

CBM China Strategy

ROGER YU CHINA IAT MARKETING MANAGER

ROGER.YU@ANALOG.COM MAY 2019

CBM

Extra value delivered to end customers

Common Condition Monitoring Techniques

- Vibration analysis and diagnostics
- Lubrication Analysis
 - WDA Wear Debris Analysis 磨损颗粒分析
- Infrared thermography
- Ultrasonic testing (material thickness/flaw testing)
- MCSA Motor Current Signature Analysis
 - Direct (invasive) or Eddy Current transducers (less invasive) 涡流传感器
 - MBVI/MCA Model based Voltage and current/Motor Current Analysis
- ► Acoustic emission (Airborne ultrasound)声发射检测

CbM Methodologies --- e.g. Motor Drive System

Available approaches to Condition Monitoring-

- Generally understood to mean vibration or velocity
- But other tools in the toolbox like Power Quality can be monitored with ADE9000 (more on next slide)

Node types

- Wireless Easy deployment, Interval monitoring
 - Cons: Power sensitive, Radio Architecture Selection, Duty cycle
- Wired Continuous Monitoring
 - Cons: Facility costs, Routing wire harness on mechanical equipment

Diagnostic Levels / Prognostics

- Immediate: Failure imminent
- Local modeling of machine (classic model, science is still developing today)
- Machine Learning is emerging (manual and cloud based)

Machine Health – Problem Statements & Trends

Problem statements

- Driving down the cost of plant operations in an age of over capacity...
 - Expensive equipment, critical to maintain up-time
 - Expensive monitoring equipment / Diagnostic Technicians
 - Expensive repairs, cheaper if discovered early
- Safety enhancement (SILs) also drives adoption, cost

Emerging trends

- Integrated 'smart' solutions reduce costs
 - Reduces the need for highly skilled maintenance personnel
 - Reduces the cost of continuous monitoring systems
 - Economical Condition Monitoring for lower cost equipment
- More investment in analytics
 - Both local at the node and in the cloud
 - Avoid False Alerts while improving early detection

Smaller, lower cost, low power MEMS sensors enable highly integrated embedded solutions

CbM Final Delivery

ADI Solution Offer

Kep Components: MEMS Sensor

MEMS Accelerator Landscape

ADXL354/ADXL355/ADXL356/ADXL357: High Performance 3-axis Accelerometers

Features and Specifications

- ► ADXL354/5 ±2g/ ±4g/ ±8g
 - 20/25µg/√Hz noise density
 - Guaranteed 0.15mg/C offset drift
 - 200µa power supply current (ADXL355)
 - -40C to +125C operation
 - Hermetic package
 - Both analog and digital interface models

ADXL356/7 ±10g/ ±20g/ ±40g

- 80µg/√Hz noise density
- Guaranteed 0.75mg/C offset drift
- 200µa power supply current (ADXL357)
- -40C to +125C operation
- Hermetic package
- Both analog and digital interface models

Portolio Positioning	ADXL203	ADXL354	% Delta
Noise (µg/√Hz)	110	20	-77%
0-g Tempco (mg/C Max)	0.8	0.15	-81%
Power supply current (µa, per axis)	350	60	-83%
Orientation (DoF)	XY	XYZ	

ADXL356 is an upgrade to ADI's best selling ADXL22037 – with 30% less noise at 1/5th the power

ADXL100x High Performance Accelerometers

Higher resonant frequencies, pin compatible with ADXL1001 and ADXL1002

Features and Specifications

- ADXL1001/2/3/4/5
 - High Full Scale Ranges (FSR) ±50g to ±500g
 - Low noise density
 - 25 to 80µg/√Hz noise density
 - Single, in-plane orientation
 - Analog output
 - Overrange indicator (OR)
 - Electro-static Self test (ST)
 - 21kHz to 45kHz resonant frequencies
 - ImA power supply current
 - -40C to +125C operation
 - 5x5mm LFCSP package

