

SOD-523 SURFACE MOUNT Very Small Outline Flat Lead Plastic Package Transient Voltage Suppressors ESD Protection Diodes

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

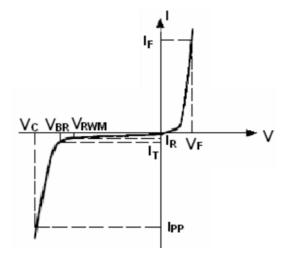
TA = 20 0 dilles office mote noted								
Symbol	Parameter	Value	Units					
Vpp	IEC61000-4-2(ESD) Air Contact	±15 ±8	KV					
ESD	Per Human Body Model	16	KV					
P _D	Power Dissipation (Note 1)	150	mW					
T _{STG}	Storage Temperature Range	-55 to +150	°C					
T _J	Operating Junction Temperature	+150	°C					
TL	Max Lead Solder Temperature range (10 Second Duration)	260	°C					

These ratings are limiting values above which the serviceability of the diode may be impaired. Note 1. FR-5 = $1.0 \times 0.75 \times 0.62$ in.

Green Product

SOD-523 Flat Lead

Specification Features:


- Stand-off Voltage: 12V
- Low Leakage
- Response Time is Typically < 1ns</p>
- IEC61000-4-2 Level 4 ESD Protection
- RoHS Compliant
- Green EMC
- Matte Tin(Sn) Lead Finish
- Band Indicates Cathode

DEVICE MARKING CODES:

Device Type	Device Marking		
ESD5Z12V	ZM		

Electrical Parameters

Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
V _C	Clamping Voltage @ I _{PP}				
V _{RWM}	Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
I _T	Test Current				
V_{BR}	Breakdown Voltage @ I _T				
I _F	Forward Current				
V _F	Forward Voltage @ I _F				

Number: DB-269 January 2015, Revision A

Electrical Characteristics ($T_A = 25$ °C unless otherwise noted, $V_F = 0.9$ V Max. $@I_F = 10$ mA for all types)										
Device Type	V _{RWM} (Volts)	I _R @ V _{RWM} (μΑ)	V _{BR} @ I _T (Note 2) (Volts)	I _T (mA)		I _{PP+} (A)	V _C @ Max I _{PP+} (Volts)	P _{PK+} (W)	$C @$ $V_R = 0V, f = 1MHz$ (pF)	
	Max	Max	Min		Max	Max	Max	Тур.		
ESD5Z12V	12	1	13.5	1.0	5	30	95	55		

SURGE CURRENT WAVEFORM:

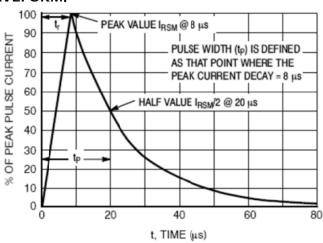
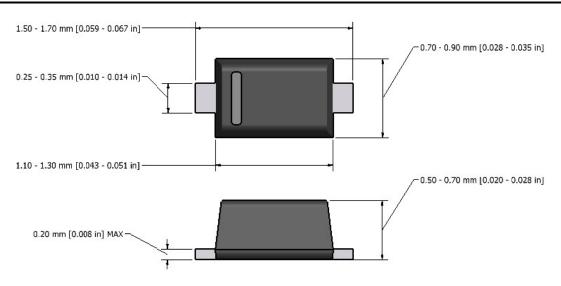



Figure 1. 8 x 20 µs Pulse Waveform

Flat Lead SOD-523 Package Outline

Note: Dimensions are exclusive of Burrs, Mold Flash & Tie Bar extrusions.

Number: DB-269 January 2015, Revision A

⁺ Surge current waveform per Figure 1. Note 2: V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C.

NOTICE

The information presented in this document is for reference only. Tak Cheong reserves the right to make changes without notice for the specification of the products displayed herein.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Tak Cheong Semiconductor Co., Ltd., or anyone on its behalf, assumes no responsibility or liability for any damagers resulting from such improper use of sale.

This publication supersedes & replaces all information reviously supplied. For additional information, please visit our website http://www.takcheong.com, or consult your nearest Tak Cheong's sales office for further assistance.

Number: DB-100 April 14, 2008 / A