

September 21, 2016

RIGDFU-DS-V1.4 Page 1 of 30

Rigado LLC

3950 Fairview Industrial Dr. SE Suite 100

Salem, Oregon 97302

866-6-RIGADO modules@rigado.com

www.rigado.com/modules

RigDFU

Secure Over-the-Air & UART Bootloader

1. Introduction
An embedded bootloader is a small piece of software that enables an embedded system to update its
main application firmware. This allows for the ability to add features and fix defects found after
manufacture. Rigado provides a Secure Bluetooth Low Energy and UART bootloader to all customers
who purchase nRF5-based BMD series modules, allowing them to keep their products in the field
updated while protecting their valuable Intellectual Property (IP). RigDFU is only available on our nRF5-
base BMD series modules. This will be referred to as BMD series modules in the rest of this document.

 Feature List
 Over-the-Air and UART firmware updates

 Main application, bootloader, and SoftDevice are updateable

 End-to-end firmware encryption using AES-128 in EAX Mode

 Protects the device from imposter OTA firmware

 Fail-safe update process

 Customer configurable encryption key

 Easy to use with full suite of tools (Windows, Linux, OSX)

 Compatible with Rigablue libraries for iOS and Android

2. Secure Bootloader
Rigado’s RigDFU bootloader uses 128-bit AES-EAX encryption to secure the transfer of firmware images
to BMD Series modules. Security is achieved by encrypting the binary firmware image in a controlled
environment prior to transfer. After encryption the encrypted image is sent to the BMD module using
either available transfer method. Once the encrypted image is received by the BMD module, either
over-the-air via Bluetooth Low Energy or the UART interface, it will decrypt and verify the integrity of
the image. Once decryption and verification is successful, the firmware image is programmed to flash
memory and the bootloader will start the application. With the secure bootloader in place, your
firmware can be protected before it leaves your servers.

3. SoftDevice Support
The Rigado secure bootloader currently supports applications running on Nordic Semiconductor S110
SoftDevice version 8.0.0, S130 SoftDevice version 2.0.0, and S132 SoftDevice version 2.0.0. A bootloader
binary is provided for each SoftDevice version.

mailto:modules@rigado.com

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 2 of 30

Table of Contents

1. INTRODUCTION ..1

 FEATURE LIST... 1

2. SECURE BOOTLOADER ..1

3. SOFTDEVICE SUPPORT ..1

4. BMD-200 PIN FUNCTIONS ...4

5. BMD-300/301 PIN DESCRIPTIONS ..5

6. MEMORY LAYOUT ..6

 SOFTDEVICE S110 V7.1.0 (DEPRECATED; NO LONGER AVAILABLE) .. 6

 SOFTDEVICE S110 V8.0.0 (BMD-200-A AND BMD-200-B ONLY) ... 6

 USER DATA .. 7

 SOFTDEVICE S130 V2.0.0 (BMD-200-B ONLY) ... 7

 SOFTDEVICE S132 V2.0.0 (BMD-300 SERIES ONLY) ... 7

7. DEVELOPMENT SETUP ..8

 RIGADO GITHUB REPOSITORIES .. 8

 INSTALL REQUIRED TOOLS .. 8

 Linux Setup ... 8

 OS X Setup .. 9

 Windows Setup .. 9

 A NOTE ABOUT INVOKING PYTHON .. 9

8. MODULE MAC ADDRESS ... 10

 BOOTLOADER MAC ADDRESS ... 10

 INVERSION FORMULA ... 10

9. SECURE BOOTLOADER MODES .. 11

 UNSECURE MODE.. 11

 SECURE MODE ... 11

10. BOOTLOADER TOOLS .. 12

 BOOTLOADER TOOLS FOLDER STRUCTURE ... 12

11. PROGRAMMING TOOLS .. 13

 INSTALLATION OF THE BOOTLOADER ... 13

 UNSECURE INSTALLATION .. 13

 SECURE INSTALLATION .. 13

 APPLICATION INSTALLATION WHEN PROGRAMMING THE BOOTLOADER 13

12. IMAGE TOOLS ... 14

 UPDATE BINARY OVERVIEW .. 14

 GENERATING UNSIGNED APPLICATION BINARIES .. 14

 GENERATING ENCRYPTED APPLICATION BINARIES... 14

13. UPDATE TOOLS ... 15

 PERFORMING AN OTA UPDATE FROM LINUX AND OS X .. 15

 Unencrypted Update ... 15

 Encrypted Update .. 15

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 3 of 30

 PERFORMING SERIAL UPDATES FROM LINUX, OS X, AND WINDOWS .. 16

 Input Parameters for dfu.py .. 16

 Serial Unencrypted Update .. 16

 Serial Encrypted Update .. 17

14. GETTING THE BOOTLOADER VERSION FROM YOUR APPLICATION .. 18

 START ADDRESSES ... 18

 RETRIEVING THE VERSION INFORMATION ... 18

15. STARTING THE BOOTLOADER FROM YOUR APPLICATION ... 21

 BOOTLOADER STARTUP AND TIMEOUT .. 21

 Bootloader Startup Options ... 21

 Other Bootloader Timeouts ... 21

 STARTING THE BOOTLOADER OVER BLE ... 21

 Example: Reset and Run RigDFU for 2 seconds ... 22

 Example: Reset and Run RigDFU for 3 minutes ... 22

 Example: Reset application and skip bootloader ... 23

16. APPENDIX A - SERIAL PROTOCOL ... 24

 UART CONFIGURATION ... 24

 SERIAL BOOTLOADER ACTIVATION ... 24

 SERIAL FRAMES ... 24

 Serial Frame Data Escaping .. 25

 TIMEOUTS ... 25

 DFU OPCODE DEFINITIONS ... 25

 Host -> RigDFU OpCodes .. 25

 RigDFU -> Host OpCodes .. 25

 DFU OPCODE DETAILS ... 26

 DFU Response Data (0x10) ... 26

 Start DFU (0x01) ... 26

 Initialize DFU (0x02) ... 27

 Send DFU Image Data (0x03) ... 27

 Validate DFU Image Data (0x04) .. 27

 Activate and Reset (0x05) .. 28

 Reset Device (0x06) .. 28

 Configure DFU (0x09) ... 28

17. REVISION HISTORY ... 30

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 4 of 30

4. BMD-200 Pin Functions

Figure 1- BMD-200 Pin out (Top View)

Pin Name Direction BMD-200 RigDFU Pin Functions
11 P0.00 In/Out Not Used by RigDFU / BMDware DTM UART RX

12 P0.01 In/Out Not Used by RigDFU / BMDware DTM UART TX

21 P0.09 In RigDFU Serial Bootloader UART RX - Disabled when BLE is in-use

22 P0.10 Out RigDFU Serial Bootloader UART TX - Disabled when BLE is in-use

24 SWDIO In/Out Debug I/O / RESET

25 SWDCLK In Debug Clock

18 VCC Power
+1.8V to +3.6V DC - 1μF - 4.7μF ceramic capacitor is
recommended between VCC and GND

1, 2, 3, 4,
7, 10, 19,
26, (27, 28
opt.)

