of the heat

flow lines. Heat flows from one end of the assembly to the other

end, and both source and sink surfaces are assumed to be main-

tained isothermal. It is further assumed that the heat loss through

all the other exposed surfaces is negligible. The thermal path in

the present geometry is not axisymmetrical nor does it conform

to any known orthogonal curvilinear coordinate systems. For this

reason, exact analytical solution does not exist and an approximate

analytical approach is employed to develop a model for predicting

the thermal joint resistance. In the following sections, the develop-

ment of the analytical model is described in detail and comparisons

of the predictions with existing finite element numerical data and

experimental results are. provided.
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T H E R M A L  M O D E L I N G

Due to the lack of an appropriate orthogonal coordinate sys-

tem that conforms to the heat flows in the present problem, an

approximate analysis will be carried out by modifying the geom-

etry and simplifying the thermal boundary conditions. These ap-

proximations would allow us to develop an analytical model and

still retain all the essential and fundamental parametric behavior

of the problem in the predictions.

The analysis will proceed in two stages. Firstly, the material

or bulk resistance of the plates without the constriction effects of

the bolted joint will be determined. This resistance is an inherent

part of the total joint resistance of a given bolted joint assem-

bly and would become identical to the resistance of the assembly

when perfect contact is achieved over the entire square interface.

For closed-form analyses, the effects of the bolt hole is ignored in

determining the material resistance. Clearly, the material resis-

tance represents the minimum asymptote to which the total joint

resistance should approach as the contact area increases for the

given system.

The second part of the present investigation deals with the

total as well as the constriction resistances due to the annular

contact region at the interface. Although the precise thermal con-

dition over the contact zone is not known, the conlact surface may

be assumed iso-flux as an approximation. This thermal condi-

tion closely approximates the limiting condition at the interface

as the contact area becomes small. It also allows us to separate

the plates and use the same thermal analysis, developed for one

plate, for both the upper and lower plates. Furthermore, in order

to render -the problem to be compatible with known analytical so-

lution techniques, the square plate is modeled approximately as a

circular disk with the same thickness and the same surface area

as the original plate. This exercise of modifying the problem ge-

ometry for the benefit of solution techniques has been often used

in the study of contact and constriction resistances (Yovanovich,

1992) and recently employed again with a great success in devel-

oping a conduction model for predicting the thermal performance

of vias network in a high density interconnect assembly (Lee et al.,

1992). The distances from the contacting area to the outer edges

of the original square structure are usually large as compared to

the contact size, and the resulting thermaI resistance of the prob-

lem would be insensitive to the actual shape of the outer edges.

The outer radius of the disk is determined as such the disk area

is maintained identical to the original square area, and the heat

source/sink is located over one quadrant of the outer-edge surface

of the disk, as depicted in Fig. 2b with a = r/4.

In addition to the geometric modifications, the isothermal bound.

ary condition prescribed at the edge surface is also replaced by an

iso-flux condition. It is well known that, as compared to isother-

mal conditions, iso-flux conditions will result in higher constriction

a) Original Problem

c) Inner Ring

b) Modified Problem

Insulated

92

d) Outer Ring

Figure 2: Modeling of Bolted Joint (Lower Plate Shown)

resistances by a nominal factor of 8% (Yovanovich, 1992). For the

present problem, this difference of 8% in the constriction resis-

tance becomes no more than 1-370 of the total joint resistance

throughout the range of the cases examined herein.

In view of obtaining simple solutions, the thermal problem is

further approximated by separating the circular plate into two

rings the inner ring with the inner and outer radii of a and c, and

the outer ring with the inner and outer radii of c and b, as illus-

trated in Figs. 2C and 2d. With an assumed isothermal boundary

condition at c, each of these two ring-regions can be solved now by

means of the method of separation of variables in two-dimensional,

cylindrical coordinates. It is to be noted that the ongoing approx-

imations become closer to the actual conditions if both the inter-

racial contact area and the plate thickness are small. To account

for the effect of thick plates, an adjustment is made in the analysis

such that, if the thickness is greater than the contact-ring width

(c – a), the thickness of the inner-ring plate is made equal to the

ring width, and the isothermal boundary condition prescribed at

r = c is imposed only over a restricted partial surface area as indi-
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cated by 6 in Figs. 2c and 2d. Therefore, J assumes the dimension

of the plate thickness or that of the ring width, whichever is less.

This is to better account for the actual heat flow path expected in

the vicinity of the contact region when the plate thickness is large

as compared to the contact-ring width.

In summary, the material resistance obtained in the first stage

of the analysis represents an asymptote of the total joint resistance

when the contact area is large, and the total resistance determined

in the second stage of the analysis represents an asymptote of the

actual joint resistance when the contact area is small. These two

limiting solutions can be blended to yield a comprehensive solution

which is valid over the full range of contact radius with correct

behaviors at the both limiting conditions.

