

VISHAY DALE

Magnetics Application Note

IHLP Selection Example

INPUT

L _{REQ}	I _{DC}	Δl	Freq.	T _{AMB}	V-µs	δ
0.54 μΗ	20 A	7.39 A	300 kHz	50 °C	4.14	0.46

IHLP SELECTED

Step 1.

	IHLP-4040DZ-01 0.56 μH											
L	DCR	I _{HEAT}	I _{SAT}	R _{TH}	P _{HEAT}	ET ₁₀₀	K ₀	K ₁				
0.56 μΗ	0.0018 Ω	30 A	49 A	26.96 °C/W	1.48 W	0.88	18.31	0.00340				

VERIFICATION

Step 2.

$$B_{PK_{OPER}} = \frac{4.14}{0.88} \times 100 = 470.5 G$$

Step 3.

$$f_e = \frac{300\ 000}{2\pi\ (0.46 - 0.46^2)} = 192\ 216.1\ Hz$$

Step 4.

$$P_{CORE} = 18.31 \text{ x } 192\ 216^{0.188} \text{ x } 470.5^{2.118} \text{ x } 300\ 000 \text{ x } 10^{-14} = 0.248 \text{ W}$$

Step 5.

The core losses are 0.248 W which is less then $^{1}/_{3}$ of P_{HEAT} (0.493 W)

Step 6.

$$P_{CUallowed} = 1.48 - 0.248 = 1.32 W$$

Step 7.

$$R_{OPER} = 0.0018 \text{ x} \left[\frac{274.5 + 50}{259.5} \right] = 0.00225 \Omega$$

 $P_{DC} = 20^2 \text{ x} \ 0.00225 = 0.900 \text{ W}$

$$P_{AC} = 0.00340 \times 7.39^2 \times \sqrt{300\ 000} \times 0.00225 = 0.229 W$$

Step 8.

$$P_{TOTAL} = 0.248 + 0.900 + 0.229 = 1.377 W$$

Step 9.

$$\Delta T = 1.377 \times 26.96 = 37.12 \,^{\circ}C$$

 $T_{OPER} = 50 + 37.12 = 87.12 \,^{\circ}C$

Step 10.

$$I_{PEAK} = 20 + \frac{7.39}{2} = 23.7 \text{ A}$$

I_{SAT} = 49 A which is greater then the required 23.7 A

Vishay Dale

IHLP Selection Example

SELECTION CRITERIA

- 1. Limit core losses (P_{CORE}) to $\leq 1/3$ of total losses for 40 °C temperature rise (P_{HEAT}).
- 2. Total copper losses allowed will be equal to P_{HEAT} P_{CORE}.
- 3. Maximum component temperature should be kept ≤ 125 °C.
- 4. Maximum ΔT should be \leq 40 °C (this can be exceeded provided caution is taken to insure max. temperature \leq 125 °C).
- 5. I_{PEAK} ≤ I_{SAT} (recommended, I_{PEAK} can exceed I_{SAT} with caution due to soft saturation of IHLP product).

GOVERNING EQUATIONS

1.
$$B_{PK_{OPER}} = \frac{ET_{ckt}}{ET_{100}} \times 100$$
 [G]

2.
$$f_e = \frac{f_0}{2\pi (\delta - \delta^2)}$$
 [Hz]

3.
$$P_{CORE} = K_0 f_e^{K_f - 1} B_{pk}^{Kb} x f_0 x 10^{-14}$$
 [W]

4.
$$P_{AC} = K_1 \times \Delta I^2 \times \sqrt{f_0} \times R_{OPER}$$
 [W]

5.
$$R_{OPER} = R_{MAX.} x \left[\frac{274.5 + T_{AMB}}{259.5} \right]$$
 [A]

6.
$$P_{DC} = I^2_{DC} \times R_{OPER}$$
 [W

7.
$$P_{TOTAL} = P_{CORE} + P_{DC} + P_{AC}$$
 [W]

8.
$$\Delta T = P_{TOTAL} \times R_{TH}$$
 [°C]

9.
$$T_{OPEB} = T_{AMB} + \Delta T$$
 [°C]

10.
$$I_{PEAK} = I_{DC} + \frac{\Delta I}{2}$$
 [A]

Notes

- (1) Use equation #3 for -01 and -11 components
- (2) Equation #7 assumes a 40 °C temperature rise and will have the same units as R_{MAX}
- (3) For equations #3 f in Hz and B_{PK} in G
- (4) R_{OPER} is based on a 40 °C temperature rise
- $^{(5)}$ K_f is 1.188 for -01 material and 1.173 for -11 material
- (6) K_b is 2.118 for -01 material and 2.213 for -11 material

SELECTION PROCESS

Note

- This process assumes that the following is known: Required inductance, frequency, I_{DC}, ΔI, T_{AMB}, and V-μs (ET) required
- **Step 1.** Select inductor value based on controller data sheet recommendation and current (I_{DC}) rating.
- Step 2. Determine peak operational flux density in Gauss using equation #1.
- **Step 3.** Calculate effective frequency using equation #2.
- Step 4. Determine core loss using equation #3 (see notes #1 and #2) and compare to selection criteria #1.
- **Step 5.** If core losses are > 1/3 P_{HEAT} select a larger inductor.
- **Step 6.** Use selection criteria #2 to determine allowable copper losses.
- Step 7. Determine actual copper losses using equations #4, #5 and #6.
- **Step 8.** Use equation #7 for total losses.
- Step 9. Determine ΔT using equation #8 and insure $T_{OPER} \le 125$ °C using equation #9.
- **Step 10.** Verify I_{PEAK} is less then I_{SAT} using equation #10 for the selected part (see selection criteria #5).

DEFINITIONS

- ET_{ckt} V-μs product of the circuit
- ET₁₀₀ V-μs product at 100 Gauss from table #1
- P_{CORE} Core losses in W
- P_{DC} Losses due to the D_{CR} of the inductor copper winding in W
- K₀ IHLP core constant from table #1

- f₀ Switching frequency in Hz
- R_{TH} Thermal gradient of IHLP from Table #1
- f_e Effective frequency in Hz
- δ Duty cycle
- P_{AC}- Losses in the coil due to AC effects
- K₁- AC loss constant from Table #1