Cable Design Equations—Braid Shield

BRAID ANGLE:

$$\Theta$$
= tan⁻¹ $\left(\frac{2\pi (D-+-2e) P}{C}\right)$, DEGREES

BRAID SHIELD WEIGHT:

$$W = \frac{(n) (C) (I)}{\cos \Theta}, LBS/M FT$$

BRAID PICKS PER INCH:

$$P = \frac{(C) (\tan \theta)}{2\pi (M)}, PICKS/INCH$$

BRAID SHIELD DC RESISTANCE:

$$R_{dc} = cos \frac{r_{dc}}{(n) (C) (cos \Theta)}, \Omega/kft$$

% Coverage: $%C = (2F - F^2) x-100$

% Coverage Factor
for Common Coverage:

ioi comminen coverag		i ootelage.
	F	% Coverage
	0.368	60
	0.409	65
	0.453	70
	0.500	75
	0.553	80
	0.617	85

where:

D = diameter under shield, inches

d = diameter of center conductor, inches

C = number of carriers

e = diameter of end

P = pick (measured in picks per linear inch)

e braid angle, degrees
e weight of shield, lbs/M ft
e number of ends in one carrier
e weight of one end in lbs/M ft

M = D + build-up of braid on one shield wall, inches

 R_{da} = dc resistance of the braid shield, Ω/M ft

 $^{r}d\tilde{c}$ = dc resistance of one strand (end) of shield, Ω/M ft

% C = percent braid coverage F = % coverage factor