R E S U L T S  A N D  D I S C U S S I O N S

In this section the analytical solutions are presented and the

predictions are compared with existing numerical and experimen-

tal data. The material resistance of the square plate assembly,

schematically shown in Fig. 1a, with a perfect contact over the en-

tire square interface can be accurately predicted from (Yovanovich,

1992)

(1)

 for L > (tl + t2) .
Also, as previously described, the method of separation of vari-

ables was used in solving the present conduction problems and the

following expressions are obtained for the resistances of the inner

and outer rings depicted in Figs. 2C and 2d:

Here, Ji(”) and ~(.) are the Bessel functions of the first and second

kinds of order i, respectively, and An is the n-th root of the tran-

scendental equation which satisfies the adiabatic boundary condi-

tion at r = a and the isothermal boundary condition at r = c:
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As previously discussed, Jj, which appears in the above equation

for ~i and in the factor ~C expressed below, is the thickness of the

inner-ring plate, given as

The factor JC has been introduced in Eq. (3) to account for the

axial-constriction effect which occurs in the outer-ring problem

due to the partially imposed isothermal condition at r = c when

tj>(C– a). It is given as

Note that this equation results in jc > 1 if Jj < tj or jc = 1 if

no axial constriction exists in the outer ring when 6j = tj. Also,

a = 7r/4 and the outer radius of the plate, b, is related to the

square plate dimension L as follows.

All of the above resistances are obtained based on the average

temperature rise of the source surface over that of the sink surface.

The total resistance of a plate is the sum of R and &, and the

total joint resistance of the upper and lower plates is the sum of

the resistances of the individual plates:

where the subscripts 1 and 2 correspond to the upper and lower

plates, as in tl and t2.

The above resistances, & and l?~, have been computed for

various cases with a set of plates having different thicknesses and

different contact radii. Polynomial approximations (Abramowitz

and Stegun, 1970) are used in evaluating the Bessel functions. It

typically requires about 20 terms of the series solutions to obtain

a resistance value with a 4 decimal place accuracy.

The results obtained for the cases where two mating plates are

of the same thickness, tl
= t2, are presented first. They are plotted

in Figs. 3 through 9 as functions of contact radius c. It is to be

mentioned that, by using dimensionless variables, all the analytical

predictions presented in this paper can be collapsed into a narrow

range, and many plots may possibly be combined into a single one”

However, the dimensional plots are presented here to allow the

cases to be compared separately with better clarity, Figures 3 to

8 display the curves obtained for copper plates (k = 398 W/mK)

with six different thicknesses ranging from t = tl = t2 = 1.59

to 12.7 mm, and Fig. 9 shows the results obtained for a set of

stainless steel plates (k = 19 W/mK) of 1.59 mm thick. All the

cases examined herein have a fixed bolt-hole size of 2 mm radius



and the plate dimension L = 25.4 mm. The material resistance

& is independent of the contact radius and, therefore, shown in

the figures as a constant function.

Also included in the figures are the finite element predictions

and the data obtained from the correlation equation of Song et

al. (1993a):

(lo)

which is shown to be in good agreement with the numerical results.

In addition, the experimentally measured total joint resistances

reported by Song et al., (1993a) are compared in Figs. 3 to 6. The

measured values agree well with the predictions obtained from

either the numerical method or the above correlation equation

when the plate thickness and the contact area are large. However,

the agreement becomes poor as the plate thickness and/or the

contact area becomes small.

As discussed in the previous section, it is clearly revealed in the

figures that & represents the minimum resistance to which the

total system resistance approaches as the contact radius increases,

and Rt represents the total system resistance at small contact radii.

These two limiting resistances, representing the asymptotic values

of the total joint resistance, can be blended (Churchill and Chu,

1975) to correctly yield the total joint resistance Rr as follows:

(11)

with the blending exponent n = 1.5. Recall that, in the limit

as the contact area becomes small, Rt is Rr. Therefore, as c ~

a, a full contribution of & to Rr is not necessary and, to re-

flect this through the blending, & is down-weighted by a factor

(c – a)/(b - a), as shown in the above equation. This factor pro-

0 2 4 6 8 10 12

Contact Radius, c (mm)

Figure 3: Thermal Resistance versus Contact Radius for Copper
Plates of Equal Thickness (k = 398 W/mK, t1 = tz = 1.59 mm)
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I I 1 II 1

0 2 4 6 8 10 12

Contact Radius, c (mm)
Figure 4: Thermal Resistance versus Contact Radius for Copper
Plates of Equal Thickness (k = 398 W/mK, tl = tz = 3.18 mm)

o 2 4 6 8 10 12

Contact Radius, c (mm)
Figure 5: Thermal Resistance versus Contact Radius for Copper
Plates of Equal Thickness (k = 398 W/mK, tl = t2 = 4.76 mm)

o 2 4 6 8 10 12

Contact Radius, c (mm)
Figure 6: Thermal Resistance versus Contact Radius for Copper
Plates of Equal Thickness (k = 398 W/mK, t1 = t2 = 6.35 mm)
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o 2 4 6 8 10 12

Contact Radius, c (mm)

Figure 7: Thermal Resistance versus Contact Radius for Copper
Plates of  Equal  Thickness (k =398 W/mK, t 1= t2= 9 . 5 3  m m )

gressively reduces the contribution of & as the contact radius

becomes small. The above blended solution is compared with the

numerical results in Fig. 10 for the previous cases with copper

plates and in Fig. 11 for the stainless steel case. As can be seen

from the figures, the comparisons resulted in excellent agreement.

