
TN203

Porting a Program to Dynamic C

Introduction
Dynamic C has a number of improvements and differences compared to many other C compiler systems.
This application note gives instructions and suggestions for porting a C program from other compilers to
Dynamic C.

Generally, other C compilers require a large number of include files, potentially different for each source
file, to provide function prototypes. Dynamic C function prototypes are automatically handled by the
Dynamic C source libraries. The major porting task is reorganizing the source files and function prototypes
into Dynamic C libraries.

There are some differences in the scoping rules between Dynamic C and various other compilers intended
for embedded systems. These mostly result from the fact that Dynamic C compiles the entire program
from source code and source libraries rather than compiling numerous modules independently and then
linking them as a separate step.

Dynamic C follows the ISO/ANSI C standard when feasible and desirable. Because the standard does not
take into account the special needs of embedded systems, it is necessary to depart from the standard in
some areas and desirable in others. The standard does not take into account important embedded systems
issues such as read only memory and embedded assembly language. For this reason, practical compilers
intended for embedded systems do not completely comply with the standard, but use it as a guide.

As a rough estimate, it will require a day’s work to port 1,000 lines of source code. This does not include
resolving differences in I/O hardware, I/O drivers and startup code.

This document does not discuss Dynamic C extensions to the C language, such as costatements, since they
will not appear in code you port from another compiler.
022-0044 Rev. J www.rabbit.com 1

http://www.rabbit.com

Modular Programming with Dynamic C Libraries
Many programs consist of a number of files (*.c files in some compilers) that may be compiled sepa-
rately. The programs may also have libraries of code blocks that are included optionally, depending on
whether they are needed for a particular configuration. In addition, there are usually include (*.h) files
that provide function prototypes, structure definitions and, often, various macros. The definitions in the
include files effectively have global scope because they are included in every file where they are used.
Dynamic C does not support file-scoped variables. In other compilers, file scoped global variables are
declared with the keyword static. These global variables only become a problem in porting if there
are symbol name conflicts between such variables declared in different file scopes. Simply rename the
variables to resolve conflicts.

A C program has the following elements:

• Function prototypes, macro definitions, structure and typedef definitions

• Source code (C functions) and global data definitions

• Supplied libraries and user-defined libraries

• Assembly language (non-portable)

Dynamic C supports these same elements and, if you like, your program can be split between separate
files. In other compilers, the separate modules have .c extensions (or whatever file type is used) and the
include filenames have .h extensions. In Dynamic C, only the main program file ends with a .c extension
(the file with the function “main”). If desired, this program file could contain your entire program except
for the standard libraries and the BIOS. The alternative is to break your program up into separate modules
called libraries or .lib files. These library files encourage modular design since Dynamic C compiles
these library files together with your main program file.

Dynamic C improves upon the concept of header files by using special “header” sections for two primary
reasons. First, function prototypes and global data declarations are placed in the header section next to the
implementation of the associated function for convenient reference. Second, this organization also allows
the compiler to generate smaller code, since it conditionally compiles smaller sections of code depending
on whether or not the symbols in that section are needed (e.g., referenced in the main program file).

Dynamic C library files serve the same purpose as object module libraries because sections of code will be
compiled as a part of the user’s program if they are needed to satisfy undefined global symbols. When a
program is compiled under Dynamic C the compilation is as follows:

1. The BIOS, if it has not already been compiled, is compiled. Usually the BIOS is compiled and down-
loaded to the target at the start of a session; then you can recompile your program without having to
recompile the BIOS. The BIOS is recompiled only if it crashes or compiler options change that require
a recompile (e.g., changing memory devices). You can add modules from your program to the BIOS to
avoid having to recompile them frequently.

2. All the global definitions contained in library “headers” are compiled. This normally includes function
prototypes, macros and structure definitions. Global variables may be included in the library headers,
but normally they are defined in the user’s code between function definitions.

3. The libraries are scanned to locate modules that need to be compiled to satisfy undefined symbols. This
continues until all library modules needed by your program have been compiled. Note that all compila-
tion is continuous from start to finish and is done from C source code, then transformed to machine
code resident in the target. There are no intermediate object modules. This method of doing the compile
has profound advantages related to code size, debugging, and simplicity.
2 www.rabbit.com TN203

http://www.rabbit.com

Here is an example of how you would port a simple module to Dynamic C.

The file libfoo.c contains function foo. Header file libfoo.h contains foo’s prototype, a macro,
and a global variable.

libfoo.c

void foo(){ /* some code ... */ }

libfoo.h

#define FOOMAC 1
int globalFoo;
void foo();

Here is the Dynamic C version. The header and .c files are combined into one LIB file. A LIB file can
contain multiple functions and headers. A header section can contain multiple function prototypes.

libfoo.lib

/*** Beginheader foo */

int globalFoo;
#define FOOMAC 1
void foo();

/*** endheader */

void foo(){ /* some code ... */ }

To use libfoo.lib in Dynamic C, an entry must be made in the file LIB.DIR in Dynamic C’s root
directory:

LIB\LIBFOO.LIB

The source file that uses libfoo.lib needs the line:

#use libfoo.lib

added to the top of the file. Alternatively, this line could be added to the file default.h. The file
default.h is used during both the BIOS and program compile to bring in the standard Dynamic C
libraries.

