ULTRA LOW QUIESCENT CURRENT 250mA LOW-DROPOUT VOLTAGE REGULATORS

Features

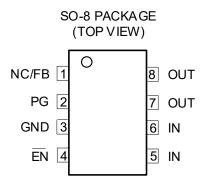
- 250-mA Low-Dropout Voltage Regulator
- Available in 1.5V,1.8V,2.5V,2.7V,
 2.8V,3.0V,3.3V,5.0V, Fixed Output and
 Adjustable Versions
- Dropout Voltage to 140 mv (typ) at 250 mA (TS6112-33)
- Ultra-Low 40-µA Typical Quiescent Current
- Open Drain Power Good Output
- Compatible with Low ESR Capacitor
- Thermal Shutdown Protection
- 8-Pin SOIC Package

Applications

- Battery-Powered Applications
- Power Converter/Inverter
- Portable Devices

POWER SUPPLY RIPPLE REJECTION **FREQUENCY** 90 PSRR - Power Supply Rijection -dB $V_1 = 4.3V$ 80 $C_0 = 10 \mu F$ I_o = 250mA 70 60 50 40 30 100 10 10K 100K 10M f - Frequency - HZ

Product Description


The TS6112-xx series regulators are designed to have ultra-low quiescent currents and be stable with low ESR ceramic output capacitors and a wide range of capacitance (0.1 μ F or greater). The combination of the above characteristics provides high performance at lower cost.

The TS6112-xx series is designed with very low dropout voltages (e.g. typically 200 mV for the TS6112-33 at an output current of 250 mA). The quiescent current is very low at light load (typically 40 μ A at 10 μ A load), however, it is designed to be dependent of output loading (approximately 1/250 of the output current at heavy load), in order to provide much improved control loop stability and fast transient response. The low quiescent feature yields a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to EN (enable) shuts down the regulator, reducing the quiescent current to less than 1μ A (typ).

Power good (PG) is an active high output, which can be used to implement a power-on reset or a low-battery Indicator.

The TS6112-xx is offered in 1.5V, 1.8V, 2.5V, 2.7V, 2.8V, 3.0V, 3.3V and 5.0V fixed-voltage versions and in an adjustable version (programmable over the range of 1.25 V to 5.5 V). Output voltage tolerance is specified as a maximum of 3% over line, load, and temperature ranges. The TS6112-xx family is available in 8 pin SOIC package.

PIN CONFIGURATION AND FUNCTIONS

TERMINAL		I/O	DESCROPTION			
NAME	NO] "/0	DESCROPTION			
EN	4	I	Enable input			
FB/NC	1	I	Feedback input voltage for adjustable device (no connect for fixed option)			
GND	3		Regulator ground			
IN	5	I	Input voltage			
IN	6	I	Input voltage			
OUT	7	0	Regulated output voltage			
OUT	8	0	Regulated output voltage			
PG	2	0	PG output			

TYPICAL APPLICATION

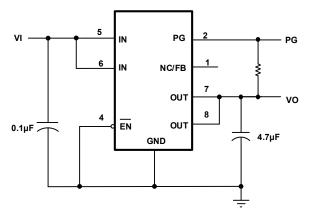


Figure 1. Typical Application Configuration for Fixed Output Options

RECOMMENDED OPERATING CONDITIONS

	MIN	MAX	UNIT
Input voltage, V _{IN} [1]	2.7	12	V
Output voltage range, V _{OUT}	1.2	5	V
Output current, IouT [2]	0	250	mA
Operating virtual junction temperature, TA [2]	-40	125	°C

^[1] To calculate the minimum input voltage for your maximum output current, use the following equation: $V_{IN}(min) = V_{OUT}(max) + V_{DO}(max)$

ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Max	Unit		
Input voltage range	-0.3	14	V		
Voltage range at EN	-0.3	16.5	V		
PG voltage		16.5	V		
Peak output current	Internally limited				
Output voltage, V _{о∪т}		7	V		
(OUT, FB)		'	V		
Junction Temperature	-40	125	°C		
Storage Temperature	-65	150	°C		
Range	-03	130			
ESD HBM		±2000	V		