GND Power Electrical Ground

15, 16, 17,
20, 23, 5,
6, 8, 9, 13,
14

-- N/A Not Used by RigDFU

Table 1 - BMD-200 RigDFU Pin Functions

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 5 of 30

5. BMD-300/301 Pin Descriptions

Figure 2 – BMD-300 Pin out (Top View)

Pin Name Direction BMD-300 RigDFU Pin Descriptions
22 P0.06 Out Serial Bootloader UART TX - Disabled when BLE is in-use

24 P0.08 In Serial Bootloader UART RX - Disabled when BLE is in-use

27 P0.11 Out Not Used by RigDFU / BMDware DTM UART RX

28 P0.12 In Not Used by RigDFU / BMDware DTM UART RX

17 VCC Power
+1.7V to +3.6V DC - 1μF - 4.7μF ceramic capacitor is
recommended between VCC and GND

1,2,3,4,
5,16,18,
29,30,45,
46, 47

GND Power Electrical Ground

6,7,8,9,
10,11,12,
13,14,15,
19,20,21,
23,25,26,
31,32,33,
34,35,36,
37, 38,39,
40,41,42

-- N/A Not Used by RigDFU

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 6 of 30

6. Memory Layout
The memory layout of the bootloader versions is as follows:

 SoftDevice S110 v7.1.0 (Deprecated; No Longer Available)

Application Start Address End Address Size (Bytes)

SoftDevice 7.1.0 0x00000 0x15FFF 90112 (0x16000)

User Application 0x16000 0x27BFF 72704 (0x11C00)

User Application Data1 0x27C00 0x28BFF 4096 (0x1000)

Bootloader Swap Space 0x28C00 0x3A7FF 72704 (0x11C00)

Bootloader 0x3A800 0x3F7FF 20408 (0x5000)

Bootloader Settings Data 0x3F800 0x3FBFF 1024 (0x400)

Rigado Bootloader Data 0x3FC00 0x3FFFF 1024 (0x400)

1User Application Data is maintained through application updates

 SoftDevice S110 v8.0.0 (BMD-200-A and BMD-200-B only)

Application Start Address End Address Size (Bytes)

SoftDevice 8.0.0 0x00000 0x17FFF 98304 (0x18000)

User Application 0x18000 0x28BFF 68606 (0x10C00)

User Application Data1 0x28C00 0x29BFF 4096 (0x1000)

Bootloader Swap Space 0x29C00 0x3A7FF 68606 (0x10C00)

Bootloader 0x3A800 0x3F7FF 20408 (0x5000)

Bootloader Settings Data 0x3F800 0x3FBFF 1024 (0x400)

Rigado Bootloader Data 0x3FC00 0x3FFFF 1024 (0x400)

1User Application Data is maintained through application updates

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 7 of 30

 User Data
The User Application data space has moved for RigDFU on the S130 and S132. To maintain backwards
compatibility, the location of this space remains unchanged for the S110 version of RigDFU. The User
Data area is now just after the Swap space and allows applications to work with a default pstorage
configuration. Many of the examples from Nordic use pstorage and this change allows for its use
without modification.

 SoftDevice S130 v2.0.0 (BMD-200-B Only)

Application Start Address End Address Size (Bytes)

SoftDevice S132 2.0.0 0x00000 0x1AFFF 110592 (0x1B000)

User Application 0x1B000 0x2A3FF 62464 (0xF400)

Bootloader Swap Space 0x2A400 0x397FF 62464 (0xF400)

User Application Data1 0x39800 0x3A7FF 4096 (0x1000)

Bootloader 0x3A800 0x3F7FF 20408 (0x5000)

Bootloader Settings Data 0x3F800 0x3FBFF 1024 (0x400)

Rigado Bootloader Data 0x3FC00 0x3FFFF 1024 (0x400)

1User Application Data is maintained through application updates

 SoftDevice S132 v2.0.0 (BMD-300 Series Only)

Application Start Address End Address Size (Bytes)

SoftDevice S132 2.0.0 0x00000 0x1BFFF 114688 (0x1C000)

User Application 0x1C000 0x46FFF 176128 (0x2B000)

Bootloader Swap Space 0x47000 0x71FFF 176128 (0x2B000)

User Application Data1 0x72000 0x74FFF 12288 (0x3000)

Bootloader 0x75000 0x7DFFF 36864 (0x9000)

Bootloader Settings Data 0x7E000 0x7EFFF 4096 (0x1000)

Rigado Bootloader Data 0x7F000 0x7FFFF 4096 (0x1000)

1User Application Data is maintained through application updates

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 8 of 30

7. Development Setup
Before the secure bootloader can be used, some setup is needed on the development machine.

 Rigado GitHub repositories
Rigado maintains software repositories at https://github.com. Request access at the Rigado website
contact page. The “bootloader-tools” repository, described in Section 9, below, is necessary for RigDFU.
Other repositories contain example BMD module firmware and applications for iOS and Android mobile
devices.

 Install Required Tools
The bootloader scripts for performing firmware updates require a number of tools to work properly in
addition to the bootloader-tools repository. The following sections denote these required tools and
provide additional information where necessary.

 Linux Setup
Installation commands listed below are based on Ubuntu Linux.

Note: To use the Over-the-air (OTA) Update tools on Linux, built-in Bluetooth 4.0 hardware or a
Bluetooth Low Energy USB dongle are necessary.

