Common Mode Filter with ESD Protection

Functional Description

The EMI814x is a family of Common Mode Filters (CMF) with integrated ESD protection, a first in the industry. Differential signaling I/Os can now have both common mode filtering and ESD protection in one package. The EMI814x protects against ESD pulses up to ± 15 kV contact per the IEC61000–4–2 standard.

The EMI814x is well-suited for protecting systems using high-speed differential ports such as USB 3.0, MIPI D-PHY; corresponding ports in removable storage, and other applications where ESD protection are required in a small footprint package.

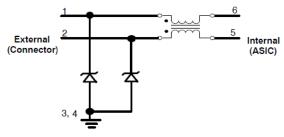
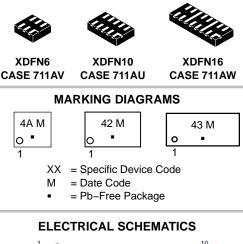
The EMI814x is available in a RoHS-compliant, XDFN6 for 1 Differential Pair, XDFN-10 for 2 Differential Pair and XDFN-16 package for 3 Differential Pair.

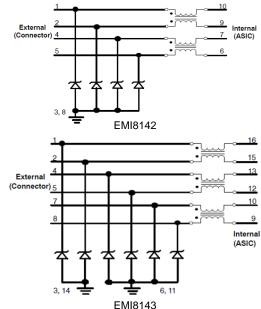
Features

- Total Insertion Loss $DM_{LOSS} < 2.5 \text{ dB}$ at 2.5 GHz
- Large Differential Mode Cutoff Frequency $f_{3dB} > 5$ GHz
- High Common Mode Stop Band Attenuation: > 10 dB at 500 MHz , 15 dB at 700 MHz
- Low Channel Resistance 6.0 Ω
- Provides ESD Protection to IEC61000-4-2 Level 4, ±15 kV Contact
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- USB 3.0
- MHL 2.0
- µSD Card
- eSATA
- HDMI/DVI Display in Mobile Phones
- MIPI D–PHY (CSI–2, DSI, etc) in Mobile Phones and Digital Still Cameras


Figure 1. EMI8141 Electrical Schematic

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
EMI8141MUTAG	XDFN6	3000 / Tape & Reel
EMI8142MUTAG	XDFN10	3000 / Tape & Reel
EMI8143MUTAG	XDFN16	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN FUNCTION DESCRIPTION

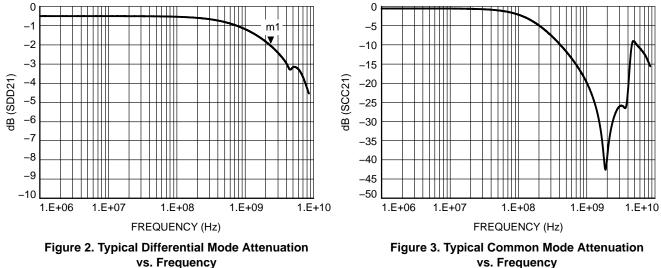
	Device Pin				
Pin Name	EMI8141	EMI8142	EMI8143	Туре	Description
ln_1+	1	1	1	I/O	CMF Channel 1+ to Connector (External)
ln_1-	2	2	2	I/O	CMF Channel 1– to Connector (External)
Out_1+	6	10	16	I/O	CMF Channel 1+ to ASIC (Internal)
Out_1-	5	9	15	I/O	CMF Channel 1– to ASIC (Internal)
ln_2+	NA	4	4	I/O	CMF Channel 2+ to Connector (External)
ln_2-	NA	5	5	I/O	CMF Channel 2– to Connector (External)
Out_2+	NA	7	13	I/O	CMF Channel 2+ to ASIC (Internal)
Out_2-	NA	6	12	I/O	CMF Channel 2– to ASIC (Internal)
In_3+	NA	NA	7	I/O	CMF Channel 3+ to Connector (External)
ln_3–	NA	NA	8	I/O	CMF Channel 3– to Connector (External)
Out_3+	NA	NA	10	I/O	CMF Channel 3+ to ASIC (Internal)
Out_3-	NA	NA	9	I/O	CMF Channel 3– to ASIC (Internal)
VN	3,4	3, 8	3,6,14,11	GND	Ground

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Operating Temperature Range	T _{OP}	-40 to +85	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Maximum Lead Temperature for Soldering Purposes (1/8" from Case for 10 seconds)	ΤL	260	°C
DC Current per Line	I _{LINE}	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{RWM}	Reverse Working Voltage	(Note 3)		3.3		V
V_{BR}	Breakdown Voltage	I _T = 1 mA; (Note 4)	4.0		9.0	V
I _{LEAK}	Channel Leakage Current	$T_A = 25^{\circ}C, V_{IN} = 3.3 V, GND = 0 V$			1.0	μΑ
R _{CH}	Channel Resistance (Pins 1–6, 2–5) – EMI8141 (Pins 1–10, 2–9, 4–7 and 5–6) – EMI8142 (Pins 1–16, 2–15, 4–13, 5–12, 7–10 and 8–9) – EMI8143			6.0		Ω
DMLOSS	Differential Mode Insertion Loss	@ 2.5 GHz		2.5		dB
f _{3dB}	Differential Mode Cut-off Frequency	50 Ω Source and Load Termination		5.0		GHz
F _{atten}	Common Mode Stop Band Attenuation	@ 700 MHz		15		dB
V _{ESD}	In-system ESD Withstand Voltage a) Contact discharge per IEC 61000-4-2 standard, Level 4 (External Pins) b) Contact discharge per IEC 61000-4-2 standard, Level 1 (Internal Pins)	(Notes 1 and 2)	±15 ±2			kV
V _{CL}	TLP Clamping Voltage	Forward $I_{PP} = 8 A$ Forward $I_{PP} = 16 A$ Forward $I_{PP} = -8 A$ Forward $I_{PP} = -16 A$		7.26 11.8 -3.5 -6.7		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

