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ABSTRACT k thermal conductivity, W/mK

An analytical model is developed for predicting con-
striction and spreading resistances associated with heat
transfer from various electronic components under differ- 
ent modes of cooling. The model assumes a heat source
in contact with a larger cold plate which is in turn cooled
with a convective heat transfer coefficient specified over
the sink surface. Unlike existing models that mostly as-
sume limiting boundary conditions, such as isothermal
conditions, at the sink surface, the present solution al-
lows one to accurately determine the constriction and
spreading resistances in a plate with a full range of cool-
ing conditions varying from an isothermal condition in
one limit to a uniform heat-flux condition in the other
limit. Dimensionless expressions in the form of infinite
series are provided for computing the average and max-
imum constriction resistances as a function of relative
contact size, plate thickness and the Biot number. The
results are compared with published numerical data, and
the agreement is excellent over a wide range of parame-
ters typically found in microelectronics applications.

r, z
T
T,
t

rate of heat transfer, W
heat flux at the source surface, W / m2

constriction resist ante, 0C/ W
external resist ante, ‘ c / w
material resistance, ‘ c / w
cylindrical coordinates, m
temperature excess over ambient temperature, ‘C
temperature at the source, 0 C
plate thickness, m

Greek Symbols

7)( dimensionless coordinates, r/b, z/b
e dimensionless contact radius, a/b
A, empirical parameter given by Eq. (27)
An eigenvalue
T dimensionless plate thickness, t/b
a. dimensionless parameter defined by Eq. (26)
a. dimensionless parameter defined by Eq. (21)
@ dimensionless constriction resistance

Subscripts

NOMENCLATURE ave average
maz maximum

A, source area, m 2

A p plate area, mz
a source radius. m INTRODUCTION

Bi Biot number ‘= hb/k Constriction and spreading resistances exist whenever
b plate radius, m heat flows from one region to another of different cross
h heat transfer coefficient, W/m2K sectional area. The term constriction is used
Ji(.) Bessel function of the first kind of order i the situation where heat flows into a narrower
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across solder balls

Figure 1: Constriction
Electronics Packaging

through thermal vias

and Spreading Resistances in

spreading is used to describe the case where heat flows
out of a narrow region into a larger cross sectional area.
Except for the purpose of examining the effects of ther-
mal rectification due to the direction of heat flow, the
constriction and spreading resistances are often assumed
to be identical in magnitude in a given system and, there-
fore, may be used interchangeably. Figure 1 depicts a
typical example where combinations of such resistances
occur at different locations within a path of heat dissi-
pation. In many instances, the constriction and spread-
ing resistances may become greater than one-dimensional
material resist antes in a system, and represent an essen-
tial part of the total thermal resistance in predicting the
overall thermal performance of the device.

Many studies have been carried out to determine the
constriction/spreading resistances in a system similar to
the one investigated herein. Nelson and Sayers (1992)
used a control volume based finite difference method
to compute two-dimensional planar and axi-symmetric
spreading resistances with a uniform heat source and a
uniform external thermal resistance at the sink surface.
Dimensionless resistances are tabulated for ranges of rela-
tive source size and the inverse of the external resistance,
defined as the Biot number. Kennedy (1960) obtained
analytical solutions for axi-symmetric problems with a
uniform heat-flux source on a finite cylinder, but only
considered isothermal boundary conditions over the sink
surface. Design charts are provided over a range of geo-
metric parameters for cases where isothermal boundary
conditions are specified over different surfaces. However,
the assumption of isothermal surfaces at the cooling side
substantially limits the applicability of the solutions in
many practical problems and, in some cases, results in

constriction resistance values that are underpredicted by
as much as orders of magnitude. A general solution for
the thermal constriction resistance due to a flux applied
over a circular portion of the upper surface of a two-layer
compound disk with a film coefficient over the lower sur-
face has been presented by Yovanovich et al. (1979). Ne-
gus and Yovanovich (1987) developed a thermal modeling
procedure for predicting the temperature distribution of
a semiconductor die with multiple heat sources. They
considered general thermal boundary conditions over the
top surface of the die. However, as in Kennedy’s solu-
tion, isothermal conditions are assumed along the bot-
tom of the die. Mikic (1966), Cooper et al. (1969), and
Yovanovich and Schneider (1977) presented resistances
for problems involving semi-infinite domains, such as a
uniform heat-flux source on a half-space or a semi-infinite
heat-flux tube.