ESD CAUTION

ESD (electrostatic discharge) sensitive device

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjects to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ORDERING INFORMATION

Model	Part Number	Eco Plan	Package	OUTPUT VOLTAGE (V)	Container, Pack Qty
TS6112-50	TS6112-50SO8R	Rohs	SO-8	5.0	Reel,2500
TS6112-33	TS6112-33SO8R	Rohs	SO-8	3.3	Reel,2500
TS6112-30	TS6112-30SO8R	Rohs	SO-8	3.0	Reel,2500
TS6112-28	TS6112-28SO8R	Rohs	SO-8	2.8	Reel,2500
TS6112-27	TS6112-27SO8R	Rohs	SO-8	2.7	Reel,2500
TS6112-25	TS6112-25SO8R	Rohs	SO-8	2.5	Reel,2500
TS6112-18	TS6112-18SO8R	Rohs	SO-8	1.8	Reel,2500
TS6112-15	TS6112-15SO8R	Rohs	SO-8	1.5	Reel,2500
TS6112-01	TS6112-01SO8R	Rohs	SO-8	Adjustable(1.25V to 5.5V)	Reel,2500

The TS6112-01 is programmable using an external resistor divider.

^[2] Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

ELECTRICAL CHARACTERISTICS: At T_A = +25°C, V_i = V_i (type) + 1 V_i to = 10 μ A, EN= 0 V_i , CO=4.7 μ F,

unless otherwise noted. Boldface limits apply over the specified temperature range, $T_A = -40$ °C to +125°C.

Symbol	Parame		Operating Conditions	Min	Тур	Max	Unit
	T96112		5.5V≥V _{OUT} ≥1.25V		Vout		
		TS6112-01	TA = -40°C to +125°C	0.97V _{OUT}		1.03V _{OUT}	
		TS6112-15	2.7V≤V _{IN} ≤12V		1.5		
		100112-10	TA = −40°C to +125°C	1.455		1.545	
		TS6112-18	2.8 ≤ V _{IN} ≤ 12V		1.8		
		100112 10	TA = -40°C to +125°C	1.746		1.854	
		TS6112-25	$3.5 \leq V_{IN} \leq 12V$		2.5		
			TA = -40°C to +125°C	2.425		2.575	
Vоит	Output voltage [3]	TS6112-27	$3.7 \le V_{IN} \le 12V$		2.7		V
V 001	(10uA to 250mA load)		TA = -40°C to +125°C	2.619		2.781	'
		TS6112-28	$3.8 \le V_{\text{IN}} \le 12V$		2.8		
			TA = -40°C to +125°C	2.716		2.884	
		TS6112-30	4.0 ≤ V _{IN} ≤ 12V		3.0		
			TA = -40°C to +125°C	2.910		3.090	
		TS6112-33	$4.3 \leq V_{IN} \leq 12V$		3.3		
			TA = -40°C to +125°C	3.250		3.350	
		TS6112-50	$5.0 \le V_{IN} \le 12V$		5.0		
			TA = -40°C to +125°C	4.850		5.150	
I _{GND}	Quiescent cu	rrent [3]	EN = 0V		40		μ A
	IGND (GND current)		TA = -40°C to +125°C			60	μΑ
Outp	ut voltage line regula (ΔVΟ/VΟ)	tion ^{[3][4]}	V_{OUT} + 1V $\leq V_{IN} \leq$ 12 V,		0.005		%/V
Load regulation			I _{OUT} = 10μA to 250mA TA = -40°C to +125°C		0.5%		
	Output noise voltag	е	BW = 300Hz to 50kHZ, C _{OUT} =4.7µF		150		μ Vrms
	Output current Limi	t	V _{OUT} = 0V		0.87		Α
Thermal	shutdown junction te	mperature			150		$^{\circ}$
Thermal	shutdown hysteresis	temperature			20		$^{\circ}$
			EN = V _{IN} , 2.7V≤V _{IN} ≤12V		1		
Іѕтв	Standby cu	ırrent	TA = -40°C to +125°C			10	μ A
I _{FB}	FB input current	TS6112-01	FB = 1.5V		2		nA
VIHEN	High level enable	input voltage	TA = -40°C to +125°C	2			V
VILEN	Low level enable i		TA = -40°C to +125°C			0.8	V
PSRR	Power supply ripple rejection [3]		f = 1kHz, I _{OUT} = 10μA, C _{OUT} = 4.7μF		67		dB
	Minimum input vol	•	I _O (PG) = 300μA		1.25		V
PG	Trip threshold voltage		V _{OUT} decreasing TA = −40°C to +125°C	92		98	%/Vout
	Hysteresis voltage		Measured at V _{OUT}		0.5		%/V _{OUT}
	Output low voltage		V _{IN} = 2.7V, I _O (PG) = 1mA		0.16		V
	Leakage current		V(PG) = 5 V TA = -40°C to +125°C			1	μ A
	Input current (EN)		EN = 0V	-1	0	1	μ A
I _{EN}	Innut aures	+ / E N I \					

