Technical Reference Note

Embedded Power for Business-Critical Continuity

> Rev.10.07.06_#2.0 ADN-C Series Page 1

ADN-C Series

120 - 480 Watts

Industrial

Total Power: 120 - 480 Watts **Input Voltage:** 85-264 Vac

90-375 Vdc

of Outputs: Single

Special Features

- · Slim form factor
- Five year warranty
- High Efficiency > 90% Typ.
- Full Power at 60 °C
- Power Boost™
- · Industrial Grade Design
 - · Patented metal mounting clip
 - · Metal case
- MTBF > 450Khr demonstrated at 40°C 115Vac
- Active PFC > 0.92
- Adjustable output
- OVP protection with autorecovery
- Continuous short circuit and overload protection
- SEMI F47 Sag Immunity
- 3 Status LEDs Input / Output / Alarm
- DCOK Relay
- · Parallel operation capability
- · Screw terminal connections
- RoHS Compliant
- · No tools required for mounting

Safety

- · UL 508, cULus Listed
- UL 60950-1, cURus
- IEC 60950-1
- · Class I, Div 2 Hazardous Locations
- IP20
- CE

Product Descriptions

The ADN-C series has improved upon the superior reliability of the ADN Series of AC-DC power supplies with increased Mean Time Between Failure (MTBF) by reducing the part count and strategic use of high quality components. In addition to being extremely reliable by design, the ADN-C has built-in protection from over temperature, overloads and short circuits. This ensures that reliability is not compromised by operation temporarily outside of normal conditions. Intuitive visual diagnostics help ensure easy troubleshooting when such conditions occur so that equipment downtime can be minimized.

The ADN-C series features a universal 85-264 Vac input – enabling it to be used anywhere in the world – and is also capable of operating from a 90-375 Vdc input. The power supply produces a tightly regulated 24V output of up to 480W continuously with convection cooling. The main output can be adjusted over the range from 22.5V to 28.5V (24V to 28V for ADN20-24-1PM-C) over nominal factory set output voltage of 24.5V

Active power factor correction is employed to minimize input harmonic current distortion and ensure compliance with the international EN61000-3-2 standard. The power supplies have a full load ambient operating temperature range of -25 to +60 degrees Celsius without de-rating at convection cooling condition. Operation between 60 and 70 degrees Celsius, the output should be derated by 5 percent per degree.

Model Numbers

Rev.10.07.06_#2.0 ADN-C Series Page 2

Standard	Output Voltage	Minimum Load	Maximum Load Current (I _{O,max})	Maximum Load Power (P _{O,max})
ADN5-24-1PM-C	24Vdc	0A	5A	120W
ADN10-24-1PM-C	24Vdc	0A	10A	240W
ADN20-24-1PM-C	24Vdc	0A	20A	480W

Options

None

Absolute Maximum Ratings

Rev.10.07.06_#2.0 ADN-C Series Page 3

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage: AC continuous operation DC continuous operation	All models All models	V _{IN,AC} V _{IN,DC}	85 90		264 375	Vac Vdc
Maximum Output Power, continuous	ADN5-24-1PM-C ADN10-24-1PM-C ADN20-24-1PM-C	P _{O,max}	- - -	- - -	120 240 480	W
Isolation Voltage Input to outputs Input to safety ground Outputs to safety ground	All models All models All models		- - -	- - -	2500 2500 100	Vdc Vdc Vdc
Ambient Operating Temperature	ADN5-24-1PM-C ADN10-24-1PM-C ADN20-24-1PM-C	T _A	-10 -10 -25	- - -	+70 ^{1,2} +70 ^{1,2} +70 ^{1,2}	°С
Storage Temperature	ADN5-24-1PM-C ADN10-24-1PM-C ADN20-24-1PM-C	T _{STG}	-25 -25 -40	- - -	+85 +85 +85	ōС
Humidity (non-condensing) Operating Non-operating	All models All models		5 0		90 95	%
Altitude Operating Non-operating	All models All models		0 -1,000		10,000 50,000	feet feet

Note 1 - Derate each output at 5% per degree C from 60°C to 70°C

Note 2 - Operation up to 50% load permissible with sideways (horizontal) or front side up (top) mounting orientation

Electrical Specifications

Rev.10.07.06_#2.0 ADN-C Series Page 4

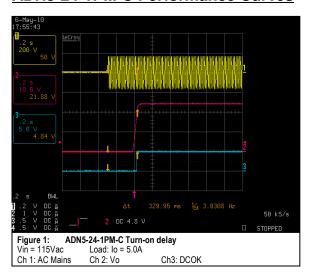
Input Specifications

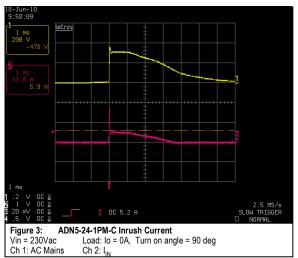
Table 2. Input Specifications:

