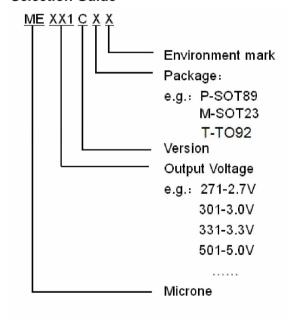


PFM Step-up DC/DC Converter, MEXX1C Series

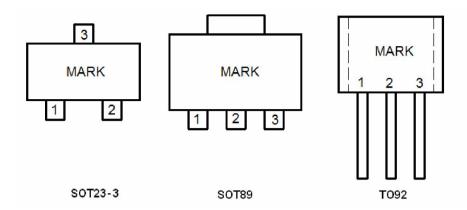

General Description

MEXX1C Series is a PFM Step-up DC/DC converter IC with low supply current by CMOS process. High frequency noise that occurs during switching is reduced by using advanced circuit designed, output voltage is programmable in 0.1V steps between 2.0~7.0V and maximum frequency is 100KHz (TYP.). A low ripple, high efficiency step-up DC/DC converter can be constructed of MEXX1C with only three external components. Also available is a CE(chip enable) function that reduce power dissipation During shut-down mode. MEXX1C is suitable for use with battery-powered instruments with low noise and low supply current.

Features

- I Low input current:6µA(TYP.)
- I Low ripple and low noise
- I Operating voltage range:0.9V~6.5V
- I Output voltage range:2.0V~7.0V(step 0.1V)
- I Output voltage accuracy: ±2.5%;
- I Output Current: if V_{IN} =3.0V and V_{OUT} =3.3V,then I_{OUT} =250mA
- I Low start voltage:<0.9V(at IOUT=1mA)
- I Maximum oscillator frequency:100KHz(TYP.)
- I High Efficiency:85%(Type)
- I Package:SOT23, SOT89, TO92

Selection Guide


Typical Application

- I Power source for battery-powered equipment
- Power source for wireless mouse, wireless keyboard, toys, cameras, camcorders, VCRs, PDAs, and hand-held communication equipment
- I Power source for appliances which require higher cell voltage than that of batteries used in the appliances

V5.0 <u>www.microne.com.cn</u> Page 1 of 8

Pin Configuration

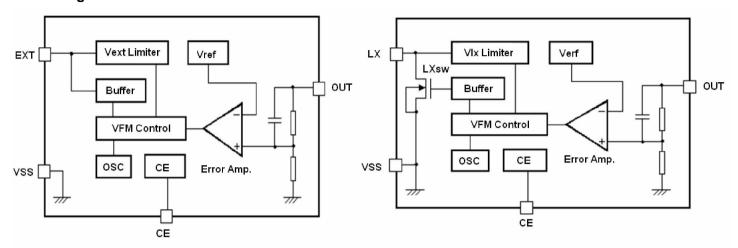
Pin Assignment

MEXX1C

PIN Number		Pin Name	Function	
SOT23-3	SOT89-3	TO-92	- Fill Name Function	
1	1	1	Vss	Ground
3	2	2	Vout	Output voltage monitor, IC internal power supply
2	3	3	Lx	Switch

MEXX1C1

PIN Number		Pin Name	Function		
SOT23-3	SOT89-3	FIII Name	FullCtion		
1	1	Vss	Ground		
3	2	Vout	Output voltage monitor, IC internal power supply		
2	3	Ext External switch transistor drive			


Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
V _{IN} Input Voltage		V _{IN}	6.5	V
Lx Pin vol	tage	V_{LX}	6.5	V
EXT Pin voltage		V _{EXT}	-0.3~Vout+0.3	V
CE Pin voltage		V _{CE}	-0.3~Vout+0.3	V
Lx Pin current		I _{LX}	600	mA
EXT Pin current		I _{EXT}	±30	mA
Vdd input voltage		V_{dd}	6.5	V
Continuous Total Power	SOT23	Pd	300	mW
Dissipation	SOT89/TO-92	Pd	500	mW
Operating Ambient Temperature		T _{Opr}	-25~+85	
Storage Temperature		T _{stg}	-40~+125	
Soldering temperature and time		T _{solder}	260 , 10s	