Although there exists a large number of solutions and
calculated data available for obtaining various types of
constriction and spreading resistances, a simple, practical
solution that is capable of dealing with general bound-
ary conditions over the sink surface has not been devel-
oped. With this in mind, the present investigation was
carried out to obtain analytical solutions to a problem
that involves general boundary conditions. The resulting
solutions, described in this paper, are of the infinite se-
ries form, and are an extension to Kennedy’s isothermal
solution (1960). Then, baaed on the present solutions,
a set of closed form, algebraic approximations is devel-
oped by the current authors for calculating the average
and maximum constriction resistances. The final approx-
imate expressions are included herein, but details of the
development are presented elsewhere (Song et al., 1994).

Naraghi and Antonetti (1993) used a numerical
method to compute constriction resistances of a single
heat source of various shapes located on a heat-flux tube 
of different contours. As noted by Yovanovich and his co-
workers in their studies dealing with a contact source on 
a half-space (Yovanovich, 1976; Yovanovich and Burde,
1977; Yovanovich et al., 1977), they demonstrated that
the dimensionless constriction resistances are a weak
function of the shape of the contact configuration when
the square root of the contact area is used as the char-
acteristic length and the area ratio is kept constant: see
Figure 2. The relative difference is shown to become
greater as the area ratio increases. However, at large area
ratios, the constriction resist ante is often much smaller
than other resistances in the system that the impact or
the difference introduced in the constriction resistance of
the total system resistance is usually insignificant. The
finding allows the constriction and spreading resistance
obtained for one contact shape to be readily used
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Figure 2: Dimensionless Resistance versus Dimension-
less Source Area for Different Source Contours and Flux-
Tubes (Naraghi and Antonetti, 1993)

other configurations without introducing a large discrep-
ancy. The same exercise has been practiced in other stud-
ies with great success (Yovanovich, 1992; Lee et al., 1992,
1993).

THERMAL MODELING

Consider an example problem shown in Figure 3. A de-
vice is mounted on a substrate which is attached to a heat
sink with a known average external sink-to-ambient ther-
mal resistance. Since the majority of the heat dissipated
by the device will flow through the substrate and into the
heat sink, the heat loss through the other exposed sur-
faces may be assumed negligible, and the thermal sys-
tem can be approximated by a simple serial resist ante
network included in the figure. The thermal resistances
shown in the figure represent the total resistances of the
corresponding parts. For the chip and substrate, they can
be considered as a combination of one-dimensional mate-
rial and spreading resistances and, in the case of the heat
sink, the total resistance consists of the sink-to-ambient
resistance and the spreading resistance in the base plate.

Many semiconductor devices are square or rectangu-
lar. However, as discussed in the previous section, the

Figure 3: Example Problem and Thermal Network

Figure 4: Thermal

spreading resistances associated with the different parts
of the system shown in Figure 3 can be determined by
considering the axi-symmetric problem described in Fig-—
ure 4, provided that the square root of the area is used as
the characteristic length, and the same area ratio is used.
Heat enters the top surface of the plate over a concentric
circular surface of radius a and leaves the plate of ra-
dius b through the bottom surface over which a uniform
heat transfer coefficient, or an external resistance is pre-
scribed. The remaining top and side surfaces are assumed
to be adiabatic. For non-circular devices, the equivalent
contact and plate radii are obtained as follows:

(1)

(2)

where As is the contact area of the heat source, and A p

is the area of the base plate.