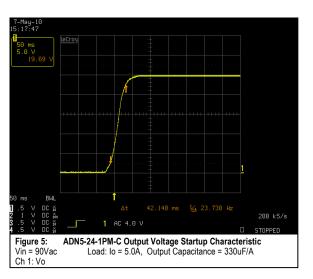
Parameter		Conditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, AC		All	V _{IN,AC}	85	115/230	264	Vac
Input AC Frequency		All	f _{IN}	43	50/60	67/400	Hz
Operating Input Voltage	, DC	All	V _{IN,DC}	90	-	375	Vdc
Maximum steady state Input Current	ADN5 ADN10 ADN20	$V_{IN,AC} = 85V_{AC}$	I _{IN,max}		-	4 - 8.0	Aac
Harmonic Line Currents	5	All	THD	Pe	r EN61000-	3-2	
Power Factor		$I_{O} = I_{O,max}$ $V_{IN,AC} = 85 \text{ to } 264 \text{Vac}$	PF	0.92	-	-	
Startup Surge Current (Inrush) @ 25°C	ADN5 ADN10 ADN20	$V_{IN,AC} = 264V_{AC}$	I _{IN,surge}	- - -	- - -	15 30 40	A _{PK}
Input Fuse	ADN5 ADN10 ADN20	Internal, L line 250VAC rated MXEP type		-	-	3 5 10	А
Input AC Low Line Start	-up Voltage	$I_{O} = I_{O,max}$	V _{IN,AC-start}	70	-	78	Vac
PFC Switching Frequen	су	All	f _{SW,PFC}	43	-	53	kHz
DCDC Switching Freque	ency	All	f _{SW,DC-DC}	84	-	90	kHz
Efficiency (T _A = 25°C, forced air cooling)	ADN5 ADN10 ADN20	$V_{IN,AC} = 230 Vac$ $I_O = I_{O,max}$	η	- - -	90 90 92	- - -	%
Hold Up Time		$V_{IN,AC} = 100 Vac$ $P_O = P_{O,max}$ $T_A = 25 ^{\circ}C$	t _{Hold-Up}	20	-	-	mSec
Turn On Delay Resistive Load Capacitive Load		$V_{IN,AC} = 85Vac$ $I_O = I_{O,max}$	t _{Turn-On}	-	-	1.0 1.5	Sec

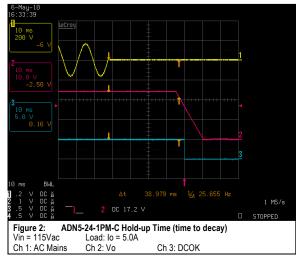
Output Specifications

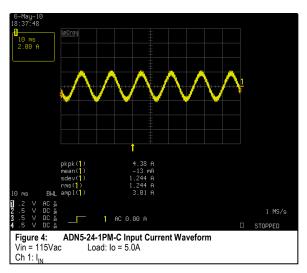
Table 3. Output Specifications:

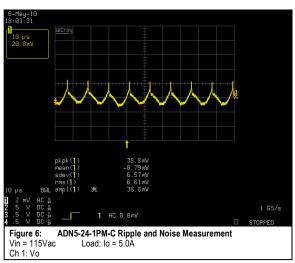

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Factory Set Voltage	All models	I _O = 0A	V _{O,Factory}	24.25	24.50	24.75	V
Output Adjust Range	ADN5 ADN10 ADN20	I _O = 0A	Vo	22.5 22.5 24.0		28.5 28.5 28.0	V
Line / Load Regulation	All models	$V_{IN,AC}$ = 85 to 264Vac I_{O} = 0 to $I_{O,max}$	V _O	-0.5	1	+0.5	% V _O
Total Regulation	All models	Inclusive of line, load temperature change, warm-up drift	Vo	-2.0	1	+2.0	% V _o
Output Ripple, pk-pk	ADN5 ADN10 ADN20	See note 1	Vo			50 50 100	mV _{PK-PK}
Output Current, continuous	ADN5 ADN10 ADN20	0	I _{O,max}	0 0 0	- - -	5 10 20	А
Maximum Output Power, continuous	ADN5 ADN10 ADN20	See note 2 and 3	P _{O,max}	- - -	- - -	120 240 480	w
Output Current, peak	ADN5 ADN10 ADN20	V _O ≥ 20.0V, 4 sec max	I _{O,peak}	7.5 15 30	- - -	- - -	А
Output Current, short circuit	All models	$V_0 \le 0.5V$, auto recovery	I _{O,SC}	160	-	-	% I _{O,max}
Dynamic Response - Peak Deviation	All models	50% to 100% of I _{O,max} load change	±%V _O	-	-	2	%
Dynamic Response - Setting Time	All models	Slew rate = 1A/µs Output capacitance = 100µF/A	t _s	-	-	-	mSec
Turn On Overshoot	All models	I _O = 0	%V _O	-	-	2	%
Over Voltage Protection	Over Voltage Protection		V _O	30.5	-	33.0	V
Back EMF Immunity		No damage, auto recovery	V _O	-	-	35.0	V
Load Capacitance	All models	Startup	C _o	0	-	7000	μF
Over Temperature Protection		All		Auto Recovery			