For more information, look up “Modules” in the index of the Dynamic C User’s Manual.

Default Storage Class
The default storage class for local variables in most compilers is auto. In Dynamic C versions prior to 8.01,
the default storage class is static. Starting with Dynamic C 8.01 the default storage class for local variables
is auto. Whether variables are auto or static usually determines if the function is reentrant or not.

Starting with Dynamic C 7.02, the #class directive allows you to change the default storage class.
TN203 www.rabbit.com 3

http://rabbit.com

Initialized Variables
In Dynamic C, when a variable is initialized upon declaration, e.g. int x = 0, it is treated as a constant
and is stored in flash. In order to facilitate porting, the Dynamic C compiler generates a warning that the
variable is stored in flash. Using the const keyword for initialized variables eliminates the warning. In
Dynamic C, the const keyword use is restricted to data with global or static scope. In other words, the
const keyword is not applicable to auto variables, function parameters, or function return types. Refer to
the Dynamic C User’s Manual for more details on using the const keyword.

The correct way to initialize a static variable that may be changed by the program is to use a
#GLOBAL_INIT section. A #GLOBAL_INIT section may appear in any function, and may be used to
initialize local static variables as well as global static variables. All #GLOBAL_INIT sections are exe-
cuted once, before main() is entered. The following code shows the right way and the wrong way to ini-
tialize a static variable:

const int x = 0; // x will be put in code space in flash

int y; // y is a normal variable stored in RAM
int *xp;

main(){

// This is the correct way to initialize a static variable. The #GLOBAL_INIT
// section should be placed after variable declarations and before the first
// executable statement in any function it is used in.
#GLOBAL_INIT {y=1;}

// the compiler is smart enough to flag the following two statements as errors
x = 1;
*(&x) = 1;

xp = &x;

// this statement produces a run-time error if run-time pointer checking is enabled.
*xp = 1;

}

Note that other C compilers will automatically initialize all static variables to zero that are not explicitly
initialized before entering the main function. Dynamic C programs do not do this because in an embedded
system you may wish to preserve the data in battery-backed RAM on reset.
4 www.rabbit.com TN203

http://www.rabbit.com

Function Pointer Arguments
Dynamic C does not support argument lists in function pointer types in prototypes. This doesn’t mean you
can’t use arguments in indirectly called functions, it just means the compiler will not check that the argu-
ment list is correct.

foo (int (*foobar) ());

is the correct syntax for a function pointer in a prototype whether or not foobar takes arguments.

Example:

// This program outputs "3".
int func(int x, int y);
int foo (int (*foobar) ());

main(){
printf("%d\n",foo(func));

}

int foo (int (*foobar) (){
return (*foobar) (1,2);

}

int func(int x, int y){
return x+y;

}

Block Scope Variables
There are no block scope variables in Dynamic C. Variable declarations inside functions must appear
before executable statements, e.g.

foo(){
 int x;
 while(1){
 int y; // Incorrect!!!
 /* some code ... */
 }
}

#if defined(), #if !defined ()
These are not supported. Instead, use #ifdef and #ifndef, respectively.
TN203 www.rabbit.com 5

http://rabbit.com

sizeof Operator
Prior to Dynamic C 7.20, the sizeof operator in Dynamic C did not match the ANSI C specification.
Under ANSI, the expression used in the sizeof operator is evaluated by the compiler for its type, but no
code is generated for run-time evaluation of the expression. For example, in the following program frag-
ment (assuming i is 2 bytes), ANSI C would output "2 0" whereas "2 1" would be output by Dynamic C in
versions prior to 7.20.

i = 0;
x = sizeof(i++);
printf ("%d %d", x, i);

Enum Types
Starting with Dynamic C 7.20, the enum keyword is supported.

Bit-field Types
Dynamic C does not currently support bit-field types. Code using bit-fields must be modified to use stan-
dard integral types and bitwise operations.

Switch Statements
Case constants in switch statements need to be two byte integral values.

String Constant Concatenation
Some C compilers concatenate quoted strings on separate lines:

char string[] = G
"12345678901234567890"
"12345678901234567890"
;

Dynamic C requires the use of a backslash as a continuation character to concatenate the next line:

char string[] =
"12345678901234567890" \
"12345678901234567890"
;

6 www.rabbit.com TN203

http://www.rabbit.com

	Porting a Program to Dynamic C
	Introduction
	Modular Programming with Dynamic C Libraries
	Default Storage Class
	Initialized Variables
	Function Pointer Arguments
	Block Scope Variables
	#if defined(), #if !defined ()
	sizeof Operator
	Enum Types
	Bit-field Types
	Switch Statements
	String Constant Concatenation