The governing differential equation for this problem is
Laplace’s equation in a two-dimensional cylindrical coor-
dinate system:

(3)
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The boundary conditions are

o,

(4)

(5)

(6)

(7)

where k is the thermal conductivity, and T is the local
temperature excess over the ambient fluid temperature.
The heat source is represented by q, denoting the uniform
heat flux over the contact area, and h is the constant heat
transfer coefficient at the bottom surface. If an external
thermal resistance, I?f,  is specified as the boundary con-
dition for the bottom surface, the following expression
can be used for conversion:

1

Upon using the method of
solution for the temperature
obtained as

. ,
J r

separation of variables, the
distribution in the plate is

(9)

where c = a/bt r = t/b, ( = z/b and y = r/b. Jo(.)
and J1 (,) are the Bessel functions of the first kind of
order O and 1, and the eigenvalue An is the n-th root of
the transcendental equation which satisfies the adiabatic
boundary condition at ~ = 1:

Also, the Biot number is defined as

(11)

The average and maximum total resist antes are defined
as

R
T

ave — Q
(12)

R
Ts ~~=

maz ~ —= R1+G+RC...
Q

(13)

where the area-averaged temperature over the contact re-
gion and the maximum local temperature at the center of
the contact can be determined from the following expres-
sions using the temperature solution given by Eq. (9):

and Q is the total rate of heat flow:

(14)

(15)

Q = qA (16)

In Equations (12) and (13), R f and R m denote the
external and material resistances*, given as

and RCmve and Rema= are the average and maximum con-
striction resistances. Upon evaluating Equations (14)
and (15), closed-form expressions for the dimensionless
constriction resistances can be obtained by rearranging

 Equations (12) and (13) as

~ J~(&c) @n (19)
w ave ~ k& RCmwe  =  —

$E ~ .A~J~(&)
n=l

m Jl(Aa~) an
@ =max — k& RCm6= = —

& .~ ‘2Ji(~n)

where

RESULTS AND DISCUSSION

Table 1 contains a list of solutions available for the di-
mensionless average constriction resistances. The super-
script T indicates that the results are for the cases with
an isothermal source rather than with a uniform flux one.
Also, in order to account for the differences in the choice
of the characteristic length, the values of WT shown in the
table are modified from the reported values by a factor
of fi/2. The generality of the present solution can be
easily seen from the table as it becomes identical to the
other analytical solutions under limiting conditions: the
present solution becomes Kennedy’s isothermal solutions
as Bi approaches infinity and further becomes identical
to Yovanovich’s infinite-t solution as T becomes large.

2 0 2



Table 1: Available Solutions and Correlations for W.ti

Reference Boundary Conditions Solution

@
Mikic, 1966 b~oo w:”e = ~

Yovanovich and t+(x) v ave = 0.479

Schneider, 1977

14:ue(c) = fi
Cooper et al. t+ocl ~ (1 - ,)3/2

1969
4 w  J;(AnE)

Yovanovich xW a v e ( E )  = fi~ .=, A: J~(An)

1992

m J~(Anc)  tanh(~~~)
Kennedy, 1960 iso-~at 2=0 Eqlav.(~,~)  =  ;, ~=,

A: J:(AJ

~ J~(&c)  tanh(&~) +  ~
Present ho r  Rfa t z=O Vave(c, T,Bi)  = —

:E ‘1 ~;Jf(~.) 1 + ~t~h(h~)
n=

The dimensionless constriction resistant= obtained in The results are compared with the numerical data of

the previous section have been computed. Polynomial Nelson and Sayers (1992) in Figures 5 through 9 for c

approximations (Abramowitz and Stegun, 1970) are used values ranging from 0.05 to 0.833, and 13i from O to

in evaluating the Bessel functions, and the Newton- infinity. As can be seen from the figures, near perfect

Raphson method is used in determining the eigenvalues. agreement is shown between the present solution and the

The computation typically requires no more than 100 numerical results over the full range of parameters ex-

terrns of the series solutions to obtain resist ante values amined herein. As the plate thickness increases beyond

with a 4 decimal place accuracy, each caae taking less T x 0.6, it is observed that the constriction resistance

than a second using a personal computer. becomes independent of both the plate thickness and the

Dimensionless Plate Thickness, ~

Figure 5: Comparison of Theory with Numerical Solution
for Dimensionless Source Area c = 0.05

