

RW-175

Thin-wall, semirigid, fluoropolymer heat-shrinkable tubing

RW-175 heat-shrinkable tubing is a tough, semirigid, very-thin-wall insulation. It is especially suitable for applications requiring high-temperature performance, outstanding abrasion and cut-through resistance, or superior chemical and solvent properties. The translucent polyvinylidene fluoride material permits visual inspection of covered components. RW-175 tubing provides electrical insulation and strain relief of multipin connectors and solder joints. It is also widely used as insulation for hightemperature components and heater leads. With its thin-wall construction, RW-175 is ideal for applications that require dense packing of components.

RW-175 provides protection from most industrial solvents, fuels, and chemicals – including JP-8, oxidants, and strong acids. It is UL-recognized and CSA-certified at 150°C, 600 V, with VW-1 and OFT flame-retardancy ratings.

Temperature rating

Full recovery temperature:	175°C
Continuous operating temperature:	-55°C to 175°C
Recommended maximum temperature for use as a primary insulator:	135°C

Specification	ns*		91	S ₽°	
Туре	Raychem	Military	UL	CSA	
RW-175	RW-3029/2	AMS-DTL-23053/8	E35586 VW-1	LR31929 OFT	

Dimensions (millimeters/inches)

	Inside diameter Wall		Wall thickne	all thickness Inside diameter			r	Wall thickness				
D (min.) d (max.)		W			D (min.)		d (max.)		W			
Expar	nded	Reco	overed	Recovered			Expan	ded	Reco	vered	Recovered	
as su	oplied	after	heating	after heating	g**	Size	as sup	plied	after	heating	after heating	g**
1.2	0.046	0.6	0.023	0.25 ± 0.05	0.010 ± 0.002	1/2	12.7	0.500	6.4	0.250	0.33 ± 0.05	0.013 ± 0.002
1.6	0.063	0.8	0.031	0.25 ± 0.05	0.010 ± 0.002	3/4	19.1	0.750	9.5	0.375	0.43 ± 0.08	0.017 ± 0.003
2.4	0.093	1.2	0.046	0.25 ± 0.05	0.010 ± 0.002	1	25.4	1.000	12.7	0.500	0.48 ± 0.08	0.019 ± 0.003
3.2	0.125	1.6	0.062	0.25 ± 0.05	0.010 ± 0.002	1 1/2	38.1	1.500	19.1	0.750	0.51 ± 0.08	0.020 ± 0.003
4.7	0.187	2.4	0.093	0.25 ± 0.05	0.010 ± 0.002	2	50.8	2.000	25.4	1.000	0.51 ± 0.08	0.020 ± 0.003
6.4	0.250	3.2	0.125	0.33 ± 0.05	0.013 ± 0.002	3	76.2	3.000	38.1	1.500	0.64 ± 0.10	0.025 ± 0.004
9.5	0.375	4.7	0.187	0.33 ± 0.05	0.013 ± 0.002	4	101.6	4.000	50.8	2.000	0.76 ± 0.13	0.030 ± 0.005
	Expar as sul 1.2 1.6 2.4 3.2 4.7 6.4 9.5	Expanded as supplied 1.2 0.046 1.6 0.063 2.4 0.093 3.2 0.125 4.7 0.187 6.4 0.250 9.5 0.375	Expanded Records as supplied after 1.2 0.046 0.6 1.6 0.063 0.8 2.4 0.093 1.2 3.2 0.125 1.6 4.7 0.187 2.4 6.4 0.250 3.2 9.5 0.375 4.7	Expanded Recovered as supplied after heating 1.2 0.046 0.6 0.023 1.6 0.063 0.8 0.031 2.4 0.093 1.2 0.046 3.2 0.125 1.6 0.062 4.7 0.187 2.4 0.093 6.4 0.250 3.2 0.125 9.5 0.375 4.7 0.187	Expanded as supplied Recovered after heating Recovered after heating 1.2 0.046 0.6 0.023 0.25 ± 0.05 1.6 0.063 0.8 0.031 0.25 ± 0.05 2.4 0.093 1.2 0.046 0.25 ± 0.05 3.2 0.125 1.6 0.062 0.25 ± 0.05 4.7 0.187 2.4 0.093 0.25 ± 0.05 6.4 0.250 3.2 0.125 0.33 ± 0.05 9.5 0.375 4.7 0.187 0.33 ± 0.05	Expanded as suppliedRecovered after heatingRecovered after heating1.20.0460.60.023 0.25 ± 0.05 0.010 ± 0.002 1.60.0630.80.031 0.25 ± 0.05 0.010 ± 0.002 2.40.0931.20.046 0.25 ± 0.05 0.010 ± 0.002 