1. Update the Ubuntu package lists
a. sudo apt-get update

2. Install Python 3.x and Python Serial libraries:
a. sudo apt-get install python3 python3-pip
b. python3 -m pip install pySerial

3. Install the following tools for OTA Updates (Ubuntu commands shown):
a. sudo apt-get install bluetooth bluez libbluetooth-dev

4. Install node.js
a. curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -
b. sudo apt-get install -y nodejs

5. Install git
a. sudo apt-get install git

6. Obtain the Rigado GitHub bootloader-tools repository
a. Change directory to somewhere you want to store the repository
b. git clone https://github.com/rigado/bootloader-tools

7. Install noble and other required modules
a. cd bootloader-tools/update-tools/ble
b. npm install

8. Attach a JLink programmer or Rigado BMD Evaluation board to the machine

https://github.com/
https://www.rigado.com/contact/?interest=BMD+Software+Suite+Access
https://www.rigado.com/contact/?interest=BMD+Software+Suite+Access

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 9 of 30

 OS X Setup
This guide requires the use of the OS X package manager, Brew, and the OS X Terminal app. Other
package managers may be used with similar results so long as they include the necessary packages. Use
of other package managers will not be covered at this time.

Check out Brew at http://brew.sh. If Brew is not currently installed, it can be installed from the Brew
website.

1. Install Node.js and Node.js Package Manager:
a. brew install node
b. brew install npm

2. Install Node.js BLE central module
a. npm install noble

3. Install Python 3.x:
a. brew install python3
b. python3 -m pip install pySerial

4. Install Segger JLink tools

a. https://www.segger.com/jlink-software.html
5. Attach a JLink programmer or Rigado BMD Evaluation board to the machine

Alternatively, all of the above tools can be installed from source or their respective install packages.

 Windows Setup
Note: The use of OTA Update tools is not currently supported on Windows. Future releases of
bootloader-tools may include this ability. Only UART updates may be used on Windows.

1. Install Python 3.x:
a. https://www.python.org/downloads
b. Add the path to python.exe to your system path (Ex: C:\Python34)
c. From console: python -m pip install pySerial

2. Install Segger JLink tools:
a. https://www.segger.com/jlink-software.html

3. Attach JLink programmer or Rigado BMD Evaluation board to the machine

 A Note about Invoking Python
When running the below scripts, all python commands may instead be either python3 on Linux and OS X
or <Path to Python 3.4>\python.exe on Windows depending on the PATH variable for the shell program
in use. Use “python --version” to check which version of python is invoked. All programming should be
performed using Python 3.x. If the shell is pointing at Python 2.x, then either adjust the PATH for the
shell or run the commands using the absolute path to the Python 3.x installation.

http://brew.sh/
https://www.segger.com/jlink-software.html
https://www.python.org/downloads
https://www.segger.com/jlink-software.html

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 10 of 30

8. Module MAC Address
At the factory, Rigado programs all modules with a unique MAC address. The nRF5 series parts do not
have permanent storage for an assigned MAC address. Rigado stores the MAC address for the BMD
series modules in the UICR. However, the UICR is erased anytime the debugging interface on the nRF5 is
used to perform a full chip erase (such as programming the bootloader). In order to preserve the Rigado
MAC address, the program.py script provides a save MAC (-sm) option. This option instructs the script
to read out the current MAC address from the UICR and re-write it during programming. If another MAC
address is preferred, the MAC (-m) option can be used to program any MAC address. Note that if the
MAC address is programmed to FF:FF:FF:FF:FF:FF, then the MAC address will be considered empty and
the random public address read from the FICR will be used instead.

For more information regarding the UICR and FICR, refer to the nRF5 Series Reference Manuals at
infocenter.nordicsemi.com.

Note: Due to the nature of readback protection on the nRF52 series parts, it is impossible for our toolset
to save the MAC address. If `-sm` is specified during programming of the BMD-300 Series modules, this
option will be ignored and the MAC address will be cleared to FF:FF:FF:FF:FF:FF. The address
preprogrammed into the FICR will be used.

 Bootloader MAC Address
The bootloader MAC address is slightly different than the normal module MAC address. Some systems

cache all Bluetooth Low Energy service and characteristic data upon the initial first connection. When

resetting into the bootloader, it is important that the central device can appropriately discover the new

services and characteristics that are available on the bootloader rather than those available on the

application firmware. In order to facilitate proper discovery, the bootloader’s MAC address is inverted

from the original value.

 Inversion Formula
To determine the true MAC address of the bootloader, invert all of the bits of the true MAC address and

then `or` the Most Significant Byte with C0.

Example:

Original MAC - 94549300A57D

Bootloader MAC - EBAB6CFF5A82

www.nordicsemi.com

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 11 of 30

9. Secure Bootloader Modes
The Rigado bootloader has two main modes of operation: `Secure` and `Unsecure`.

 Unsecure Mode
The unsecure bootloader performs a simple checksum on the whole image and then copies it into
application flash after the firmware update process has completed. The entire firmware image is sent
unencrypted. A device sniffing Bluetooth packets or capturing the UART data can acquire the firmware
during transfer. This mode allows anyone to update the unit and is typically used for development.

 Secure Mode
Secure mode uses encrypted images that are signed and encrypted prior to OTA or serial-wire
transfer. Since the data sent is encrypted, sniffing the data will not yield any useful results unless the
private key for the encrypted is known to the attacker.

 To increase security, Rigado recommends each device have a unique private key.

The firmware is not considered decrypted until the entire image transfer is complete. Only signed
images can be loaded once encryption is enabled. Read-back protection is enabled on the BMD series
modules to prevent any SWD programmer from reading flash memory. However, the device is erasable
using a full chip erase.

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 12 of 30

10. Bootloader Tools
Rigado provides various programming and image generation tools for use with the secure
bootloader. The tools are broken into three different categories:

Programming - Python and Segger JLink scripts which install the bootloader, appropriate SoftDevice
version, and if requested, application firmware. A MAC address and/or encryption key can also be
specified.

Binary Generation Tools - Python scripts and software for generating unencrypted and encrypted
binaries for the purpose of firmware updates only.

Firmware Update Tools - Node.js and Python scripts providing update capabilities both over the wire via
a Serial port and OTA via Bluetooth Low Energy1.

1OTA Update tools via Node.js are currently only supported on OS X and Linux.

