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I INTRODUCTION

Steppe r motors are generally driven in open

loop mode. The controller defines timing of the

pulses sent to the driver. The motor must be

strong enough to move the load without loss of

synchronism.

The advantage of the stepper, related to its

design, is to have enough stable positions per

revolution for positioning the load without the

need for an encoder. Driven in open loop, it is a

positioning device by itself.

For fast motion its design presents some

disadvantages : at high speed, dynamic motor

torque is affected by the high number of

commutations per revolution, the iron structure,

and the electrical time constant.

All these reasons lead the designer to

select stepper motors for use as a positioner

and move the load along a trapezoidal speed

profile.

The Disc Magnet stepper motor has the

advantage of lower iron losses than regular

hybrid stepper motors. It can therefore also be

used for fast incremental motion. To take

advantage of its dynamic possibilities one

should first know the dynamic torque output of

the motor-and-driver and then adapt the velocity

profile accordingly.

In this paper, a simple but reliable model is

used for calculating the dynamic torque output.

Then we present an easy way of calculating the

appropriate speed profile.

We will also point out the precautions to be

taken if the motor is driven in microstep mode.

II TRAPEZOIDAL SPEED PROFILE

In many applications, trapezoidal speed

profiles are used. This is mainly because

motors are working at low speed and because

such profiles are easy to implement using

existing dedicated integrated circuits. It is,

however, important to understand the limitations

of such a speed profile.

The dynamic torque curve of a stepper

usually has a shape as shown in Fig. II-1.
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Fig. II-1

Say we want to reach the speed ω1 as

quickly as possible. When using a linear profile

the motor torque is considered equal to T1 over

the entire speed range, and we do not take

advantage of the motor's capability of delivering

much more torque at low speed. In

this example it would be better to use a

constant speed up to
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ω0 and then follow an exponential speed profile

from ω0 to ω1.

III DYNAMIC TORQUE CALCULATION

As stated previously, to optimise the speed

profile it is imperative to know the dynamic

torque of the motor-and-driver unit. There are two

ways of doing so. The first one is to measure it.

This requires the motor, the driver and some

special equipment. A second method consists

of calculating the torque.

Many papers have been publ ished on how

to calculate the dynamic torque of stepper

motors, but they often neglect the motor's iron

losses. At low speed this is correct, but at high

step rates iron losses are no longer negligible.

In this Chapter we present a model of iron

losses adapted to the Disc Magnet Motor, and

then apply it to the dynamic torque calculation.

Please note that this model has been

simplified after many practical measurements.

These simplifications would not hold with other

motor technologies.

III-1 MODELISATION OF IRON LOSSES

III-1-1 Principle

An alternating magnetic flux crossing an

iron structure generates iron losses. There are

two kinds of iron losses: those due to

hysteresis and losses due to eddy currents.

To simulate these losses we suppose that

the stator magnetic circuit is perfect and that we

have added a second winding with the same

number of turns as the motor winding. We

imagine this winding connected to a resistance

whose value will depend on the frequency of the

magnetic flux, i.e. the step rate. Measurements

also show that up to the rated flux the

resistance does not change with induction.

Figure III-1 illustrates the model we decided

to use.

R, L

R',  L

Fig. III-1 :
Modelisation of iron losses

III-1-2 Principle of Measurement

Two kinds of measurements were made:

- measure without a rotor

- measure with the rotor in place

It is important to understand the way these

measurements were made, because after

comparing both methods and their results we

were able to simplify our theoretical model.

III-1-2-1 Measurements without a rotor

The rotor of disc magnet motors has no

iron and, with the permeability of the magnet

being close to that of air, it is possible to have

the rotor locked or to take it out altogether. The

procedure uses a voltage generator. By

measuring the voltage, the current and the

phase shift we can figure out the R' value at

different frequencies (see fig. III-2).

(C) Portescap. All right reserved.



