

DLI • Novacap • Syfer • Voltronics

Syfer Technology Limited, Old Stoke Road, Arminghall, Norwich, Norfolk, NR14 8SQ, United Kingdom Tel: +44 (0) 1603 723300 Tel. (Sales): 01603 723310 Fax: +44 (0) 1603 723301 Email: <u>sales@syfer.co.uk</u> Web: <u>www.knowlescapacitors.com</u>

Tin Whiskers Syfer Surface Mount Capacitors

Introduction	2
Syfer Surface Mount Terminations	2
Syfer Terminations Available	3
Part Number Construction	4
Syfer 100% Tin Termination Whisker Tests	5
Tin Whisker Tests	5
Termination Tin Whisker Inspection	5
Whisker Test Summary	6
Appendix 1 – SEM Images	7

Introduction

With the implementation of legislation such as the EU RoHS directive prohibiting Lead (Pb) from many applications there has been a growing concern within the electronics industry that there is an increased risk of Tin whisker formations causing equipment failure.

Tin whiskers are filaments of Tin that form/ emanate from a pure Tin or plated Tin surface with the potential reliability risk that a Tin whisker may create a short circuit or an intermittent equipment failure. Information available on NASA website http://nepp.nasa.gov/whisker/failures/index.htm includes some of the equipment failures attributed to Tin whiskers and also provides photographs of Tin whiskers.

Extensive work has been conducted, for example by NASA and iNEMI (International Electronics Manufacturing Initiative) into understanding causes for Tin whisker formation. It is believed that stresses within the Tin such as from intermetallic formations, oxidisation/ corrosion, thermal stress (temperature cycling) and/ or mechanical stress may contribute to Tin whisker formation.

iNEMI has been involved in Tin whisker research since 2001 and provides recommendations on Leadfree finishes. For example, 100% Tin plated surface mount capacitors manufactured by Syfer (matte Tin with Nickel underplate, ceramic capacitors with no leadframe) have been classified by iNEMI as category 1 (no Tin whisker testing required) or 2 (finish must pass Tin whisker testing). iNEMI category 3 (do not accept this finish in any case) including Tin copper and bright Tin are not manufactured by Syfer.

View iNEMI recommendations at <u>http://www.inemi.org/cms/newsroom/PR/2006/PR121506.html</u>.

In addition to this, there are several stress tests recommended by, for example, JEDEC (refer to JEDEC JESD22A121 available at <u>www.jedec.org</u>) and AEC (refer to AEC-Q200 available at <u>www.aecouncil.com</u>). Note: The tests are recommended tests and are not provided as qualification tests.

Syfer Surface Mount Terminations

When reviewing Tin whisker information it is often stated that component manufacturers have changed component plated finishes from Tin/ Lead to 100% Tin in response to legislation such as the EU RoHS directive. This statement is not true for Syfer capacitors; there has been no change from Tin/ Lead to 100% Tin plating on surface mount components. Syfer has supplied 100% Tin plated components to customers for many years.

However, in response to customer demand, Syfer has increased the Lead content in Tin/ Lead plated components to a minimum of 10% Lead.

Syfer Terminations Available

Figure 1 - Capacitor construction diagram

Termination Description	Syfer Part Code	Base Layer	Middle Plated Layer	Top Plated Layer	RoHS Compliant?	iNEMI Tin Whisker Test Category
Silver Palladium	F	Silver Palladium	Not applicable	Not applicable	Yes	Not required, no Tin finish
Nickel Barrier with Tin/ Lead Plating	А	Silver base	Nickel	Tin/Lead with minimum 10% Lead	No	Not required, Lead present in top layer
Nickel Barrier with 100% Matte Tin Plating	J	Silver base	Nickel	100% Matte Tin	Yes	1 or $2^{(1)}$
FlexiCap™, Nickel Barrier with Tin/ Lead Plating	н	Silver base	Nickel	Tin/Lead with minimum 10% Lead	No	Not required, Lead present in top layer
FlexiCap [™] , Nickel Barrier with 100% Matte Tin Plating	Y	Silver base	Nickel	100% Matte Tin	Yes	1 or 2 ⁽¹⁾

Table 1 – Syfer Terminations

Notes:

(1) Category 1: No Tin whisker testing required.

Category 2: Finish must pass Tin whisker testing.

iNEMI explains that both categories have been assigned because in general Tin whisker tests are required but many users have accepted small discrete capacitors with matte Tin over Nickel for many years. Small discrete capacitors are exceptions to the Tin whisker test requirement providing certain criteria are met.