 Bootloader Tools Folder Structure

The folders for the bootloader tools are organized into three folders:

 programming

o binaries - Contains binaries for bootloader, SoftDevice, and other required binaries
o program.py - Python script for programming the bootloader and all necessary binaries

 image-tools
o genimage - Contains genimage.py which is used to generate unencrypted application

firmware update binaries
o signimage - Contains the signimage application which encrypts the output from

genimage based on the supplied input key
 update-tools

o ble - Contains dfu.js which performs an OTA update on Linux and OS X systems using
Bluetooth Low Energy hardware

o serial - Contains dfu.py which performs an update over a serial port

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 13 of 30

11. Programming Tools
The programming tools are used to install the bootloader to BMD series modules. Additionally, the
programming tools can install an application binary.

 Installation of the Bootloader
The bootloader can be installed either unsecured or secured depending on the need. The bootloader
can be secured at a later time if required. In addition, the main application binary can be installed at the
same time. The following sections describe how to install the bootloader for various scenarios. The
bootloader is not secured at Rigado’s factory.

 Unsecure Installation
To install the bootloader without security:
python program.py -m 945493ffffff

 Secure Installation
To install the bootloader and enable the encryption features, use the following:
python program.py -m 945493ffffff -k <16 hex pair key>

Examples:
python program.py -m 945493ffffff -k 00112233445566778899aabbccddeeff

python program.py -m 945493ffffff -k d6460dd794904bca992ada885310cfa1

If the key is programmed to all Fs, then the key is considered empty and the bootloader will behave as
unsecure.

 Application Installation when Programming the Bootloader
In addition to installing the bootloader, the programming script can also be used to install an application
binary to the application memory space in flash. The application binary may be in either Intel HEX or
binary format.

Steps
1. Add the -a option to any of the above programming script recipes

a. Examples
1. python3 program.py -m 945493ffffff -a <path to app>.<hex or

bin>

2. python3 program.py -m 945493ffffff -a <path to app>.<hex or
bin> -k 00112233445566778899aabbccddeeff

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 14 of 30

12. Image Tools
This section describes how to generate binaries for performing Over-the-air (OTA) and Serial based
updates. OTA and Serial updates use the same binary output from these tools. The only difference is
the transport layer. This is not the same binary as used by the programming tool, program.py.

 Update Binary Overview
The Firmware Update process involves sending a binary image to the bootloader which has additional
information embedded into the beginning of the image. This information informs the bootloader of
how much data to expect and what data it is being sent. The data sent to the bootloader will either be
encrypted or unencrypted. The bootloader determines whether the data is encrypted or unencrypted
based on whether or not a key has been set during programming of the bootloader. If encrypted, only
encrypted application binaries will be accepted by the bootloader.

Steps
1. Generate unencrypted firmware update binary
2. Optionally, generate encrypted update binary
3. Perform update via OTA dfu.js script, Serial dfu.py script, or via a mobile device

 Generating Unsigned Application Binaries
A binary application from a tool such as `fromelf.exe` cannot directly be used for a firmware
updates. Instead, an Intel Hex file is required. Intel Hex files can be easily generated using Keil, IAR, or
GNU make. The genimage.py script provided by Rigado will generate a firmware update binary from the
Intel Hex application binary.

python genimage.py -a <input.hex> -o <output.bin>

The output of genimage.py is used to perform a firmware update to an unsecured bootloader.
Command line switches may be used to provide one of the following update files:

 Application firmware (-a)

 SoftDevice (-s)

 RigDFU Bootloader (-b)

 RigDFU Bootloader and SoftDevice (-b -s)

 Generating Encrypted Application Binaries
If encryption is being used, then the unsigned application binary needs to be signed and encrypted using
the signimage tool. The signimage tool uses the unencrypted firmware update binary and the device
private key as inputs and outputs the encrypted application image.

Linux
./signimage-linux <input.bin> <output.bin> <key>

OS X
./signimage-osx <input.bin> <output.bin> <key>

Windows 32-bit

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 15 of 30

signimage-32 <input.bin> <output.bin> <key>

Windows 64-bit
signimage-64 <input.bin> <output.bin> <key>

13. Update Tools
The update tools provide the ability to update the application firmware either OTA or via a wired serial
port. The following sections explain how to use both of these tools.

 Performing An OTA Update from Linux and OS X
An OTA update can be performed on Linux and OS X using the Node.js script dfu.js located in <sd
version>/update-tools/ble. This script is capable of programming both encrypted and unencrypted
firmware images as well as setting the private key for a device1.

 Unencrypted Update
Before running an update, ensure that the binary for the update has been generated using the
genimage.py tool. A binary output directly from tools such as fromelf.exe will not work as it will not
have the appropriate information to inform the bootloader of the type of update.

To perform an unencrypted OTA update:
node dfu.js <binary file>

Example:
node dfu.js blinky.bin

Note: The device must already be in the bootloader prior to running dfu.js. Dfu.js does not know how to
find a device that is running an application. Another way is to start dfu.js, and then reset the device
manually.

 Encrypted Update
Before an encrypted update is possible, a private key must first be programmed to the device. Typically,
the key is programmed to the device when programming the bootloader. However, it is possible to use
dfu.js to set the key only. Once set, the key cannot be changed or erased by dfu.js1.

To set the key on a device with no key:
sudo node dfu.js --newkey <key>

Example:
sudo node dfu.js --newkey 00112233445566778899aabbccddeeff

Next, an encrypted image must be generated with the key for the device. Check out the Generating
Encrypted Binaries section for information on how to generate an encrypted binary. Once the
encrypted binary is ready:
sudo node dfu.js <encrypted-binary>

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 16 of 30

In the previous example, the binary blinky.bin was sent over as an unencrypted binary. This time, the
encrypted version, blinky-secure.bin is sent:
sudo node dfu.js blinky-secure.bin

1The private key for a device is sent without encryption. A private key should only be assigned when the device is in
a securely controlled area. Once the private key is assigned, dfu.js cannot change it.

 Performing Serial Updates from Linux, OS X, and Windows
Rigado provides a Python script for updating the device application firmware via a connected serial
port. The script, dfu.py, is found in update-tools/serial. The bootloader UART uses the following
settings:

 115200 baud

 8-bits

 1 stop bit

 No Parity

The serial bootloader can perform both encrypted and unencrypted updates via the same image
generation tools previously described. In addition to performing application firmware updates, the
device key can be programmed and changed via dfu.py.

All rules applying to OTA updates also apply to the serial update interface.

Note: The device must already be in the bootloader prior to running dfu.py. Dfu.py does not know how

to find a device that is running an application. Another way is to start dfu.py, and then reset the device

manually.