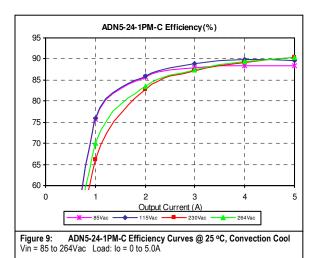

Note 1 $\,$ - Measure with a $0.1\mu F$ ceramic capacitor in parallel with a $10\mu F$ tantalum capacitor using a 20MHz bandwidth limited oscilloscope

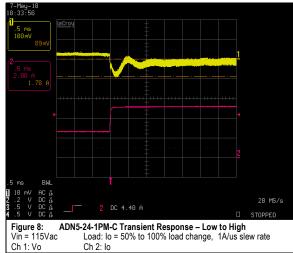

Note 2 - Standard operating orientation is front side facing forward.

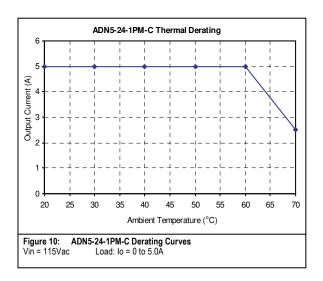

Note 3 - Operation up to 50% load permissible with sideways (horizontal) or front side up (top) mounting orientation


ADN5-24-1PM-C Performance Curves

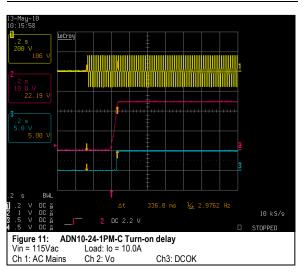


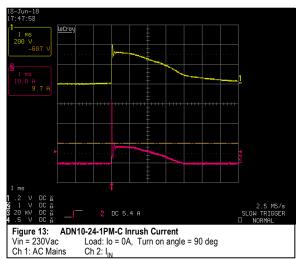


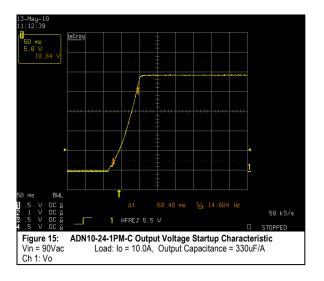


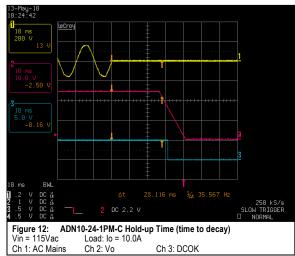

ADN5-24-1PM-C Performance Curves

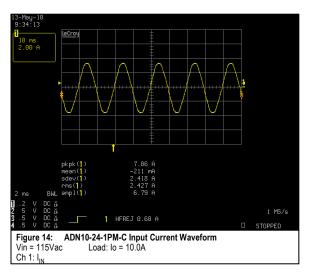
7-May - 10
10:41:38

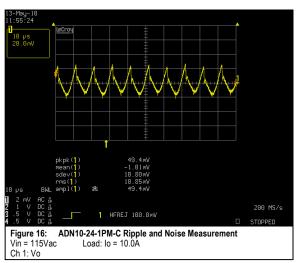

15. ms
100 mV
96 mV
96 mV
96 mV
2.5. ms
2.00 a
1.91 A
1.91 A
1.91 A
2.5. ms
2.00 A
2.5. v 0 C &
3.5. v 0 C &
4.5. v 0 C &
5. TOPPEO
Figure 7:
Load: Io = 100% to 50% load change, 1A/us slew rate
Ch 1: Vo
Ch 2: Io

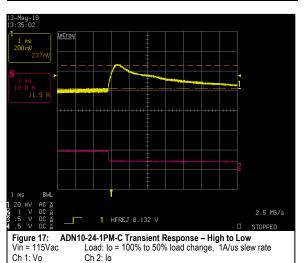


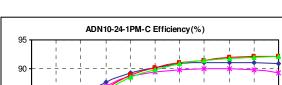




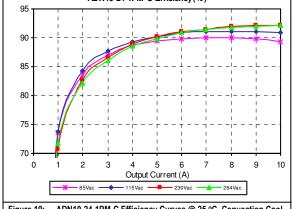
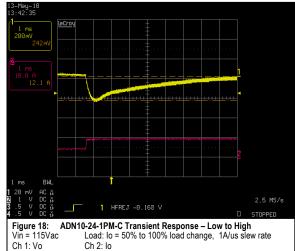
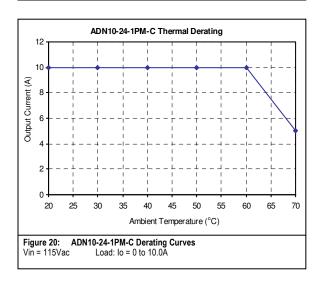
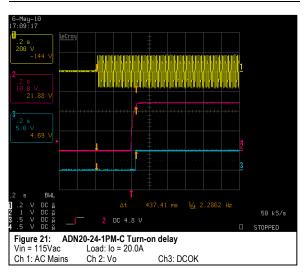