ELECTRICAL CHARACTERISTICS: At $T_A = +25$ °C, $V_i = V_0$ (type) + 1 V, $I_0 = 10\mu A$, $E_i = 0$ V, $C_0 = 4.7\mu F$,

unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40°C to +125°C.

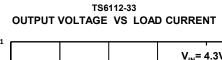
Symbol	Parameter		Operating Conditions	Min.	Тур.	Max.	Unit
	Dropout voltage [5]	TS6112-28	Ι _{ΟυΤ} = 250mA		310		
İ			TA = -40°C to +125°C			540	
1		TS6112-30	I _{OUT} = 250mA		270		
V _{DO}			TA = -40°C to +125°C			470	mV
VDO		TS6112-33	Ι _{ΟυΤ} = 250mA		200		IIIV
			TA = -40°C to +125°C			400	
		T00440.50	Ι _{ΟυΤ} = 250mA		140		1
		TS6112-50	TA = −40°C to +125°C			250	

[3] Minimum IN operating voltage is 2.7 V or VouT (typ.) + 1V, whichever is greater. Maximum IN voltage 12V

[4] If $V_{OUT} \le$ 1.8V then V_{INmin} =2.7 V, V_{INmax} = 12 V:

Line Reg.(mV) =
$$\frac{V_{OUT} (V_{INmax} - 2.7V)}{100} \times 1000 \times (\%/V)$$

If $V_{OUT} \ge 2.5V$ then $V_{INmin} = V_{OUT} + 1V$, $V_{INmax} = 12 V$:


Line Reg.(mV) =
$$\frac{V_{OUT} (V_{INmax} - (VOUT + 1V))}{100} \times 1000 \times (\%/V)$$

[5] In voltage equals V_{OUT}(typ.) – 100mV; TS6112-01 out voltage set to 3.3V nominal with external resistor divider. TS6112-15, TS6112-18, TS6112-25, and TS6112-27 dropout voltage limited by input voltage range limitations (i.e., TS6112-30 input voltage needs to drop to 2.9 V for purpose of this test).

Table of Graphs

		FIGURE
Output voltage	vs Load current	2
Output voltage	vs Free-air temperature	3
Ground current	vs Load current	4
Glodila current	vs Free-air temperature	7
Dropout voltage	vs Free-air temperature	5
Power supply ripple rejection	vs Frequency	6
Line transient response		8
Load transient response		9
Output voltage	vs Time	10
Output spectral noise density	vs Frequency	11

TYPICAL CHARACTERISTICS

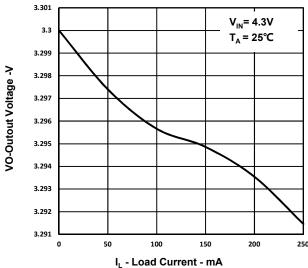


Figure2

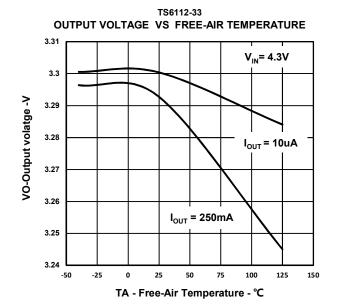
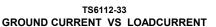