3.20.1251.60.062 0.25 ± 0.05 0.010 ± 0.002 4.70.1872.40.093 0.25 ± 0.05 0.010 ± 0.002 6.40.2503.20.125 0.33 ± 0.05 0.013 ± 0.002 9.50.3754.70.187 0.33 ± 0.05 0.013 ± 0.002	Expanded as suppliedRecovered after heatingRecovered after heating*Size 1.2 0.046 0.6 0.023 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 1.6 0.063 0.8 0.031 0.25 ± 0.05 0.010 ± 0.002 $3/4$ 2.4 0.093 1.2 0.046 0.25 ± 0.05 0.010 ± 0.002 1 3.2 0.125 1.6 0.062 0.25 ± 0.05 0.010 ± 0.002 1 4.7 0.187 2.4 0.093 0.25 ± 0.05 0.010 ± 0.002 2 6.4 0.250 3.2 0.125 0.33 ± 0.05 0.013 ± 0.002 3 9.5 0.375 4.7 0.187 0.33 ± 0.05 0.013 ± 0.002 4	Expanded as suppliedRecovered after heatingRecovered after heating**Expan supplied 1.2 0.046 0.6 0.023 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 1.2 1.6 0.063 0.8 0.031 0.25 ± 0.05 0.010 ± 0.002 $1/2$ $1/2$ 1.2 2.4 0.093 1.2 0.046 0.25 ± 0.05 0.010 ± 0.002 1 25.4 3.2 0.125 1.6 0.062 0.25 ± 0.05 0.010 ± 0.002 1 $1/2$ 4.7 0.187 2.4 0.093 0.25 ± 0.05 0.010 ± 0.002 2 50.8 6.4 0.250 3.2 0.125 0.33 ± 0.05 0.013 ± 0.002 3 76.2	Expanded as suppliedRecovered after heatingRecovered after heating**Expanded 	Expanded as suppliedRecovered after heatingRecovered after heating**Expanded SizeExpanded as suppliedRecover after 1.2 0.046 0.6 0.023 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 12.7 0.500 6.4 1.6 0.063 0.8 0.031 0.25 ± 0.05 0.010 ± 0.002 $3/4$ 19.1 0.750 9.5 2.4 0.093 1.2 0.046 0.25 ± 0.05 0.010 ± 0.002 1 25.4 1.000 12.7 3.2 0.125 1.6 0.062 0.25 ± 0.05 0.010 ± 0.002 1 $1/2$ 38.1 1.500 19.1 4.7 0.187 2.4 0.093 0.25 ± 0.05 0.010 ± 0.002 2 50.8 2.000 25.4 6.4 0.250 3.2 0.125 0.33 ± 0.05 0.013 ± 0.002 3 76.2 3.000 38.1 9.5 0.375 4.7 0.187 0.33 ± 0.05 0.013 ± 0.002 4 101.6 4.000 50.8	Expanded as suppliedRecovered after heatingRecovered after heating**Expanded as suppliedRecovered after heatingRecovered after heating 1.2 0.046 0.6 0.023 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 12.7 0.500 6.4 0.250 1.6 0.063 0.8 0.031 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 12.7 0.500 6.4 0.250 2.4 0.093 1.2 0.046 0.25 ± 0.05 0.010 ± 0.002 1 25.4 1.000 12.7 0.500 3.2 0.125 1.6 0.062 0.25 ± 0.05 0.010 ± 0.002 1 $1/2$ 38.1 1.500 19.1 0.750 4.7 0.187 2.4 0.093 0.25 ± 0.05 0.010 ± 0.002 2 50.8 2.000 25.4 1.000 6.4 0.250 3.2 0.125 0.33 ± 0.05 0.013 ± 0.002 3 76.2 3.000 38.1 1.500 9.5 0.375 4.7 0.187 0.33 ± 0.05 0.013 ± 0.002 4 101.6 4.000 50.8 2.000	Expanded as suppliedRecovered after heatingRecovered after heating**Expanded as suppliedRecovered after heating after heatingRecovered after heatingRecovered after heatingRecovered after heating1.20.0460.60.023 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 12.7 0.500 6.4 0.250 0.33 ± 0.05 1.60.0630.8 0.031 0.25 ± 0.05 0.010 ± 0.002 $1/2$ 12.7 0.500 6.4 0.250 0.33 ± 0.05 2.40.0931.2 0.046 0.25 ± 0.05 0.010 ± 0.002 1 25.4 1.000 12.7 0.500 0.48 ± 0.08 3.2 0.125 1.6 0.062 0.25 ± 0.05 0.010 ± 0.002 $11/2$ 38.1 1.500 19.1 0.750 0.51 ± 0.08 4.7 0.187 2.4 0.093 0.25 ± 0.05 0.010 ± 0.002 3 76.2 3.000 38.1 1.500 0.51 ± 0.08 6.4 0.250 3.2 0.125 0.33 ± 0.05 0.013 ± 0.002 3 76.2 3.000 38.1 1.500 0.64 ± 0.10 9.5 0.375 4.7 0.187 0.33 ± 0.05 0.013 ± 0.002 4 101.6 4.000 50.8 2.000 0.76 ± 0.13