ADN10-24-1PM-C Performance Curves

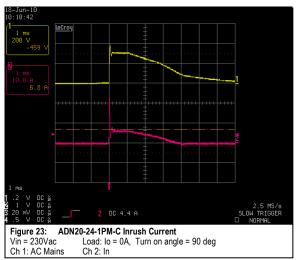


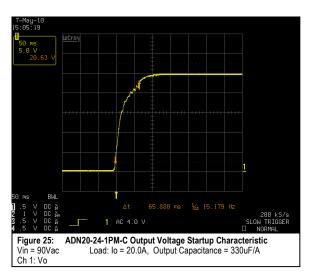


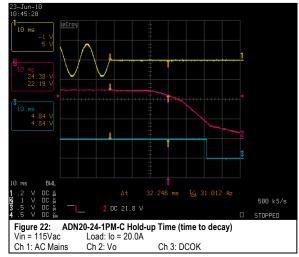


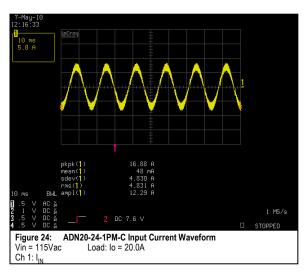
ADN10-24-1PM-C Performance Curves

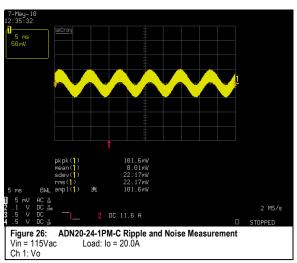






Figure 19: ADN10-24-1PM-C Efficiency Curves @ 25 °C, Convection Cool Vin = 85 to 264Vac Load: lo = 0 to 10.0A

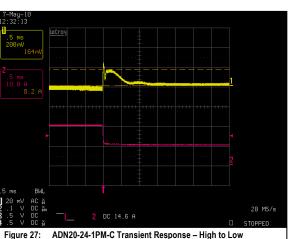


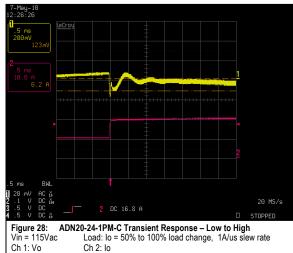


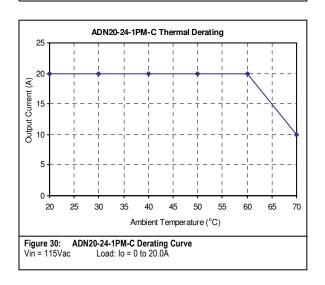

ADN20-24-1PM-C Performance Curves



ADN20-24-1PM-C Performance Curves



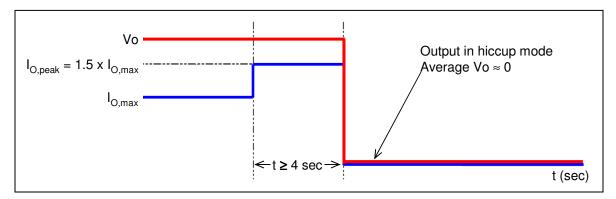

 Figure 27:
 ADN20-24-1PM-C Transient Response – High to Low


 Vin = 115Vac
 Load: lo = 100% to 50% load change, 1A/us slew rate

 Ch 1: Vo
 Ch 2: lo

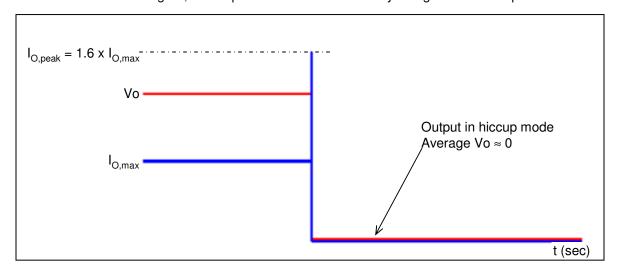
Figure 29: ADN20-24-1PM-C Efficiency Curves @ 25 °C, Convection Cool Vin = 85 to 264Vac Load: lo = 0 to 20.0A

Protection Function Specifications


Rev.10.07.06_#2.0 ADN-C Series Page 12

Over Voltage Protection (OVP)

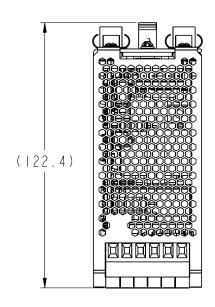
The power supply main Vo output will latches off during output overvoltage condition with the AC line recycled to reset the latch.