R, L

R'

V

A

U=U0sinωt

Fig. III-2 :
Measurements without a rotor

With : R winding resistance

L winding inductance

U voltage across the motor winding

Ι current in the motor winding

φ magnetic flux

ϕ phase shift between voltage and 

current

we have the following equations:

U = RΙ+n(dφ / dt)

0 = R'Ι'+n(dφ / dt)

nΙ+nΙ' = φ / A

According to the phasor diagram fig. III-3

we can calculate R' using the following formulas:

By using modulus :

R' L
L

U R U
= ⋅

− +
−ω

ωΙ

ϕ ϕ
/

( )

( cos ) ( sin )

2

2 2
1

Ι

By projecting on the real axis :

R
L R L

R)
'

( ) ( ( / ) )

(
=

⋅ ± − ⋅

⋅

ω ω2 21 1 4

2

∆

∆

By using the power dissipated :

( )
R'

U R U

U R
=

− +

−

( cos ) ( sin )

cos

ϕ ϕ

ϕ

Ι

Ι Ι

2 2

2

The last formula is the one to use because

it does not take into account inductance. The

simulation has shown that with formulas 1 and 2

a variation of inductance will generate big

changes for R'.

U

Re(Z).Ι

ψ

RΙ

ϕ

Ιm(Z).Ι

ψ

=n.ω.Φ

Φ

(L/R').(dΦ/dt)

A.n.Ι

n
d
dt
φ

Fig. III-3 : Phasor diagram
III-1-2-2Measurements with the rotor

A DC motor is used to rotate the stepper

motor. The stepper windings are connected to a

high impedance oscilloscope (see fig.III-4).

R'

magnet

Te

E

Fig. III-4 :
Measurements with the rotor

By measuring the EMF versus speed we

find the losses due to R' generated by the

magnetic flux from the magnet. With a perfect

magnetic circuit EMF would rise linearily with

speed. The value of R' is given by the equation:

R L E K N E' / ( / )= ⋅ ⋅ ⋅ −ω ω 2 2

By measuring the torque required to drive

the stepper we determine the power loss in the

magnetic circuit due to flux crossing the winding

and flux crossing only the edges of the teeth.

We can separate both losses (see fig. III-5).
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R'

Fig. III-5 :
Magnetic flux due to the magnet

Flux crossing the motor winding
Flux crossing only the edges of the teeth

With : Te torque required to rotate the rotor

α motor speed

PF2 power loss due to R'

PF1 power loss at the teeth edges

we can calculate R' with the method used for

the EMF, then we can estimate and dissociate

the losses at the tooth edges.

The equations are :

P
E

R

E K N E

LF2

2 2 2
= =

−

⋅'

. ( / )ω

ω

and

P Te PF F1 2= ⋅ −α

Note:

This method allows to separate the losses

due to the flux created by the magnet and

crossing the motor winding, from losses due to

the leakage flux of the magnet crossing only the

tooth edges.

III-1-3 Practical measurements and

interpretation

Measurements were made for all Portescap

stepper motors. Here we only show the results

for the motor type escap 

PH632-508.002.

III-1-3-1Measurements without a rotor

Measure of the real part of the impedance (Fig.

III-6).

Measure of the imaginary part of the impedance

(Fig. III-7).

Calculation of R' from the results (fig. III-8).

Measures of Re(Z), motor PH632-508-002
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Fig. III-6 :
Measure of the real part of the impedance

Measures of Im(Z), motor PH632-508-002
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Fig. III-7 :
Measure of the imaginary part of the impedance

Measures of R', motor PH632-508-002
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Fig. III-8 :
From the measure of Re(Z) and Jm(Z)

we can calculate R'

Note :

Up to 2500 Hz which means 10000

steps/sec, we can linearize Re(Z) and Jm(Z).

III-1-3-2Measurements with the rotor
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Evolution of the EFM, motor PH632-508-002 
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Fig. III-9 :
Evolution of the EMF versus speed

Up to 2500 Hz the EMF is roughly linear,

indicating that the losses created by the magnet

flux crossing the motor winding are negligible.