 Input Parameters for dfu.py
-s: Specifies the serial port to use for communications
-i: Specifies the input binary file
--newkey: Specifies a new key that should be programmed to the device
--oldkey: Specifies the old key that will be replaced by new key. If no key is present, then --oldkey must
be specified as ffffffffffffffffffffffffffffffff.

To erase the key from a device fully (i.e. unsecure the device), the current key must be provided and
--oldkey must be specified as ffffffffffffffffffffffffffffffff.

 Serial Unencrypted Update
To perform an unencrypted Serial update:
python dfu.py -s <serial port> -i <application binary>

Examples:
python dfu.py -s /dev/tty.usbserial-DN002U6U -i blinky_ota.bin

python dfu.py -s COM26 -i blinky_ota.bin

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 17 of 30

 Serial Encrypted Update
To perform an encrypted update, the device must first have a private key assigned. If it does not, then
encrypted updates are unavailable.

To set a private key on the device when no key is programmed:
python dfu.py -s <serial_port> --oldkey ffffffffffffffffffffffffffffffff --

newkey <key>

Examples:
python3 dfu.py -s /dev/tty.usbserial-DN002U6U --oldkey

ffffffffffffffffffffffffffffffff --newkey 0123456789abcdef0123456789abcdef

C:\Python34\python.exe dfu.py -s COM26 --oldkey

ffffffffffffffffffffffffffffffff --newkey 0123456789abcdef0123456789abcdef

To change the private key for a device when a key is already present:
python dfu.py -s <serial_port> --oldkey <old_key> --newkey <key>

Examples:
python3 dfu.py -s /dev/tty.usbserial-DN002U6U --oldkey

0123456789abcdef0123456789abcdef --newkey 00112233445566778899aabbccddeeff

C:\Python34\python.exe dfu.py -s COM26 --oldkey

0123456789abcdef0123456789abcdef --newkey 00112233445566778899aabbccddeeff

To unsecure the bootloader:
python dfu.py -s <serial_port> --oldkey <old_key> --newkey

ffffffffffffffffffffffffffffffff

To perform an encrypted update:
python dfu.py -s <serial_port> -i <encrypted_binary>

Examples:
python dfu.py -s /dev/tty.usbserial-DN002U6U -i blinky_ota_secure.bin

python dfu.py -s COM26 -i blinky_ota_secure.bin

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 18 of 30

14. Getting the Bootloader version from your Application
The version information for the bootloader is programmed at a static offset in the bootloader image.
This information is offset 0x1000 bytes from the beginning of the bootloader image. All source listed
below is contained in the src folder of the repository.

 Start Addresses
BMD-200 BMD-300

0x3B800 0x76000

 Retrieving the version information
The bootloader version information is described by the following typedefs:

typedef enum version_type_e

{

 VERSION_TYPE_RELEASE = 1,

 VERSION_TYPE_DEBUG

} version_type_t;

typedef enum softdevice_support_e

{

 SOFTDEVICE_SUPPORT_S110 = 1,

 SOFTDEVICE_SUPPORT_S120, //Not used

 SOFTDEVICE_SUPPORT_S130,

 SOFTDEVICE_SUPPORT_RESERVED1,

 SOFTDEVICE_SUPPORT_RESERVED2,

 SOFTDEVICE_SUPPORT_RESERVED3,

 SOFTDEVICE_SUPPORT_RESERVED4,

 SOFTDEVICE_SUPPORT_RESERVED5

} softdevice_support_t;

typedef enum hardware_support_e

{

 HARDWARE_SUPPORT_NRF51 = 1,

 HARDWARE_SUPPORT_NRF52,

 HARDWARE_SUPPORT_RESERVED1,

 HARDWARE_SUPPORT_RESERVED2,

 HARDWARE_SUPPORT_RESERVED3,

 HARDWARE_SUPPORT_RESERVED4,

 HARDWARE_SUPPORT_RESERVED5

} hardware_support_t;

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 19 of 30

typedef struct rig_firmware_info_s

{

 uint32_t magic_number_a; //Always 0x465325D4

 uint32_t info_size; //Size of this structure

 uint8_t version_major;

 uint8_t version_minor;

 uint8_t version_rev;

 uint32_t build_number;

 version_type_t version_type;

 softdevice_support_t sd_support;

 hardware_support_t hw_support;

 uint16_t protocol_version;

 uint32_t magic_number_b; //Always 0x49B0784C

} rig_firmware_info_t;

The magic number values are randomly chosen 32-bit values to help ensure the data retrieved is actually
the version information. The following function can be used to retrieve the bootloader information.

/** @file bootloader_info.c

*

* @brief This module provides functions to retrieve the installed

bootloader

* version information.

*

* @par

* COPYRIGHT NOTICE: (c) Rigado

* All rights reserved.

* Source code licensed under Software License Agreement in

license.txt.

* You should have received a copy with purchase of BMD series product

* and with this repository. If not, contact modules@rigado.com.

*/

#if defined(NRF52)

#define BOOTLOADER_START_ADDR 0x75000

#elif defined(NRF51)

#define BOOTLOADER_START_ADDR 0x3A800

#endif

#define BOOTLOADER_INFO_OFFSET 0x1000

#define BOOTLOADER_INFO_ADDR (BOOTLOADER_START_ADDR +

BOOTLOADER_INFO_OFFSET)

#define MAGIC_HEADER 0x465325D4

#define MAGIC_FOOTER 0x49B0784C

#include <stdint.h>

#include <string.h>

#include "nrf_error.h"

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 20 of 30

#include "rig_firmware_info.h"

#include "bootloader_info.h"

uint32_t bootloader_info_read(rig_firmware_info_t * p_info)

{

 const uint8_t * bl_info = (uint8_t*)BOOTLOADER_INFO_ADDR;

 uint32_t err = NRF_SUCCESS;

 if(!p_info)

 {

 return NRF_ERROR_INVALID_PARAM;

 }

 memcpy(p_info, bl_info, sizeof(rig_firmware_info_t));

 if(MAGIC_HEADER != p_info->magic_number_a ||

 MAGIC_FOOTER != p_info->magic_number_b)

 {

 err = NRF_ERROR_INVALID_DATA;

 }

 return err;

}

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 21 of 30

15. Starting the Bootloader from your Application
When installed, the Rigado Secure bootloader runs every time the device powers on or resets. This
allows for recovery of devices with a failed application update and to ensure the application can invoke
the bootloader over BLE or the UART.