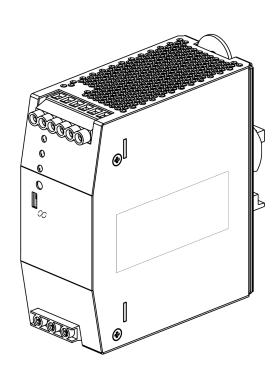

Over Current Protection and PowerBoost™

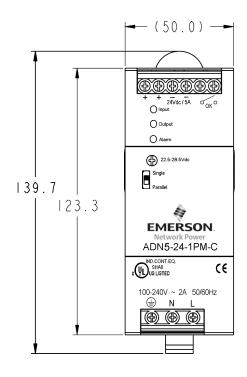
With PowerBoostTM, the ADN-C power supplies can supply a higher output current for a short period of time without the output voltage breaking down. When an overload occurs, the output current can increase up to 1.5 times its nominal rating for four seconds. If the overload lasting for longer than 4 seconds, the power supply will go into hiccup mode for protection. Refer to PowerBoostTM diagram below for details.

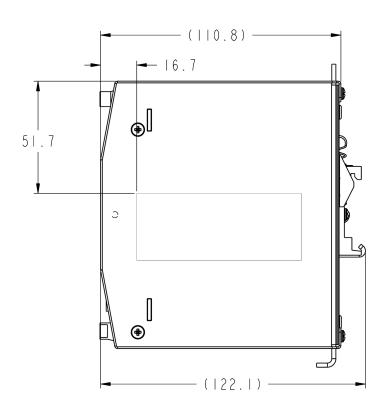
Short Circuit Protection (SCP)

The ADN-C series power supply is protected against short circuit to its output. A short circuit is defined as 0.03-ohm resistance or less between the output terminals. When a short circuit condition occurs, the output current can reach 160% of the rated current or higher, the output will shut off immediately and goes into hiccup mode.