V5.0 <u>www.microne.com.cn</u> Page 2 of 8

Block Diagram

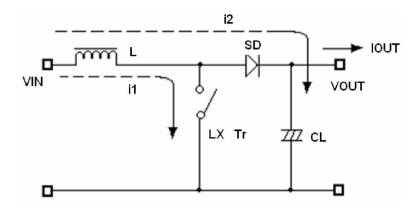
Electrical Characteristics

(Measuring conditions : Unless otherwise specified , $V_{IN}=V_{OUT}*0.6$, $V_{SS}=0V$, $I_{OUT}=10mA$, $T_{OPT}=25$)

Symbol	Parameter	Conditions	Min	Тур.	Max	Units
V _{OUT}	Output Voltage		V _{OUT} *0.975	V _{OUT}	V _{OUT} *1.025	V
V _{IN}	Maximum Input Voltage				6.5	V
lin	No-load Input Current	lout=0mA		4.6	9.3	uA
V _{start}	Oscillation Start-up Voltage	I _{OUT} =1mA , V _{IN} : 0 2V		0.8	0.9	V
V_{hold}	Oscillation Hold Voltage	I _{OUT} =1mA , V _{IN} : 2 0V	0.7			V
I _{DD1}	Supply Current 1	No external component Vout=Vout*0.95,		8	12	μΑ
I _{DD2}	Supply Current 2	Vout=Vout+0.5V		6		μA
I_{LX}	Lx Switching Current	V _{LX} =0.4V, Vout=Vout*0.95		100	160	mΑ
I _{Lxleak}	Lx Leakage Current	Vout=V _{LX} =6V			0.5	μΑ
R_{EXTH}	EXT"High"On Resistance	Same asI _{DD1} .V _{EXT} =Vout-0.4V		140	210	
R _{EXTL}	EXT"Low"On Resistance	Same as I _{DD1} .V _{EXT} =0.4V,		140	210	
V _{CEH}	CE"High" Voltage	Vout=Vce=set Vout*0.95	0.9			V
V_{CEL}	CE"Low" Voltage	Vout=Vce=set Vout*0.95			0.3	V
I _{CEH}	CE"High" Current	Vout=6.0V, Vce=6.0V	-0.5	0	0.5	uA
I _{CEL}	CE"low" Current	Vout=6.0V, Vce=0.0V	-0.5	0	0.5	uA
F _{osc}	Oscillation Frequency			100	150	kHz
Maxdty	Duty Ratio	on(V _{LX} "L")side		75		%
EFFI	Efficiency			85		%

Note: 1, Diode use Schottky diode such as IN5817 or IN5819 (forward voltage drop:0.2V)

2、Inductor: $47\mu H$ (r<0.5)


3、Capacitor: Tantalum type 47µF

V5.0 <u>www.microne.com.cn</u> Page 3 of 8

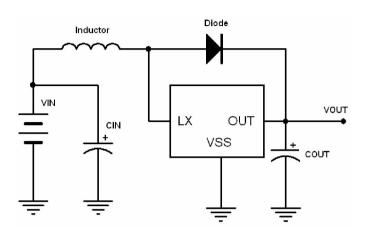
Operation Description

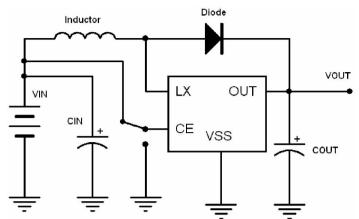
MEXX1C step-up DC/DC converter charges energy in the inductor when Lx Transistor is on, and discharges the energy with the addition of the energy from input power source thereto, so that a higher output voltage than the input voltage is obtained. Following is the operation diagram.