 Bootloader Startup and Timeout
When the bootloader starts, it first checks the bootloader settings to determine if a valid application
exists in the application storage bank. If a valid application is present, then the bootloader runs for a
short period of time, roughly 2 seconds, and then starts the application. If a connection is made to the
bootloader before this timeout, then, the bootloader will continue running.

If no application is available when the bootloader starts, then the bootloader will run indefinitely.

 Bootloader Startup Options
In RigDFU version 3.1+, the retained register of the nRF5x parts can be used to instruct RigDFU to run for
a longer period of time, 3 minutes, or to run the application immediately. The options are:

 0xB1 - Run the bootloader for 3 minutes

 0xC5 - Immediately restart the application

 Other Bootloader Timeouts
The bootloader has activity timeouts built-in. These timeouts help with cases where a disruption to the
BLE connection occurs during a firmware update.

OTA Update Start Timeout (10 seconds)

Upon connection to the bootloader, the device performing the update has 10 seconds to start the
update. If no command is received during this time, then the bootloader will reset. If the BLE
connection is active, the bootloader will first disconnect.

OTA Command Timeout (15 seconds)

Once an OTA update has started, the bootloader will timeout if no commands are received for 15
seconds.

 Starting the Bootloader Over BLE
To start the bootloader over BLE, the device must have at least one writable characteristic. The device
can be set up to accept any arbitrary command to start the bootloader. Preferably, the command
should be more than one byte long, but this is not necessary.

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 22 of 30

 Example: Reset and Run RigDFU for 2 seconds
#define BOOTLOADER_COMMAND 01020304 //example command

//Rigado suggests using a long 128-bit reset key

#define DISCONNET_REASON BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION

static void bootloader_start(uint16_t conn_handle)

{

 uint32_t err_code;

 /* Force disconnect, disable softdevice, and then reset */

 sd_ble_gap_disconnect(conn_handle, DISCONNET_REASON);

 sd_softdevice_disable();

 nrf_delay_us(500 * 1000);

 //reset system to start the bootloader

 NVIC_SystemReset();

}

//in characteristic write handler

{

 if(length == 4)

 {

 uint32_t command = (data[0] +

 (data[1] << 8) +

 (data[2] << 16) +

 (data[3] << 24));

 if(command == BOOTLOADER_RESET_COMMAND)

 {

 bootloader_start(p_beacon_config->conn_handle);

 }

 }

}

 Example: Reset and Run RigDFU for 3 minutes
#define BOOTLOADER_COMMAND 01020304 //example command

#define BOOTLOADER_DFU_START 0xB1

//Rigado suggests using a long 128-bit reset key

#define DISCONNET_REASON BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION

static void bootloader_start(uint16_t conn_handle)

{

 uint32_t err_code;

 /* Force disconnect, disable softdevice, and then reset */

 sd_ble_gap_disconnect(conn_handle, DISCONNET_REASON);

 //The below requires at least bootloader 3.1

 err_code = sd_power_gpregret_set(BOOTLOADER_DFU_START);

 APP_ERROR_CHECK(err_code);

 sd_softdevice_disable();

 nrf_delay_us(500 * 1000);

 //reset system to start the bootloader

 NVIC_SystemReset();

}

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 23 of 30

//in characteristic write handler

{

 if(length == 4)

 {

 uint32_t command = (data[0] +

 (data[1] << 8) +

 (data[2] << 16) +

 (data[3] << 24));

 if(command == BOOTLOADER_RESET_COMMAND)

 {

 bootloader_start(p_beacon_config->conn_handle);

 }

 }

}

 Example: Reset application and skip bootloader
#define DEVICE_RESET_COMMAND 11223344 //example command

#define DFU_RESET_APP 0xC5

//Rigado suggests using a long 128-bit reset key

#define DISCONNET_REASON BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION

static void device_reset(uint16_t conn_handle)

{

 uint32_t err_code;

 /* Force disconnect, disable softdevice, and then reset */

 sd_ble_gap_disconnect(conn_handle, DISCONNET_REASON);

 //The below requires at least bootloader 3.1

 err_code = sd_power_gpregret_set(DFU_RESET_APP);

 APP_ERROR_CHECK(err_code);

 sd_softdevice_disable();

 nrf_delay_us(500 * 1000);

 //reset system to start the bootloader

 NVIC_SystemReset();

}

//in characteristic write handler

{

 if(length == 4)

 {

 uint32_t command = (data[0] +

 (data[1] << 8) +

 (data[2] << 16) +

 (data[3] << 24));

 if(command == DEVICE_RESET_COMMAND)

 {

 device_reset(p_beacon_config->conn_handle);

 }

 }

}

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 24 of 30

16. Appendix A - Serial Protocol
This section describes the serial protocol for interfacing to RigDFU via a connected UART.

 UART Configuration
The RigDFU serial port is configured as follows:

 BMD-200
o RX pin: P0.09
o TX pin: P0.10

 BMD-300/301
o RX pin: P0.08
o TX pin: P0.06

 Settings: 115200 Baud, 8 bits, No Parity, 1 Stop bit

 Serial Bootloader Activation
When RigDFU is started, the serial bootloader is not enabled by default. To activate the serial
bootloader, the ‘serial bootloader activation message’ must be sent via a connected UART.

The activation message is a 32-bit number constructed as an array of bytes. The bytes are as follows:

Serial Bootloader Activation Message: { 0xCA, 0x9D, 0xC6, 0xA4}

If RigDFU received the ‘serial bootloader activation message’ before it’s command timeout (2000 ms),
the serial bootloader will start and relay with the following identification string:

RigDFU Serial Identification String: RigDFU/V.V.V (VV)/AA:AA:AA:AA:AA:AA\r\n

 ‘V.V.V (RR)’ = version string, (e.g. “3.2.0 (42)”)

 ‘AA:AA:AA:AA:AA:AA’ = MAC address string read from nRF UICR (e.g. 95:54:93:00:A5:7D)

Once the ‘RigDFU Serial Identification String’ has been received, the serial bootloader is active and ready
to accept serial DFU commands.