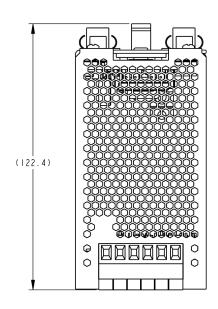


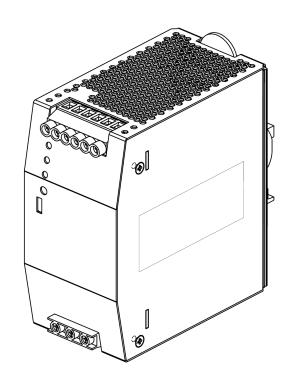

Mechanical Specifications

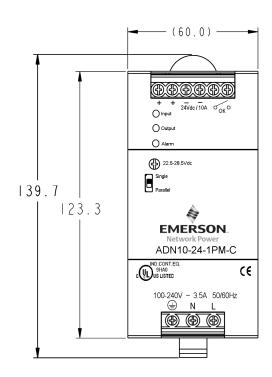

Rev.10.07.06_#2.0 ADN-C Series Page 13

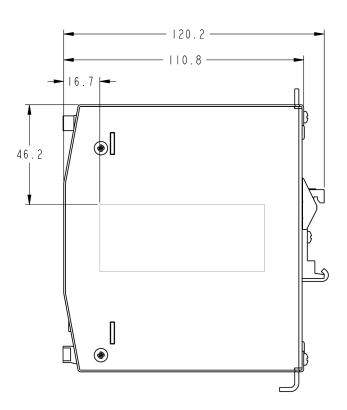

Mechanical Outlines

ADN5-24-1PM-C

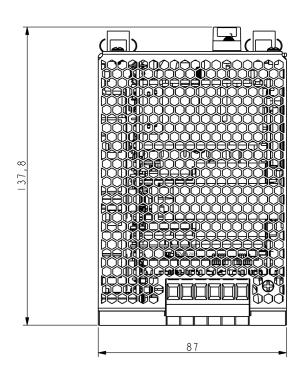


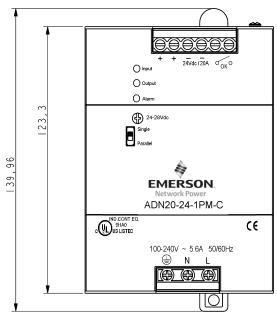


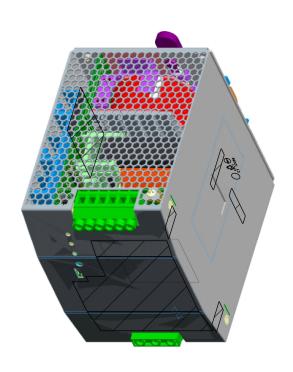


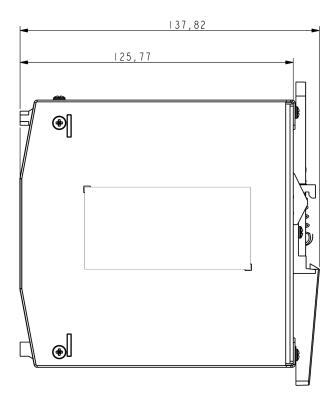

Mechanical Outlines

ADN10-24-1PM-C

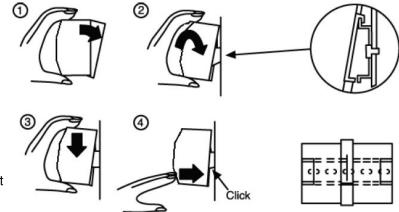






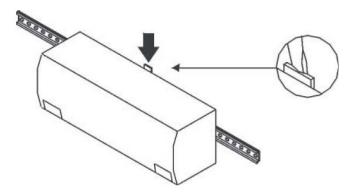

Mechanical Outlines

ADN20-24-1PM-C

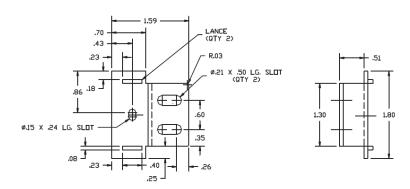


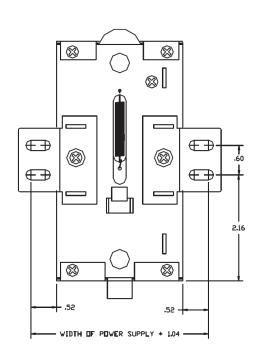
Mounting

DIN rail mounting


(DIN TS35/7.5 or TS35/15 rail system)

- 1. Tilt unit slightly backwards
- 2. Put it onto the DIN Rail
- 3. Push downwards until stopped
- 4. Push at the lower front edge to lock
- 5. Shake the unit slightly to ensure that the retainer has locked


Alternative Panel Mount: Using the optional accessory, the unit can be screw mounted to a panel.


Detachment from DIN rail:

Chassis mounting

Instead of mounting on DIN rail, a ADN-C series power supply can also be attached to chassis by using two metal brackets, which replace the existing two aluminum profiles.

Rev.10.07.06_#2.0

ADN-C Series

Page 16

Mounting Orientations

Rev.10.07.06_#2.0 ADN-C Series Page 17

Vertical (Standard)

- AC Input connector on TOP
- LED indicators face FRONT
- No derating require

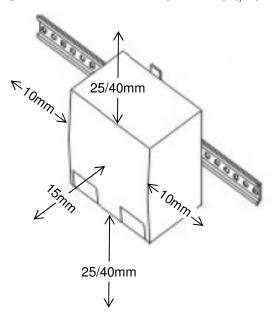
Horizontal (Sideways mount)

- AC Input and Output connectors on horizontal plane
- LED indicators face FRONT
- Maximum output = 50% rated output current

Top mount (Front side up)

- LED indicators face UP
- Maximum output = 50% rated output current

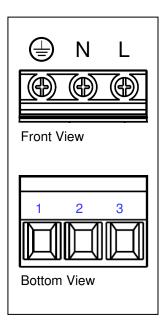
Mounting Space

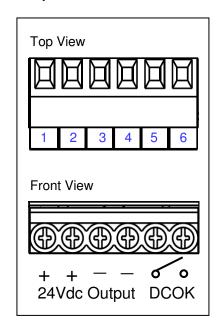

Free space (minimum)

ADN5-24-1PM-C / ADN10-24-1PM-C

- 15mm in front, 25mm above and below, 10mm left and right

ADN20-24-1PM-C


- 15mm in front, 40mm above and below, 10mm left and right


Connector Definitions

Rev.10.07.06_#2.0 ADN-C Series Page 18

AC Input Connector

Output Connector

Connector Type and Wire Sizes

Table 7. Connector type on ADN-C series

Reference	Description	Wire Size
Input AC Connector	3-Pole, 9.52mm Pitch, Euro Type, Cage Clamp Terminal Block	10 to 16 AWG (1.5 to 6 mm ²) solid wire
Output Connector	6-Pole, 6.35mm Pitch, Euro Type, Cage Clamp Terminal Block	10 to 16 AWG (1.5 to 6 mm ²) solid wire

AC Input Connector

These terminals supply the AC Mains to the ADN-C series power supply.

Pin 1 - Earth Ground (Safety Ground)

Pin 2 - Neutral

Pin 3 - Line

Output Connector

ADN-C Series
Page 19

These terminals provide the main output for the ADN-C power supply and the DCOK contact output.