Dimensionless Plate Thickness, r

Figure 6: Comparison of Theory with Numerical Solution
for Dimensionless Source Area c = 0.125
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Dimensionless Plate Thickness, T

Figure 7: Comparison of Theory with Numerical Solution
for Dimensionless Source Area c = 0.25

Biot number, leaving the relative contact size c as the
only parameter upon which the constriction resistance
primarily depends. This singular dependency on c is in
accordance with the infinite-t solutions shown in Table
1, and was expected since the pattern of heat flow near
the source region would not be affected by the changes in
conditions far away from the source. This also illustrates
that, as observed by Mikic (1966), the constriction is
a rather localized phenomenon confined mostly in the
vicinity of a heat source.

For fixed c and ~, the maximum constriction resistance
is observed when the Biot number approaches O. In this
limit, the bottom surface becomes iso-flux, and the re-

j

(Nelson & Sayers, 1992)

-i
OCOCIO  Bi. r=l
.,AA6 Bi. r=10

.-
0.01 0.1 1 IU

Dimensionless Plate Thickness, T

Figure 9: Comparison of Theory with Numerical Solution
for Dimensionless Source Area e = 0.833
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Dimensionless Plate Thickness, T

Figure 8: Comparison of Theory with Numerical Solution
for Dimensionless Source Area c = O.5

sistance value obtained under this condition represents
the upper bound for the resistance of an actual situation
where the Biot number would always be finite and non-
zero, The minimum constriction resistance, or the lower
bound, corresponds to the case where the Biot number
approaches infinity. In this limit, the bottom surface be-
comes isothermal.

Comparison with Kennedy’s isothermal solution (1960)
is provided in Figure 10 for e = 0.1. Note the large dis-
crepancy that may have been introduced if Kennedy’s
solution was used for cases where the plate is relatively
thin and the Biot number, the dimensionless heat tran-
fer coefficient, is small. For example, consider a C=

Bi~O
Bi = 0.1
Bi=l f

-—-

4

Oul ! I
1

ao {
0.01 0.1

d

Dimens ion le s s  P l a t e  Thickness!  ~ ~

Figure 10: Comparison of Present Soluti~, .?$
Kennedy’s Isothermal Solution for Dimensionl~  ,..
Area c = 0.1
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where c = r = 0.1, and Bi = 1.0. For this case, the di-
m ensionless constriction resistance is 0.641, and the non-
dimensionalized  material and external film resistances,
obtained  from

(2)

are 0.006 and 0.056, respectively, resulting in the total
value of 0.703. On the other hand, if the isothermal
solution WaS used, it would have yielded 0.376 for the
constriction resistance and 0.438 for the total resistance,
resulting in an underprediction of the actual total resis-
tance by 38Y0.

Based on the solutions presented in this paper, sim-
ple approximations are developed by the present authors
for the dimensionless constriction resistances (Song et
al., 1994). They are rewritten here as

where

,,

with

u? maz = ;(1-6)%
T

1

(4)

(5)

(6)

As reported by Song et al., the above correlations agree
with the present analytical solutions well within 10To over
the range of parameters commonly found in microelec-
tronics applications.

CONCLUSIONS

The constriction and spreading resistances in a plate
with a uniform heat-flux region on one surface and a
thermal boundary condition of the third kind prescribed
over the other surface have been investigated analytically.
Closed form expressions are obtained for the dimension-
less average and maximum constriction resistances as
functions of three independent variables, namely rela-
tive contact radius, plate thickness and the Biot number.
The results are presented over a wide range of parameters
typically found in a variety of microelectronics applica-
tions. Comparisons with existing numerical data resulted
in near perfect agreement. It was found, for relatively
thick plates (~ > 0.6), that the constriction resistance is

insensitive to the changes in both the plate thickness and
the Biot number, and becomes solely depend on the rela-
tive contact size of the heat source. Kennedy’s isothermal
solution represents the lower bound for the constriction
resistance, and it severely underestimates actual resis-
tance values if the plate is relatively thin and the Biot
number is not large. Additionally, simple correlations are
developed as an extension to the present study and are
included here for practical estimation of the resistances.
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