Typical Interface

5 x 5 x 1.8mm LFCSP package Single, in-plane axis

Kep Components: SAR ADC

Specification	AD7768-1 Median WB 128 ksps Decimate x32	AD7768-1 Fast WB 128 ksps Decimate x64	Comparison Commentary
Input BW (kHz) ODR (kSPS)	55 kHz @ 128 kSPS	55 kHz @ 128 kSPS 110 kHz @ 256 kSPS	Up to ~2x Input Bandwidth
Dynamic Range (dB)	108 typ	111 typ	5 dB Extra Dynamic Range
THD (dB)	-120 typ	-120 typ	12dB THD Improvement
INL (ppm/FSR)	2ppm typ, 7 max (Endpoint)	2ppm typ, 7 max (Endpoint)	Improved INL
Offset Error	50 uV typ, 150uV max	50 uV typ, 150uV max	6x reduction in max Offset
Offset Drift Error (nV/degC)	140 typ	140 typ	12x Improvement in Offset Drift
Gain Error (ppm/FSR)	50	50	20x Improvement in Gain Error
Gain Drift (ppm/degC)	0.5 typ, 1 max	0.5 typ, 1 max	Improved Gain Drift
Current Consumption (mA)	1.4 (5V AVDD1) 2.7 (2V to 5V AVDD2) 5 (1.8V IOVDD)	2.3 (5V AVDD1) 4.5 (2V to 5V AVDD2) 7.8 (1.8V IOVDD)	4x Lower Power in Median >2x Lower Power in Fast
Input Current	Pre Charge on:~12uA Pre-charge off: ~125 uA	Pre Charge on:~25uA Pre-charge off: ~250 uA	12x lower with precharge on Lower with precharge off
Ref Input Current	150 uA (28 kOhm)	300 uA (14 kOhm)	~4x lower refin current in Median
Package	28ld LFCSP (4x5) = 20mm^2	28ld LFCSP (4x5) = 20mm^2	~40% Area Saving

Module Offer:

Module Rationale

- No time or resources to become a MEMS expert
- Proven solution designed specifically for CbM
 - No need to do mechanical simulations and characterization
 - Designed & characterized for known performance
 - Embedded microcontroller provides software tailored for CbM usage
- Decreased Time To Market gives customer advantage
- ADI handles all procurement

Why ADI for Modules

- 15+ years experience in module design and deployment with iSensor IMU
- Over 40 products released and over one million units sold

ADcmXL3021 Combines Embedded Processing into a Mechanically Optimized Package

Frequency Domain Modes

ADcmXL3021 Highlights

- Triaxial vibration sensing based on the ADXL100x
- ±50 g measurement range
- Wide bandwidth:
- DC-10 kHz (within 5% flatness)
- Fast data sampling, up to 220 kSPS
- User configurable
- External Clock for synchronization
- Single supply operation 3.0-3.6V
- Operating temperature: -40°C to +105°C

Features

- Sampled at 220kSPS
- <u>Real-Time Streaming</u>
- Raw, unfiltered data
- Enables custom processing

Manual Time Capture

- User initiated
- Filtered & decimated
- Stores 4096 samples per axis
- Calculated statistical metrics

Features

- Sampled at 220kSPS
- Manual FFT
- User initiated capture of 4096 samples
- Filtered & decimated
- Windowing & FFT Averaging
- Configurable spectral alarms & interrupts
- <u>Automatic FFT</u>
- Same as Manual FFT
- Periodically triggered

ADcmXL3021 Manual Time Capture

ADcmXL3021 FFT Capture

Deviation of frequency

ADcmXL3021 Alarm features

- ► 2 levels of alarm: alarm1 and alarm2
- Alarm delay
- Exceeding peak level
 - Alarm on peak going above set level
- Deviation of magnitude
- Alarm on peak going above set level
 Deviation of magnitude
 Alarm on magnitude going above level
 - Alarm on magnitude going below level >
- Deviation of frequency
 - 6 different bands
 - Alarm on vibration going out of band

Platform Offer (Wireless):

AHEAD OF WHAT'S POSSIBLE"

Platform Offer (wired):

ADcmXL3021 Module Based Design

Simplifies sensor attachment & signal chain design

RS-485 Industrial Interface

- Robust interface for industrial environments
 - Offers noise immunity across long cables
- Several variations available based on system requirements & solution cost

Software Available for Development

- Includes ADcmXL3021 interface drivers
- Access to off-board ADuCM4050 for custom protocol & application design

Mechanical Enclosure Design

 IP67 enclosure will integrate ADcmXL3021 & supporting circuitry

Mechanical Considerations Are Required for Optimized Vibration Monitoring Solutions

Condition Monitoring – Mounting strategies

- First consideration must be capability of the Sensor
- Almost as critical is mounting strategy
- For MEMS, PCB thickness and mounting need consideration
- Warning: Magnetic mount can generate significant g force and care must be taken when placing on equipment.

Maximum Frequency Response

Future Offer:

Today's CbM Business: Sensor + Signal Chain

Condition Monitoring Solutions Expanding Opportunities: Algorithms to augment HW

Otosense:

 Event detection algorithms & machine learning solutions to augment sensors/signal chain

Material Sensing:

 Lubrication monitoring to identify potential contamination and breakdown

Services & Analytics:

 Potential for service offerings that enable customers with analytic insights

Q&A