Pin 1 & 2 - (+) 24V Output (Vo)

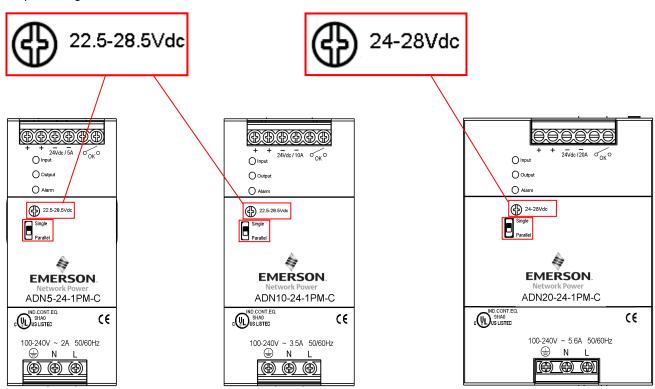
Pin 3 & 4 - (-) 24V Output (Vo Return)

Pin 5 & 6 - DCOK

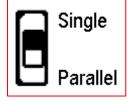
The Vo and the Vo Return terminals are the positive and negative rails, respectively of the main output of the ADN-C series power supply. The Main Output is electrically isolated from the Earth Ground and can be operated as a positive or negative output.

DCOK - (Pin 5 and Pin 6)

DCOK is a dry relay contact output capable of switching up to a maximum of 0.2A / 50Vdc

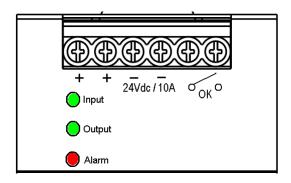

Relay contact close - DC OK - Output 24V available

Relay contact open - DC Fail - Output 24V failed


Switches and Potentiometer Definitions

Rev.10.07.06_#2.0 ADN-C Series Page 20

Vo adjustment - The output of the ADN-C series power supply can be adjusted from its nominal output voltage via the front trim pot screw. Clockwise rotation will increase the output voltage while counterclockwise rotation will decrease the output voltage.



Single / Parallel switch - The outputs of two or more of ADN-C series power supplies can be connected in parallel to increase the total current capability. When operate the ADN-C power supplies in parallel, the Single / Parallel switch on each of the ADN-C power supply should be placed in the parallel position. Units will not be damaged by parallel operation (regardless of switch position setting)

LED Indicator Definitions

Rev.10.07.06_#2.0 ADN-C Series Page 21

Three user-friendly LEDs for status and diagnostics

Shows status of input power, output power and alarm condition

Valuable troubleshooting aid to reduce system downtime

LED Diagnostics										
LED	LED OK Loss of AC Low AC No DC High Load Overload Hot Too Hot									
Input	Green		Amber	Green	Green	Green	Green	Green		
Output	Green		Green		Amber	Amber	Green			
Alarm				Red	Amber	Red	Amber	Amber		

 Weight
 Rev.10.07.06_#2.0

 ADN5-24-1PM-C
 - 1.65 lb (0.75kg)

Rev.10.07.06_#2.0
ADN-C Series
Page 22

ADN5-24-1PM-C - 1.65 lb (0.75kg)
ADN10-24-1PM-C - 1.98 lb (0.90kg)
ADN20-24-1PM-C - 2.60 lb (1.20kg)

Environmental Specifications

Rev.10.07.06_#2.0 ADN-C Series Page 23

EMC Immunity

The ADN-C Series power supply is designed to meet the following EMC immunity specifications

Table 5. Environmental Specifications:

Document	Description
EMC Emission:	
EN55011, Class B	Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radiofrequency equipment
EN55022, Radiated and Conducted including Annex A	Information technology equipment. Radio disturbance characteristics. Limits and methods of measurement
EN61000-3-2	EMC limits for harmonic current emissions for equipment with input current up to and including 16A per phase
EN61000-6-3: 2001	EMC Emission standard for residential, commercial and light industrial environments
EMC Immunity:	
EN61000-6-1: 2001	Immunity Standard for Residential, Commercial and Light-Industrial Environments
EN61000-6-2: 2001	Immunity Standard for Industrial Environments
EN61000-4-2 Level 4	ESD, Electrostatic Discharge
EN61000-4-3 Level 3	Radiated, radio-frequency, electromagnetic field immunity test
EN61000-4-4 Level 4 input EN61000-4-4 Level 3 output	Electrical Fast Transient/Burst Immunity Test
EN61000-4-5 Isolation Class 4	Surge immunity test
EN61000-4-6 Level 3	Immunity to conducted disturbances, induced by radio-frequency fields
EN61000-4-11	EMC standard is applicable to power supplies whose input current (I_{IN}) is below 16A
IEC 61000-4-34	Voltage dip immunity standard
SEMI F47 Sag Immunity	
General Protection Safety:	
IEC536	Protection Class 1
IEC60529	IP20
IEC60950-1	SELV

Safety Certifications

Rev.10.07.06_#2.0 ADN-C Series Page 24

The ADN-C series is suitable for use in Class I, Division 2, Groups A, B, C, and D hazardous locations or non-hazardous locations only.

The ADN-C series has been designed in accordance with following safety standards. Appropriate safety certificates and approvals are available to download from our website www.powerconversion.com.