Torque necessary, motor PH632-508-002
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Fig. III-10 :
Torque required to drive the stepper motor

Analysis of power distribution, motor PH632-508-002
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Fig. III-11 :
Analysis of power distribution versus

step rate

III-1-3-3Interpretating the Measurements

The measure of EMF shows that the

magnetic flux crossing the motor winding does

not generate too much losses. The torque

necessary to rotate the stepper is mainly due to

the losses located at the tooth edges.

The evolution of the impedance of the motor

winding versus step rate shows the iron losses

due to flux created by the winding only.

The losses in the common magnetic circuit

seen by the magnet and by the coils seem to

be pretty small. Therefore we can separate the

losses created by the flux of the magnet from

the losses created by the flux of the coil.

Then our model becomes very simple. The

losses due to the flux created by the winding

are simulated by modifying the real part of the

impedance. The losses due to the magnet flux

being located mainly at the tooth edges are

taken care of by subtracting the torque required

to rotate the stepper from the torque we shall

calculate.

As mentioned above, we have linearized

the motor resistance versus frequency and also

the torque due to the losses created by the

magnet flux, according to the following

equations.

Equation for the real part of the impedance :

R Z R
f

( ) ( )= ⋅ − ⋅ +






λ 1
2500

1

with R : motor resistance at 20°C

f : electrical frequency

λ : value defined for each motor size 
(see Fig. III-12).

Equation of the torque to be subtracted from the

calculated torque :

T a bF mechanical= ⋅ +ω

The coefficients  a  and  b  have been identified

for each Portescap motor (see fig. III-12).

Motor
Type

a b λ

P110 1,5.10-6 1.10-3 8

P310 2,2.10-6 1.10-3 2
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P430 8,5.10-6 2.10-3 4.5

P520/PP520 13,4.10-6 3.10-3 4

P530 15,8.10-6 6.10-3 5

P532 9.10-6 4.10-3 5

P630 76,3.10-6 10.10-3 6

P632 80,7.10-6 10.10-3 8

PH632 47,7.10-6 10.10-3 8

P850 200.10-6 17.10-3 9

P852 436.10-6 33.10-3 9.5

Fig. III-12 :

Coefficients a, b, λ for each
Portescap motor

III-2 Dynamic torque calculation

For calculating the dynamic torque, we

consider:

-  the motor speed is constant during one step

- the time origin is the instant the current

reference crosses the zero value.

With : ω the rotor angular velocity

N the number of pole pairs

T the electrical period T=(2π)/(ω⋅N)

ψ phase advance in electrical degrees

to phase advance in seconds
to=(ψ⋅T)/(360)

The average torque per phase T  is:

T
T

i t E t dt
T

=
⋅

⋅ ⋅∫2

0

2

ω
( ) ( )

/

with i(t) the actual instantaneous current and

E(t) the BEMF.

III-2-1 Calculation principle

Firstly, the torque is calculated for a given

speed and a given phase advance. At the time

t=0, we suppose that the current equals the

current reference which is zero.

Then, with the speed considered constant,

the BEMF can be a time function just like the

current reference. The actual current is

calculated with the electrical equation. We

distinguish two cases, i.e.the current regulation

in regenerative mode or in non regenerative

mode. The current being a periodic function, we

should have :

i (t+T/2)=-i (t), especially  i (t=0)=-i (T/2)

The calculation will be reiterated with i(t) shifted

versus the actual current until the case i(t=0) = -

i (T/2) is verified.
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Figure III-13 illustrates the BEMF, the

current reference and the actual current as

calculated. Calculations are repeated until Ιinit =

-Ιfin.

E(t)

Ic(t)

i ( t )
Time0 t 0

Iinit.

Ifin.

T / 2

E(t) in V.
Ic(t) and i(t) A

Fig. III-13 :
Shape of the back-EMF (E(t)), the current

reference Ιc(t) and the actual current i(t) for a
phase advance of tox360/T electrical degrees

Figure III-14 shows the algorithm used to

calculate the dynamic torque for a given speed

and a given phase advance. The phase advance

should of course be adjusted for maximum

torque.