**Wall thickness will be less if tubing recovery is restricted during shrinkage

Ordering information

Colors	Standard	Translucent (clear)				
	Nonstandard	Black				
Size selection	Always order the largest size that will shrink snugly over the component being covered.					
Nonstandard sizes	Sizes of 2 inches and larger are by special order only. In addition, a variety of nonstandard sizes are available.					
Standard packaging	4-foot lengths					
Ordering description	Specify product name, size, and color; for example, RW-175 1/4-X (X=Clear).					

Specificati	Property	Unit	Requirement	Method of test	
Physical	Dimensions	mm (inches)	See reverse	ASTM D 2671	
njelea	Longitudinal change	percent	+0, –10 maximum	ASTM D 2671	
	Tensile strength	psi (MPa)	5000 <i>(34.5)</i> minimum	ASTM D 2671	
	Ultimate elongation	percent	150 minimum	ASTM D 2671	
	Secant modulus (expanded)	psi (MPa)	1 x 10 ⁵ <i>(690)</i> minimum		
	Specific gravity		1.8 maximum	ASTM D 2671	
	Low-temperature flexibility (4 hours at –55°C/–67°F)		No cracking	AMS-DTL-23053/8	
	Heat shock (4 hours at 300°C/ <i>572°F</i>)		No dripping, flowing, or cracking	AMS-DTL-23053	
	Heat resistance (168 hours at 250°C/ <i>482°F</i>) Followed by test for:			ASTM D 2671	
	Ultimate elongation	percent	50 minimum	ASTM D 2671	
	Vacuum outgassing			ASTM E 595	
	TML (total mass loss)	percent	1.0 maximum		
	VCM (volatile condensable ma	iterial) percent	0.1 maximum		
Electrical	Dielectric strength	volts/mil <i>(kV/m</i>	-	ASTM D 2671	
	Sizes 3/64 through 1/2		800 <i>(31.5)</i> minimum		
	Sizes 3/4 through 2		600 <i>(23.6)</i> minimum		
	Volume resistivity	ohm-cm	10 ¹³ minimum	ASTM D 2671	
Chemical	Copper mirror corrosion (16 hours at 175°C/347°F)		Noncorrosive	ASTM D 2671 Procedure A	
	Copper contact corrosion (168 hours at 175°C/347°F)		No pitting or blackenir of copper	ng ASTM D 2671 Procedure B	
	Followed by test for:		ol coppei	r locedule D	
	Ultimate elongation	percent	100 minimum	ASTM D 2671	
	Flammability	seconds	15 maximum	ASTM D 2071	
	(average time of burning)	3000103	10 maximum	Procedure A	
	Fungus resistance Followed by tests for:			ISO 846 Method B	
	Tensile strength	psi <i>(MPa)</i>	5000 <i>(34.5)</i> minimum	ASTM D 2671	
	Ultimate elongation	percent	150 minimum	ASTM D 2671	
	Dielectric strength	volts/mil (kV/m	m)	ASTM D 2671	
	Sizes 3/64 through 1/2		800 <i>(31,500)</i> minimum	I Contraction of the second	
	Sizes 3/4 through 2		600 <i>(23,600)</i> minimum	1	