Table 6. Safety Certifications for ADN-C series power supply

Document	Description
UL508 Listed, cULus	Standard for Industrial Control Equipment
UL60950-1, cRUus	Safety of information Technology Equipment
IEC/EN60950-1	Safety of information Technology Equipment
ATEX Certification	Class 1, Division 2 hazardous location, Groups A, B, C, D w/ T3A temp class up to 40°C Ambient
CB Certificate and Report	(All CENELEC Countries)
CE Mark	LVD (73/23 &2004/108/EC) EMC (89/336 & 93/68/EEC)

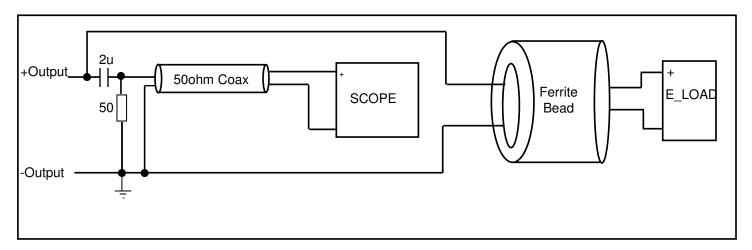
Operating and Non-Operating Conditions

Rev.10.07.06_#2.0 ADN-C Series Page 25

The ADN-C Series power supply is designed to meet all of its specifications during any combination of operating ambient conditions and after exposure to any combination of non-operating ambient conditions specified in this section.

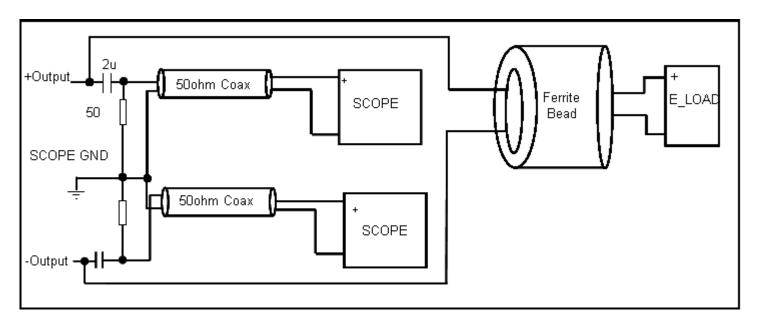
Table 4. Maximum Ambient Conditions:

Parameter		Model	Symbol	Min	Тур	Max	Unit		
Ambient Operating Temperature		ADN5 ADN10 ADN20	T _A -10 - +70 ¹ -10 - +70 ¹ -25 - +70 ¹				ōС		
Storage Te	mperature		All	T _{STG}	-25	-	+85	ºC	
ADN10			ADN5 ADN10 ADN20	Accordance to IEC 68-2-27 3g peak, 11 milliseconds half-sine pulse 15g peak, 11 milliseconds per IEC 60068-2-6 3g peak, 11 milliseconds half-sine pulse					
Vibration Operating			All	Accordance to Vibration (Sinusoidal) per IEC 68-2-6 0.15 gravity (g) peak, 5–500 Hz (swept sine); 5–500 Hz (random); vertical axis only					
MTBF	Convection 40	0 ºC	ADN5 ADN10 ADN20	>550,000hrs >550,000hrs >450,000hrs					


Note 1 - Derate each output at 5% per degree C from 60°C to 70°C

Application Notes

Rev.10.07.06_#2.0 ADN-C Series Page 26


Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the ADN Series. When measuring output ripple and noise, The scope is connected to the circuit via an RGU58-50 Ω cable. One side is BNC and the other is soldered to the PCB. Shield is grounded. Oscilloscope should be set to 50 Ω input with 20 MHz bandwidth for this measurement.

Common-Mode Noise

The setup outlined in the diagram below has been used for output voltage common-mode noise measurements on the ADN Series The measurements are made individually (+) to GND or (-) to GND. The scope is connected to the circuit via an RGU58-50 Ω cable. One side is BNC and the other is soldered to the PCB. Shield is grounded. Oscilloscope should be set to 50Ω input with 20 MHz bandwidth for this measurement.

Rev.10.05.05_#0.0 AND-C Series Page 27

Americas

5810 Van Allen Way Carlsbad, CA 92008 USA

Telephone: +1 (760) 930 4600 Facsimile: +1 (760) 930 0698

Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom

Telephone: +44 (0) 1384 842 211 Facsimile: +44 (0) 1384 843 355

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong

Telephone: +852 2176 3333 Facsimile: +852 2176 3888

For global contact, visit:

www.powerconversion.com

techsupport.embeddedpower @emerson.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.

The global leader in enabling business-critical continuity.

- AC Power
- Connectivity
- DC Power
- Embedded Computing
- Embedded Power
- Monitoring
- Outside Plant
- Power Switching & Controls
- Precision Cooling
- Racks & Integrated Cabinets
- Services
- Surge Protection

EmersonNetworkPower.Com

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2008 Emerson Electric Co.