Figure 3

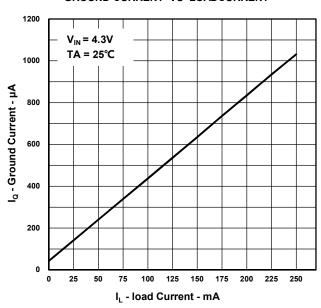



Figure4

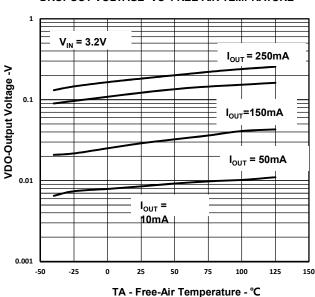


Figure5

TYPICAL CHARACTERISTICS

POWER SUPPLY RIPPLE REJECTION VS FREQUENCY

TS6112-33
GROUND CURRENT VS FREE-AIR TEMPEARTURE

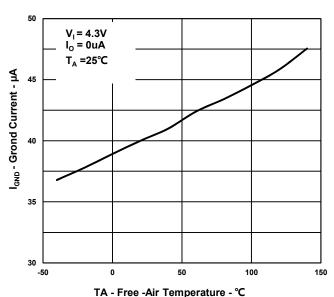
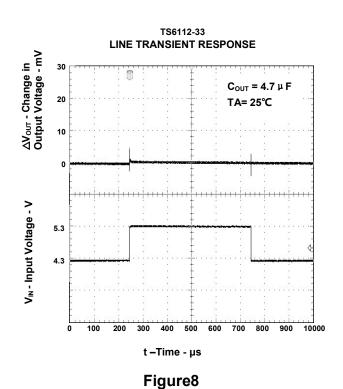



Figure6

Figure7

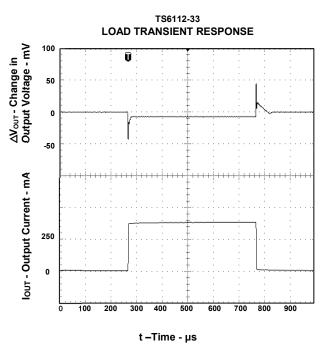
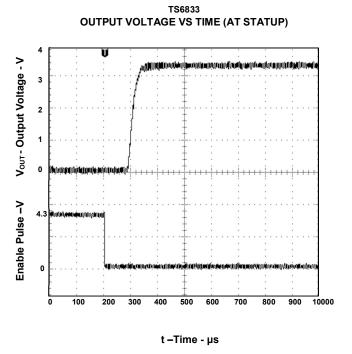



Figure9

TYPICAL CHARACTERISTICS

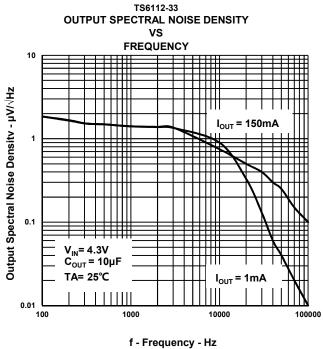


Figure10 Figure11

APPLICATION INFORMATION

The TS6112-XX family includes eight fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V, and 5.0 V), and an adjustable regulator, the TS6112-XX (adjustable from 1.25 V to 5.5 V).

Device operation

The TS6112-xx features very low quiescent current, which remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator (IB = IC/β). The TS6112-xx uses a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariable over the full load range.

Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in IB to maintain the load. During power up, this translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TS6112-xx quiescent current remains low even when the regulator drops out, eliminating both problems.

The TS6112-xx family also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 1 μ A (typ). If the shutdown feature is not used, EN should be tied to ground. Response to an enable transition is quick; regulated output voltage is reestablished in typically 160 μ s.

Minimum load requirements

The TS6112-xx family is stable even at zero load; no minimum load is required for operation.

FB - pin connection (adjustable version only)

The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option. The output voltage is sensed through a resistor divider network to close the loop as it is shown in Figure 29. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize/avoid noise pickup is essential.

External capacitor requirements

The input capacitor is not required usually, however, a ceramic bypass capacitor (0.1µF or greater) improves load transient performance. A higher capacitance capacitor may be necessary if large load transients with fast rise times are anticipated.