Part Number Construction

Example: 1210Y1000103JDT

1210	Y	100	0103	J	D	т	
Chip Size	Termination	Voltage d.c. (marking code)	Capacitance in Pico farads (pF)	Capacitance Tolerance	Dielectric Codes	Packaging	Suffix Code
0603 0805 1206 1210 1808 1812 1825 2220 2225 3640 5550 8060	$\begin{split} \mathbf{Y} &= FlexiCap^{TM} \\ termination base with \\ nickel barrier (100%) \\ matte tin plating). \\ RoHS compliant. \\ \mathbf{H} &= FlexiCap^{TM} \\ termination base with \\ nickel barrier (tin/lead \\ plating with min. 10\% \\ lead). \\ Not RoHS compliant. \\ \mathbf{F} &= Silver Palladium. \\ RoHS compliant \\ \mathbf{J} &= Silver base with \\ nickel barrier (100\%) \\ matte tin plating). \\ RoHS compliant \\ \mathbf{A} &= Silver base with \\ nickel barrier (tin/lead \\ plating with min. 10\% \\ \\ lead). \\ Not RoHS compliant \end{split}$	010 = 10V 016 = 16V 025 = 25V 050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV 2K5 = 2.5kV 3K0 = 3kV 4K0 = 4kV 5K0 = 5kV 6K0 = 6kV 8K0 = 8kV 10K = 10kV 12K = 12kV	<1.0pF Insert a P for the decimal point as the first character. e.g., P300 = 0.3pF Values in 0.1pF steps ≥1.0pF & <10pF Insert a P for the decimal point as the second character. e.g., 8P20 = 8.2pF Values are E24 series ≥10pF First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is the number of zeros following. e.g., 0101 = 100 pF Values are E12 series	<pre>H: ± 0.05pF (only available for values <4.7pF)</pre>		T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	Used for specific customer requirements

For questions or quotation please contact Syfer Sales department.

Tin Whisker Mitigation Practices

The following Tin whisker mitigation practices are employed by Syfer:

- Matte Tin plating with Nickel underplate.
- Tin plating thickness >2µm.
- Annealing process after plating for 150°C for minimum of 2 hours.
- No Lead forming or other stress creating operations after plating.

Syfer 100% Tin Termination Whisker Tests

In response to general customer enquires regarding Tin whiskers on Syfer 100% Tin plated capacitors, components have been subjected to the following tests with the purpose of accelerating Tin whisker growth.

Tin whisker maximum specification (AEC-Q200 section 4.3.4.2): 50µm.

Tin Whisker Tests

	Table 2 -	Tin	Whisker	Growth	Tests
--	-----------	-----	---------	--------	-------

Stress Type	Test Conditions	Minimum Duration
Temperature Cycling	Tmin: -55°C Tmax: +125°C	1000 cycles
Ambient Temperature/	30°C	3000 hours with 1000 hour
Humidity Storage	60%RH	inspection intervals
High Temperature/ Humidity	60°C	3000 hours with 1000 hour
Storage	87%RH	inspection intervals

Termination Tin Whisker Inspection

Figure 2 - Diagrams showing 2 terminal and 3 terminal components

Inspection conducted using optical microscope with 50x to 500x magnification and SEM (Scanning Electron Microscope) with minimum of 250x magnification. All termination tops and sides examined for Tin whiskers.

Whisker Test Summary

Table 3 – Syfer Capacitor Test Results (Nickel Barrier with 100% Matte Tin Plating)

Canacitor Case	Samp	le Size	Tin	Appendix 1		
Size	Number of components	Number of Terminations	Temp Cycle	30ºC 60%RH	60ºC 87%RH	SEM Photo Ref
0603 (2 terminals)	18	36	Pass No whiskers	Pass No whiskers	Pass No whiskers	1
0805 (2 terminals)	9	18	Pass No whiskers	Pass No whiskers	Pass No whiskers	2
0805 (3 terminals)	18	72	Pass No whiskers	Pass No whiskers	Pass No whiskers	3, 4
1206 (3 terminals)	9	36	Pass No whiskers	Pass No whiskers	Pass No whiskers	5, 6
1410 (3 terminals)	18	72	Pass No whiskers	Pass No whiskers	Pass No whiskers	7, 8
1806 (3 terminals)	18	72	Pass No whiskers	Pass No whiskers	Pass No whiskers	9
1812 (2 terminals)	9	18	Pass No whiskers	Pass No whiskers	Pass No whiskers	10
1812 (3 terminals)	18	72	Pass No whiskers	Pass No whiskers	Pass No whiskers	11, 12

Appendix 1 – SEM Images

The following images have been taken using a SEM (Scanning Electron Microscope) after the Tin whisker tests and are representative of the terminations examined.

Ref 1: 2 terminal 0603

Ref 3: 3 terminal 0805 - end termination

Ref 5: 3 terminal 1206 -end termination

Ref 2: 2 terminal 0805

Ref 4: Side termination

Ref 6: Side termination

Ref 7: 3 terminal 1410 - end termination

Ref 9: 3 terminal 1806 - end termination

Ref 11: 3 terminal 1812 - end termination

Ref 8: Side termination

Ref 10: 2 terminal 1812

Ref 12: Side termination