 Serial Frames
All UART data sent to and received from the Serial Bootloader must be packed in a ‘Serial Frame’. The
‘Serial Frame’ is defined as follows:

 Byte 0: Frame Start Marker (0xAA)

 Byte 1: Frame Length: Total Length including length byte but excluding the Frame Start Marker

 Byte 2: Frame OpCode

 Bytes 3 - 255: N-bytes Frame Data, 0-253 bytes, not all frames require data

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 25 of 30

 Serial Frame Data Escaping
Since the byte ‘0xAA’ is used to mark the beginning of a frame, any 0xAA data bytes, including the
length, must be escaped. Data bytes with a value of ‘0xAA’ or ‘0xAB’ are sent in a special 2 byte manner:

 0xAA becomes 0xAB 0xAC

 0xAB becomes 0xAB 0xAB

The extra bytes from escaping are not counted as part of the total length for a serial frame. For
example:
Suppose opcode 0xAA is to be sent (0xAA is not a valid opcode, but is used here for illustrative
purposes):

 Byte 0: Frame Start Marker (0xAA)

 Byte 1: Frame Length (0x04)

 Byte 2: Frame OpCode (0xAA)

 Bytes 3+: 2 bytes Frame Data (0xAB, 0xFF)

The above ‘Serial Frame’ is transmitted as follows over the UART:
{ 0xAA, 0x04, 0xAB, 0xAC, 0xAB, 0xAB, 0xFF }

 Timeouts
RigDFU has 3 different timeouts. When the timeout is reached, RigDFU will reset. The timeouts are as
follows:

 2s/120s timeout from RigDFU start after a system reset to receiving the ‘Serial Bootloader
Activation Message’. If no valid application is found for RigDFU to start, then the 120 second
timeout will apply. Otherwise, the 2 second timeout applies

 15 second timeout from activating the serial bootloader to receiving a DFU OpCode

 10 second timeout between subsequent DFU packet transmissions

 DFU OpCode Definitions

 Host -> RigDFU OpCodes
 0x01: Start DFU

 0x02: Initialize DFU

 0x03: Send DFU Image Data

 0x04: Validate DFU Image Data

 0x05: Activate and Reset

 0x06: Reset Device

 0x09: Configure DFU

 RigDFU -> Host OpCodes
 0x10: DFU Response Data

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 26 of 30

 DFU OpCode Details

 DFU Response Data (0x10)
The DFU Response Data OpCode is used to communicate the status of an operation received. Only
RigDFU should send this OpCode to the host. For each OpCode received from the host, RigDFU will
acknowledge and notify the host with a DFU Response Data OpCode.

Required Frame Data: 1 byte

 Data Byte 0: Error Code (see below)

16.6.1.1 DFU Response Data Error Codes

 0x01: Success - Operation completed with no errors

 0x02: Invalid State Error - Invalid state for the received OpCode

 0x03: OpCode Not Supported Error - Unsupported parameters for received OpCode (typically an
alignment issue)

 0x04: Data Size Error - Data size exceeds limits

 0x05: CRC Error - Data failed CRC verification

 0x06: Operation Failed Error - Undefined error occurred

 0x07: Success but waiting for more data - Operation completed with no errors and data transfer
should continue

Note: The Host does not need to respond to this OpCode

 Start DFU (0x01)
The ‘Start DFU’ OpCode is used to start the DFU operation, notify RigDFU of what regions will be
updated, and the size of the image that will be transferred. The ‘Start DFU’ OpCode must be the first
OpCode sent to RigDFU after activation of the Serial Bootloader.

Required Frame Data: 12 bytes

 Bytes 0 - 3: Softdevice length to be transferred (bytes, uint32_t, little endian)

 Bytes 4 - 7: Bootloader length to be transferred (bytes, uint32_t, little endian)

 Bytes 8 - 11: Application length to be transferred (bytes, uint32_t little endian)

Note about Updating the Bootloader and/or Softdevice:
The Bootloader and Application may be updated independently. However, updating the Bootloader
should be performed with extreme caution. If the Softdevice is to be updated, the Bootloader MUST be
updated at the same time. This ensures the integrity of the Bootloader by ensuring the programmed
Bootloader is built for the correct Softdevice version. RigDFU does not validate this however. Instead, it
simply enforces this restriction.

Typical DFU Response Data:

 Success - Proceed to Initialize DFU OpCode

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 27 of 30

 Initialize DFU (0x02)
The Initialize DFU OpCode is used to initialize the cryptography unit for decryption and validation of the
transferred DFU image. The Initialize DFU OpCode must be sent after a successful Start DFU OpCode,
otherwise it will fail. This is true regardless of whether or not the image is encrypted.

Required Frame Data: 32 bytes

 Bytes 0 - 15: Image Crypto IV (Initialization Vector)

 Bytes 16 - 31: Image Crypto Tag

Typical DFU Response Data:

 Success - Proceed to Send DFU Image Data OpCode

 Send DFU Image Data (0x03)
The Send DFU Image Data OpCode is used to send the firmware image data to RigDFU. The Send DFU
Image Data OpCode must be sent after a successful Initialize DFU OpCode, otherwise it will fail. The
total amount of frame data must be a multiple of 4. This OpCode is repeatedly sent until all image data
is transferred.

Required Frame Data: 4 - 248 bytes

 Bytes 0 - N: The next N-bytes of image data (N must be a multiple of 4, 0 - 248)

Typical DFU Response Data:

 Success, waiting for more data (0x07) - Continue transmission of ‘Send DFU Image Data’ frames
as more data is expected

 Success (0x01) - Proceed to Validate DFU Image Data OpCode, DFU Image Data transfer
complete

 Validate DFU Image Data (0x04)
The Validate DFU Image Data OpCode is used to validate the transferred DFU image. The OpCode must
be sent after a successful ‘Send DFU Image Data’ session, otherwise it will fail.

Required Frame Data: 0 bytes

 N/A

Typical DFU Response Data:

 Success (0x01) - Image decrypted/validated successfully

 CRC Error (0x05) - Image failed validation, restart the DFU and try again

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 28 of 30

 Activate and Reset (0x05)
The Activate and Reset OpCode is used to activate the new image and reset the device. After reset, the
new image will execute. This OpCode must be sent only after a Validate DFU Image Data OpCode
returns success, otherwise it will fail.

Required Frame Data: 0 bytes

 N/A

Typical DFU Response Data:

 Success (0x01) - Image Activated, RigDFU will now reset device

 Invalid State Error (0x02) - Invalid state for this OpCode, RigDFU will reset device

 Reset Device (0x06)
The Reset Device OpCode will reset the RigDFU microcontroller. This is a legal OpCode at any time while
the Serial Bootloader is activated. Sending this OpCode at any time is safe because RigDFU will not mark
an application as valid and active until after completing the Activate and Reset state.