Figure III-15 shows the dynamic torque

both measured and calculated. It should be

noted that the result will be less precise if we

neglect the iron losses.
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i(t=0)=0

t = 0

Ιc(t) ≥ i(t)

i t T
U E t

R
e i t ed

t Td d( )
( )

( ). /+ =
− −







 −


 


 +− −1 τ τ ( )i t t

E t
R

e i t ed
t td d( )

( )
( ). /+ =

−
− +− −1 τ τ

Mechanical power for t ∈ (0,t+T d) = i(t+t d).E(t+t d) . t d  + Mecanichal power t ∈ (0, t)

i t T
U E t

R
e i t ed

T Td d( )
( )

( ).
/

+ =
−







 −

 


 +

− −
1

τ τ

t=t+T d

i(0)=-i(t+Td)+i(0)

2

Average torque per phase = (2/ T. ω).Mechanical power for t ∈ (0, T/2)

t+Td = T/2

Regenerative
Mode ?

i(t+Td)+i(0)  ≤  Ιc  MAX   1000

yes no

yes no

no yes

no

Fig. III-14 :
Dynamic torque algorithm for constant motor speed and commutation angle

Input :

Motor Data :

K : Torque L : Inductance
R : Resistance N : Number of pole pairs

Driver Data :

U : Maximum voltage
Ιc : Current reference per phase Td : Chopper period

Variables :

ω : Motor Speed
ψ : Commutation angle (electrical degrees)

E(t) = K.ω.sin(Nω(t-t0))

Ιc(t) = f(t)
Example for microstep mode

Ιc(t) = Ιc.sin(N.ω.t)
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Dynamic Torque
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Fig. III-15
Dynamic torque of the PH632-508-002 with an
L/R driver, U=36V, serial resistance 33 ohms

IV Adequate speed profile

In the previous paragraph we calculated the

dynamic torque of the stepper associated with

its driver. Knowing this torque and the

kinematics of the mechanical transmission, like

friction and viscous torque, and reflected inertia,

we can calculate the velocity profile.

IV-1 Exponential speed profile

Consider the useful motor torque to equal

seventy percent of the calculated torque, from

which we have subtracted the friction and

viscous torque.

Let's assimilate this usable torque to a linear

function of speed (see fig. IV-1).

TM

Speed

Usable torque to accelerate

Mω0

Fig. IV-1
Torque available to calculate

the speed profile

Equations :

During acceleration

T Tmotor M M
= −( / )1 ω ω

J
d

dt
Tmotor

ω
=

Solving this differential equation results in :

J
d

dt
TM M

ω
ω ω= −( / )1

ω ω ω( ) ( )t eM

t
T

J
M

M= −
−

1

θ ω
ω ω( ) [ ( )]t t J
T

eM
M

M

t
T

J
M

M= + −
−

1

Another method is to proceed in discrete steps.

Let  ωn  be the average speed of step number  n.

The torque is considered constant from ω(n) to

ω(n+1).

Then the motor torque at the speed ω(n) is:

Tmotor (ωn) = TM . (1-ωn / ωM)

The acceleration  α(n)  to go from ωn to ωn+1 is:

α ω ω( ) .( / ) /n M n MT J= −1

ω ω α( ) ( ) ( ) ( ).n n n nt+ − =1 ∆

with  ∆t(n)  being the time required for the nth

step.

Now, if we express ω(n) and  ω(n+1) in steps/s and

α(n) in steps/s2, we get:

∆t n
n n

( )
( ) ( )

=
−+

2
1ω ω

By substituting  ∆t(n)  we find:

ω ω α( ) ( ) ( )n n n+ − =1
2 2 2

or

ω ω ω ω
π( ) ( ) ( )( / )n n

M
n M

T

J

P
+ = + ⋅ − ⋅1

2 2 1
2
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where P is the number of steps/rev. This

recursion series is an easy way of calculating

the velocity profile step by step.