Song and his co-workers (1993b) further investigated the simi-

lar problem involving bolted joints between two plates of unequal

thickness. They provided experimental results for various com-

binations of plates with different thicknesses, and extended their

correlation equation, Eq. (10), initially developed for the equal

thickness problem, to include the cases with unequal thickness.

This correlation is rewritten here as

(12)

I0 0  - t – – – I I 1 I 1
0 2 4 6 8 10 12

Contact Radius, c (mm)

Figure 8: Thermal Resistance versus Contact Radius for Copper
Plates of Equal Thickness (k = 398 W/mK, tl = t2 = 12.7 mm)

I1 1 I 1 I
o 2 4 6 8 10 12

Contact Radius, c (mm)

Figure 10: Comparison of Bolted Joint Resistances for Copper
Plates of Equal Thickness

45 I 1 f 1 I 1 I

*

t

Io t - - 1 1 I I 1
, 0 2 4 6 8 10 12

Contact Radius, c (mm)

Figure 11: Comparison of Bolted Joint Resistances for Stainless
Steel Plates of Equal Thickness

120



I

,

where th is the harmonic mean thickness of the two plates, defined

as

(13)

Also, an experimentally based correlation equation was pro-

vided for accurate estimation of the contact radius c as

where d denotes the washer or pressure radius of the bolted joint

(see Fig. lb). It is to be noted that, when t1 = t2, Eq. (12) reduces

to Eq. (lo).

The various resistances, including Rm and Rt, given by Eqs. (1)

and (9), and the total joint resistances computed from Eqs. (11)

and (12) are presented in Figs. 12 through 17 as a function of the

washer radius d for a variety of combinations of different plate

thicknesses. The contact radius c, required in computing Rm and

Rt, is obtained from Eq. (14). Again, the bolt-hole radius for these

cases is fixed at 2 mm and the plate dimension L = 25.4 mm. The

experimental data of Song et al. (1993b) are also included in the

figures. The measured values display the similar behavior pre-

viously observed in the equal thickness cases: a greater deviation

from the analytical and correlated predictions as the washer radius

(therefore the contact radius) and/or the plate thickness become

small. In general, the agreement between the correlations and the

present analytical predictions is good.

An attempt was made to develop an “improved” correlation

equation by utilizing the parametric groups appeared in the an-

alytical solutions. However, new expressions are found to be no

superior to the existing correlation given by Eq. (12) in terms of

its simplicity and accuracy. For this reason, no other correlation

is proposed as a result of this study.

C O N C L U S I O N S

The thermal resistance of a bolted joint between two concen-

tric square plates has been investigated. The mating plates are

of the same material but may be of different thicknesses. For

thermal analyses, it is assumed that the annular contact area at

the interface is given, and the plate surfaces are smooth and the

contact is perfect. Due to the lack of an orthogonal coordinate

system that conforms to the geometry and thermal boundary con-

ditions of the present problem, an approximate approach has been

employed to develop a simple, closed form expression for the to-

tal joint resistance. The final expression is obtained in the form

of a blended equation using the two asymptotic solutions, each of

which represents the correct limit of the joint resistance as the con-

tact area becomes either large or small. The results are presented

over a wide range of parameters including equal and unequal plate

o 1 2 3 4 5 6 7 8

Washer Radius, d (mm)

Figure 12: Thermal Resistance versus Washer Radius for Copper Plates
of Unequal Thickness (k = 398 W/mK, tl = 1.59 mm, t2 = 6.35 mm)
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0 2

o 1 2 3 4 5 6 7 8

Washer Radius, d (mm)

Figure 13: Thermal Resistance versus Washer Radius for Copper Plates
of Unequal Thickness (k = 398 W/mK, tl = 1.59 mm, t2 = 4.76 mm)
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Figure 14: Thermal Resistance versus Washer Radius for Copper Plates
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Figure 15: Thermal Resistance versus Washer Radius for Copper Plates
of Unequal Thickness (k = 398 W/m K, tl = 3.18 mm, t2 = 6.35 mm)

0 8 1 I 1 I { I t # 1

o 1 2 3 4 5 6 7 8
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Figure 16: Thermal Resistance versus Washer Radius for Copper Plates
of Unequal Thickness (k = 398 W/mK, tl = 3.18 mm, t2 = 4.76 mm)

0 1 2 3 4 5 6 7 8

Washer Radius, d (mm)

thicknesses, the plate thermal conductivity and the contact radius.

Comparisons of the present analytical predictions with existing fi-

nite element data resulted in excellent agreement. However, the

available experimental measurements show limited agreement with

both the numerical and present approximate solutions. It was con-

cluded that the existing simple correlation equation is adequate in

predicting the joint resistance over the range of parameters exam-

ined in this paper.
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