Switching DC/DC Step up Converter operating process

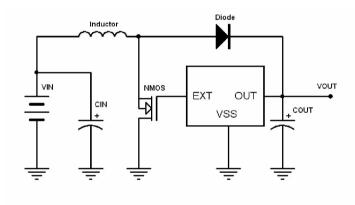
Selection of Peripheral Components and Application Notes

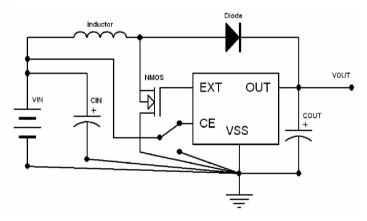
- Ø Power source for battery-powered equipment
- Ø Power source for wireless mouse, wireless keyboard, toys, cameras, camcorders, VCRs, PDAs, and hand-held communication equipment
- Ø Power source for appliances which require higher cell voltage than that of batteries used in the appliances
- Ø Peripheral components should be selected carefully because they are greatly affect the performances of MEXX1C:
 - Use capacitor with a capacity of 10µF or more (too small capacity will lead to high output ripple), and with good frequency characteristics (it is better to use Tantalum type). Besides, it is recommended the use of a capacitor with an allowable voltage which is at least three times the output set voltage. This is because there may be the case where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned OFF.
 - ² Choose such an inductor that has sufficiently small d.c. resistance and large allowable current, and hardly reaches magnetic saturation. When the inductance value of the inductor is small, there may be the case where ILX exceeds the absolute maximum ratings at the maximum load.
 - Use a diode of a Schottky type with high switching speed.


Ø PCB Layout:


- Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, when an external component is connected to VOUT Pin, make minimum connection with the capacitor.
- Make Vss pin sufficient grounding, otherwise, the zero level within IC will varied with the switching current. This may result in unstable operation of IC.

V5.0 <u>www.microne.com.cn</u> Page 4 of 8


Typical Applications



For use build in transistor

For use chip enable

For use external transistor

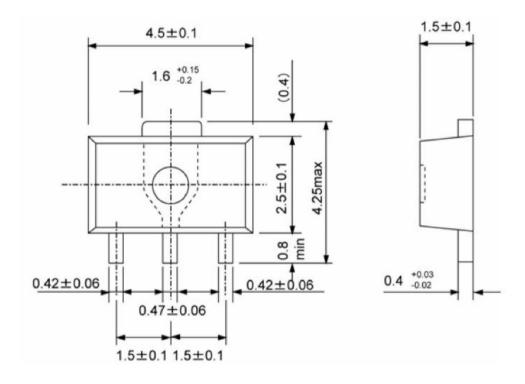
For use external transistor&chip enable

Components:

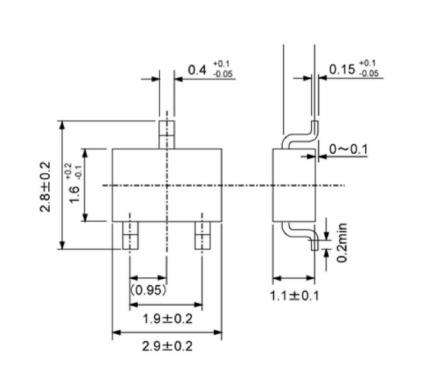
I Inductor: 47uH(Sumida)I Diode: IN5817, IN5819

I Capacitor: 47uF/16V(Tantalum Capacitor)

Transistor: 2SD1628G、2SD3279

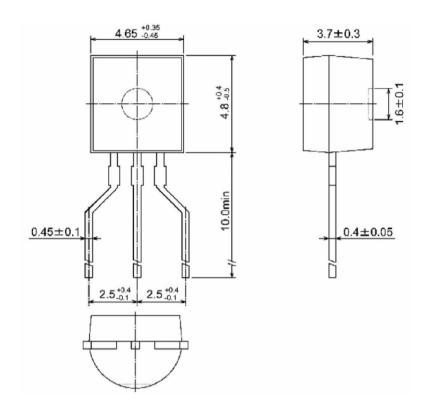

I NMOS: MEM2302、AAT9460、XP151、XP161

V5.0 <u>www.microne.com.cn</u> Page 5 of 8



Packaging Information:

SOT89-3


SOT23-3

V5.0 <u>www.microne.com.cn</u> Page 6 of 8

TO-92

- I The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- I Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- I The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- I Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

V5.0 <u>www.microne.com.cn</u> Page 8 of 8