IV-2 Adequate Speed profile

Depending on the driver it is not always

possible to consider the dynamic torque as a

linear function of speed. In the following

paragraph dynamic torque is assimilated to an

association of straight lines (see fig. IV-2).

We do not consider the same curves for

the usable acceleration torque and deceleration

torque. With friction being a negative torque, it

has to be subtracted from the acceleration

torque and added to the deceleration or breaking

torque.

TAi+1

TAi

Acceleration torque

SpeedωA1 ω A2 ωAi ω Ai+1

TA2

TA1

TA0

TDi+1

TDi

Deceleration torque

SpeedωD1 ω D2 ωDi ω Di+1

TD2

TD1

TD0

Fig. IV-2
Torque versus speed of a stepper motor

assimilated to parts of straight lines

Speed profile during acceleration:

According to paragraph IV-1, the torque

at speed ω∈[ωA(i), ωA(i+1) ]

is:

[ ]T T T TA i
A i

A i A i
A i A i A i( )

( )

( ) ( )
( ) ( ) ( )( )ω

ω ω

ω ω ω
=

−

− −
⋅ − +

+
+

1
1

Equation for the acceleration :

J
d
dt

TA i
( )

( )( )
ω

ω=

Let ωn be the speed of the nth step and ∆t(n) the

time required to make this step.

J
t

T
n n

n
A i

ω ω
ω

( ) ( )

( )
( ) ( )

+ −











=
1

∆

If the acceleration is in steps/s 2 and P the

number of steps/rev., then:

T

J

P
accelerati on in steps s

A i( ) ( )
/

ω

π
⋅ =
2

2

Let ω(n) be in steps/s.

The time required to move this nth step is :

∆t n
n n

( )
( ) ( )

=
++

2

1ω ω

The expression of  ω(n+1) can be written as:

ω ω
ω

π( ) ( )
( )( ).

n n
A iT P

J+ = + ⋅
⋅ ⋅1

2 2 2
2

ω ω
π

ω ω

ω ω( ) ( )
( )

( ) ( )
( ) ( ) (). .

(

(
( )n n

n A i

A i A i
A i A i A i

P

J
T T T+

+
+= +

−

−
⋅ − +











1

2 2

1
12

From this formula and with the following

algorithm (fig. IV-3), we can calculate the

velocity profile.

n = 0
ω A0 = 0
i = 0
ωAi = ?
TAi = ?

n = n + 1

ωnω Ai + 1<
i = i + 1

noyes

ω n ωAiω (n+1)
2

= ω n
2

+
P

J . π+ ( - )
ωAi+i( ω Ai- )

. TAi( Ai+1- T ) TAi

Speed  o f  t he  s tep  n+1
in step/s = ω(n+1)

Fig. IV-3
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We can then build the following table and the

speed profile (see fig. IV-4) :

Fig. IV-4
Speed profile in steps/s vs the step number

Speed profile during deceleration :

A curve similar to fig. IV-4 describes the
deceleration (see fig. IV-5) :

Speed in step/s

         8  7  6  5  4  3  2  1Number of step

Fig. IV-5

Realisation of a displacement of X steps in the

minimum time :

Let XA: number of steps of acceleration

XD: number of steps of deceleration

XT: total displacement in steps

XA and XD, are calculated with the algorithm of

fig. IV-6.

XA = 0
XD = 0

ω(XA)ω (XD)>
X  = X  + 1

no
yes

X   = X   + 1A A

D D

X   + X   < XTD A

yes

X   + X   = XTD A
X   = Number of steps to accelerate

X   = Number of steps to decelerate
A

D

yes

X     =Number of steps to accelerate

X   =  Number of steps to decelerate
A-1

D

no

no

Fig. IV-6
Calculation of the number of steps

for acceleration and deceleration

Practical realisation

So far we have calculated two tables, one

each for acceleration and deceleration. Each

table has two columns, for the number of steps

(or microsteps) to be made at an average speed

ωn, and for the average speed in steps/s (or

microsteps/s). Obviously, the total displacement

is known and, with the algorithm IV-6, also the

number of steps to accelerate to constant

speed. We now need to generate the pulses

which are sent to the driver, and to count them

in order to know the displacement at any time.