The TS6112-XX series regulators require output capacitors to stabilize the internal feedback loop, however, the ESR (the equivalent series resistance) of the output capacitor is not necessary. Instead, the ESR should be limited to under 1Ω for the benefit of higher phase margin under large load current. The capacitance of the output capacitor should be greater than $0.1\mu\text{F}$, though the recommended capacitance for this capacitor is $4.7\mu\text{F}$ or larger.

APPLICATION INFORMATION

External capacitor requirements (continued)

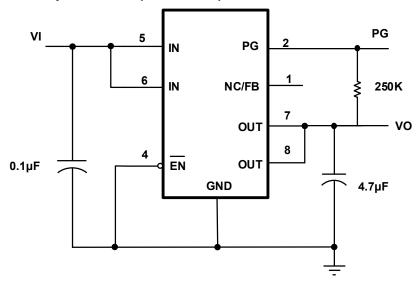


Figure 12. Typical Application Circuit (Fixed Version)

Programming the TS6112-01 adjustable LDO regulator

The output voltage of the TS6112-01 adjustable regulator is programmed using an external resistor divider as shown in Figure 29. The output voltage is calculated using:

Vo =Vref
$$\times (1 + \frac{V_0}{V_{ref}})$$

Where

 V_{ref} = 1.224 V typ. (the internal reference voltage)

Resistors R1 and R2 should be chosen from approximately 7- μ A divider current . Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 K Ω to set the divider current at 7 μ A and then calculate R1 using:

R1 =
$$(\frac{V_0}{V_{ref}} - 1) \times R2$$

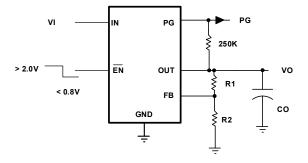


Figure 13. TS6112-01 Adjustable LDO Regulator Programming

APPLICATION INFORMATION

Power-good indicator

The TS6112-xx features a power-good (PG) output that can be used to monitor the status of the regulator. Internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator.

Regulator protection

The TS6112-xx PMOS-pass transistor has a built-in back diode that conducts reverse currents when the input Voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the Input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TS6112-xx also features internal current limiting and thermal protection. During normal operation, the TPS768xx limits output current to approximately 0.8 μ A (typ). When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 150 °C (typ), thermal-protection circuitry shuts it down. Once the device has cooled below 130 °C (typ), regulator operation resumes.

power dissipation and junction temperature

Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, PD(max), and the actual dissipation, PD, which must be less than or equal to PD(max).

The maximum-power-dissipation limit is determined using the following equation:

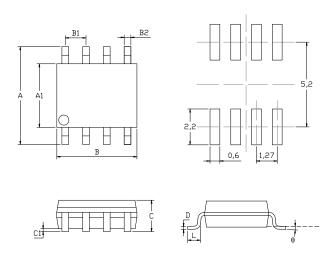
$$P_{D(max)} = \frac{T_J max - T_A}{R_{\theta, JA}}$$

Where

T_{Jmax} is the maximum allowable junction temperature

R_{θJA} is the thermal resistance junction-to-ambient for the package, ie., 176°C/W for the 8-terminal soic.

T_A is the ambient temperature.


The regulator dissipation is calculated using:

$$P_{D(max)} = (V_I - V_O) \times I_O$$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.

MECHANICAL DIMENSIONS

SO-8 PACKAGE MECHANICAL DRAWING

SO-8 PACKAGE MECHANICAL DATA

	dimensions				
symbol	millin	neters	inches		
	min	max	min	max	
Α	5.8	6.2	0.2283	0.2441	
A1	3.8	4	0.1496	0.1575	
В	4.8 5		0.1890	0.1969	
B1	1.27		0.0500		
B2	0.31 0.51		0.0122	0.0201	
С	1.75MAX			0.0689MAX	
C1	0.1	0.25	0.0039	0.0098	
L	0.4	0.4 1.27		0.0500	
D	0.13	0.25	0.0051	0.0098	
θ	0°	8°	0°	8°	

CONTACT INFORMATION

Trusignal Microelectronics

Phone: +86 512-65923982 **Fax:** +86 512-65923995

Email: support@kunyuanic.com; sales@kunyuanic.com