	Water absorption	percent	0.5 maximum	ASTM D 2671	
	(24 hours at 23°C/73°F)	·			
	Fluid resistance (24 hours at 23°C/73°F) in: JP-8 fuel (MIL-T-5624) Skydrol 500 Hydraulic fluid (MIL-H-5606) Aviation gasoline 100/300 (MIL- Salt water (5% salt) Anti-icing fluid (MIL-A-8243) Lubricating oil (MIL-A-7808) Followed by tests for:	G-5572)		ASTM D 2671	
	Followed by tests for:	volte/mil ////m	m		
	Dielectric strength Sizes 3/64 through 1/2	volts/mil <i>(kV/m</i>	700 <i>(27.6)</i> minimum	ASTM D 2671	
	Sizes 3/4 through 2		500 <i>(27.0)</i> minimum		
Noto: Concult D	Tensile strength	psi <i>(MPa)</i>	5000 (<i>34.5</i>) minimum	ASTM D 2671	
	RW-3029/2 for specific details about tes	• • •	3000 (34.3) 11111111111	ASTIVI D 2071	
	ademark of Monsanto Company. Rayche		ectronics Corporation		
-	d independently evaluate the suitab				
Tyco Electror	nics Corporation				
300 Constitution DriveFaMenlo Park, CA 94025-1164Do		aday Road can, Swindon, SN3 5HH ted Kingdom	3816 Noborito, Tama-ku Kawasaki, Kanagawa 214-8533 Japan	Asia Pacific Headquarters 26 Ang Mo Kio, Industrial Park Singapore 569507	

All information, including illustrations, is believed to be reliable. Users, however, should independently evaluate the suitability of each product for their application. Tyco Electronics Corporation makes no warranties as to the accuracy or completeness of the information, and disclaims any liability regarding its use. Tyco Electronics Corporation's only obligations are those in the Standard Terms and Conditions of Sale for these products and in no case will Tyco Electronics Corporation be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of the product. Tyco Electronics Corporation's Specifications are subject to change without notice. In addition, Tyco Electronics Corporation reserves the right to make changes in materials or processing without notification to the Buyer which do not affect compliance with any applicable specification.

Japan

Tel: +81 44 900 5102

United Kingdom

Tel: +44 1793 528171

USA

Tel: (800) 926-2425 (US & Canada) Tel: +1 (650) 361-3860 (All other countries) Singapore 569507 Tel: +65 4866 151

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity:

 8S23-75FR
 RW1751/16XSTKCS5405
 RW1753/32XSTKCS5405
 RW-175-NO.33-X-SP
 RW-175-3/16-X-STK

 M23053/8-006-C
 M23053/8-004-C
 M23053/8-001-C
 M23053/8-007-C
 M23053/8-003-C
 M23053/8-009-C
 M23053/8-009-C

 002-C
 M23053/8-008-C
 M23053/8-005-C
 M23053/8-005-C
 M23053/8-003-C
 M23053/8-009-C
 M23053/8-009-C