Required Frame Data: 0 bytes

 N/A

Typical Response Data: None since the device will reset

 Configure DFU (0x09)
The configure DFU OpCode is separate from the other DFU operations. It is used to “provision” RigDFU.
This OpCode can only be sent while no other DFU operations are in progress. The Serial Bootloader
must first be activated and then the Configure DFU OpCode can be sent. Using the Configure DFU
OpCode, the host can update the device’s encryption key.

Note: If an encryption key is already programmed, the data contained in Configure DFU data frame must
be encrypted using the previous key. Otherwise the key update will fail.

Required Frame Data: 92 bytes

 Bytes 0 - 92: See below section ‘Building an Encrypted Configuration Packet’

Expected Response Data:

 Success (0x01) - RigDFU provisioning data updated successfully

 CRC Error (0x05) - The config packet did not validate correctly (most likely the wrong previous
key was supplied)

16.6.8.1 Building an Encrypted Configuration Packet

 Build a plain text binary to encrypt using signimage. The signimage tool expected the following
data in little endian format:

o uint32_t[3] - metadata lengths (set to 0x00000030, 0x00000000, 0x00000000)
o uint8_t[16] - crypto iv placeholder (fill with 0x00)
o uint8_t[16] - crypto tag placeholder (fill with 0x00)
o uint8_t[16] - current encryption key (fill with 0x00 if no key is set)

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 29 of 30

o uint8_t[16] - new encryption key (fill with 0xFF to disable encryption)
o uint8_t[16] - reserved, must be filled with 0x00

 Save this plain text configuration packet binary to a file such as ‘config_plaintext.bin’

 Encrypt the plain text configuration packet using signimage.
o signimage <plain_text>.bin <output>.bin <device_key>, key is LSB first and if no key is

set, this parameter should NOT be supplied
o If encryption is not currently enabled, this step should be skipped.

 The configuration packet can now be used to secure or update the security for the attached
device.

RigDFU Datasheet
Secure OTA & UART Bootloader

September 21, 2016

RIGDFU-DS-V1.4 Page 30 of 30

17. Revision History
Date Revision Notes

06/11/2015 1.0 Initial Release

07/30/2015 1.1 Add Serial Bootloader section

04/05/2016 1.2 Add S130 and S132 support information, add note about pstorage configuration,
other updates and changes

05/06/2016 1.2.1 Corrected OS X tools install, Updated logo

05/06/2016 1.3 Corrected UART connection in Section 16.1, Added types of genimage.py
outputs

09/21/2016 1.4 Corrected MAC address inversion result

	1. Introduction
	1.1 Feature List

	2. Secure Bootloader
	3. SoftDevice Support
	4. BMD-200 Pin Functions
	5. BMD-300/301 Pin Descriptions
	6. Memory Layout
	6.1 SoftDevice S110 v7.1.0 (Deprecated; No Longer Available)
	6.2 SoftDevice S110 v8.0.0 (BMD-200-A and BMD-200-B only)
	6.3 User Data
	6.4 SoftDevice S130 v2.0.0 (BMD-200-B Only)
	6.5 SoftDevice S132 v2.0.0 (BMD-300 Series Only)

	7. Development Setup
	7.1 Rigado GitHub repositories
	7.2 Install Required Tools
	7.2.1 Linux Setup
	7.2.2 OS X Setup
	7.2.3 Windows Setup

	7.3 A Note about Invoking Python

	8. Module MAC Address
	8.1 Bootloader MAC Address
	8.2 Inversion Formula

	9. Secure Bootloader Modes
	9.1 Unsecure Mode
	9.2 Secure Mode

	10. Bootloader Tools
	10.1 Bootloader Tools Folder Structure

	11. Programming Tools
	11.1 Installation of the Bootloader
	11.2 Unsecure Installation
	11.3 Secure Installation
	11.4 Application Installation when Programming the Bootloader

	12. Image Tools
	12.1 Update Binary Overview
	12.2 Generating Unsigned Application Binaries
	12.3 Generating Encrypted Application Binaries

	13. Update Tools
	13.1 Performing An OTA Update from Linux and OS X
	13.1.1 Unencrypted Update
	13.1.2 Encrypted Update

	13.2 Performing Serial Updates from Linux, OS X, and Windows
	Note: The device must already be in the bootloader prior to running dfu.py. Dfu.py does not know how to find a device that is running an application. Another way is to start dfu.py, and then reset the device manually.
	13.2.1 Input Parameters for dfu.py
	13.2.2 Serial Unencrypted Update
	13.2.3 Serial Encrypted Update

	14. Getting the Bootloader version from your Application
	14.1 Start Addresses
	14.2 Retrieving the version information

	15. Starting the Bootloader from your Application
	15.1 Bootloader Startup and Timeout
	15.1.1 Bootloader Startup Options
	15.1.2 Other Bootloader Timeouts
	OTA Update Start Timeout (10 seconds)
	OTA Command Timeout (15 seconds)

	15.2 Starting the Bootloader Over BLE
	15.2.1 Example: Reset and Run RigDFU for 2 seconds
	15.2.2 Example: Reset and Run RigDFU for 3 minutes
	15.2.3 Example: Reset application and skip bootloader

	16. Appendix A - Serial Protocol
	16.1 UART Configuration
	16.2 Serial Bootloader Activation
	16.3 Serial Frames
	16.3.1 Serial Frame Data Escaping

	16.4 Timeouts
	16.5 DFU OpCode Definitions
	16.5.1 Host -> RigDFU OpCodes
	16.5.2 RigDFU -> Host OpCodes

	16.6 DFU OpCode Details
	16.6.1 DFU Response Data (0x10)
	16.6.1.1 DFU Response Data Error Codes

	16.6.2 Start DFU (0x01)
	16.6.3 Initialize DFU (0x02)
	16.6.4 Send DFU Image Data (0x03)
	16.6.5 Validate DFU Image Data (0x04)
	16.6.6 Activate and Reset (0x05)
	16.6.7 Reset Device (0x06)
	16.6.8 Configure DFU (0x09)
	16.6.8.1 Building an Encrypted Configuration Packet

	17. Revision History