One solution is to use a microprocessor or a

DSP, and two timers. One of them is working as

a pulse generator and the other one as a

counter (see fig. IV-7).

ROM & RAM

µP Timer Counter

external
clock

Clock

Motor Driver

Fig. IV-7
Practical realisation

1st step ω1 = ....... s/s
2nd step ω2 = ....... s/s
3rd step ω3 = ....... s/s
..
.
.
.
.

nth  step ωn = ....... s/s

Speed in step/s

1  2  3  4  5  6  7  8 . . . . .
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The table calculated previously has to be

converted into the number of periods of the

external clock. Firstly, the microprocessor

resets both timers. Once a motion is required, a

pulse is sent to the driver. The timer (pulse

generator) is loaded with the frequency required

next. The microprocessor checks the number of

steps already made and compares it to the

displacement profile in order to know the next

frequency to be put into the timer once the

preceding pulse is sent. The next frequency to

load will be :

- the following period in the acceleration table

 when accelerating

- the previous period in the deceleration table

when braking

- the same period when running at constant

 speed.

V Precautions to be taken in micro-

step mode

The microstep mode allows to increase the

motor resolution and to have a smoother motion.

Nevertheless, if the number of microsteps/step

and the peak speed are high, the electronics

designer has to make sure the external clock

frequency of the timer is high enough to avoid

excessive jumps in the frequency between

microsteps, which at high speed could not be

compatible with the dynamic torque of the

motor.

Example :

A motor with 200 steps/rev. has to rotate at

10'000  steps/s. The external clock frequency is

1 MHz. If the motor is working in half step

mode, the value 50 has to be loaded into the

timer to generate a frequency of 20 khz. The

closest smaller frequency we can generate is

obtained by loading the value of 51.

This speed is 19607 Hz. The jump between the

two frequencies corresponds to a speed jump of

196 steps/s.

If the motor makes 10 microsteps/step, the

speed of 10000 steps/s is generated by loading

the value 10 into the timer. The closest smaller

frequency we can generate by loading 11 is

90909 Hz. The jump between these two

frequencies equals 909 full steps/s, which is

much higher than when working in half step

mode. Figure V-1 illustrates this example.
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Theoretical demonstration

Let: fh external clock frequency

fn frequency generated by loading the

value N into the timer

fn+1 the closest smaller frequency

∆f the frequency jump between  fn+1

and  fn
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If the frequency to be generated is X times the

value of  fh, then  ∆f  is X2.fh/N2 which as a speed

jump is X times larger.

Very often, the electronics designer is not aware

of this phenomenon which can disturb the motor

behaviour at high speed.

CONCLUSION :
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Today, stepper motor technologies like the Disc

Magnet motor of Portescap allow to use stepper

motors not only as a positioner but also for fast

incremental motion. Such motors can really

compete against traditional Brushless DC

motors without the need of an expensive drive

electronics for closing the loop. To fully take

advantage of such a motor, it is important to

know with reasonable accuracy the dynamic

torque of the motor associated to its driver. This

paper describes an easy way to introduce iron

losses into the model for determining the

dynamic torque. With a very simple algorithm, a

speed profile close to the optimum can be

calculated. It is clear that with such a method

we always need a safety factor of roughly 70%

meaning that  we are not using 100% of the

motor performance. Other methods exist, like

the phase plane, which consists of calculating

the motor position and speed step by step.

Unfortunately, such a process requires to know

perfectly well all the kinematics of the entire

system which is difficult in an industrial

environment.

The paper allows to take full advantage of the

Disc Magnet Motor. The calculation of the

dynamic torque as well as the optimum velocity

profile have been implemented in a software

called "SOAP", developed by Portescap for use

by its application engineers in order to help

customers to optimise their incremental motion

applications.
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