 Standard IEC61000-4-2 with C_{Discharge} = 150 pF, R_{Discharge} = 330, GND grounded.
These measurements performed with no external capacitor.
TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or caption peak on peak peak reverse voltage (V_{RWM}). or continuous peak operating voltage level.

4. V_{BR} is measured at pulse test current I_T.

TYPICAL CHARACTERISTICS

vs. Frequency

Interface	Data Rate (Gb/s)	Fundamental Frequency (GHz)	ESD814x Insertion Loss (dB)
USB 3.0	5	2.5 (m1)	m1 = 2.13

TRANSMISSION LINE PULSE (TLP) MEASUREMENTS

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 4. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10 s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 5 where an 8 kV IEC61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. Typical TLP I–V curves for the EMI814x are shown in Figure 4.

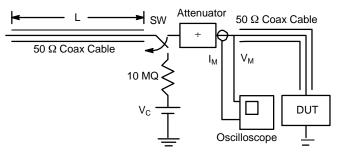


Figure 4. Simplified Schematic of a Typical TLP System

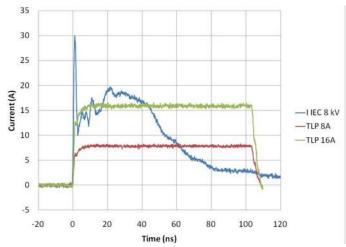
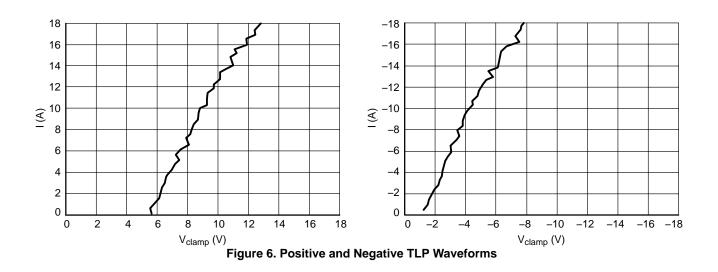



Figure 5. Comparison Between 8 kV IEC61000-4-2 and 8 A and 16 A TLP Waveforms

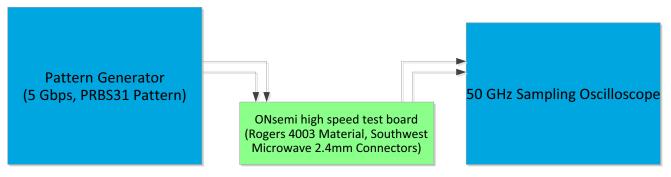


Figure 7. Eye Diagram Test Setup for 5Gbps Data Rate

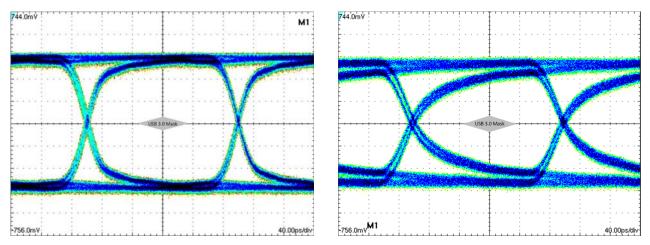
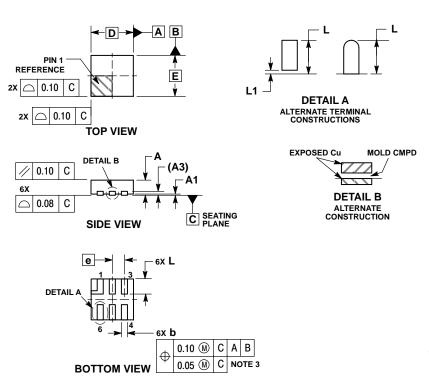
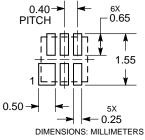



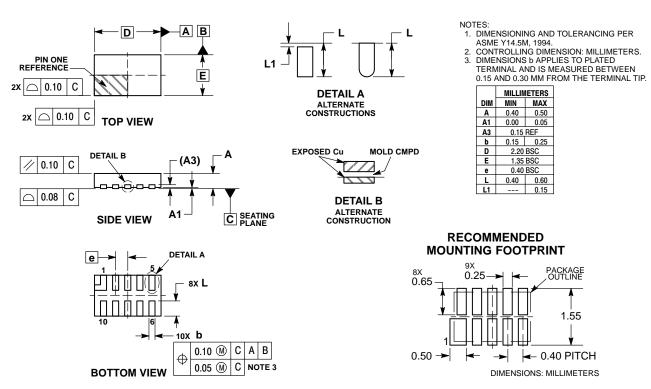
Figure 8. Eye Diagram 5Gbps with and without EMI814x

	Eye Height (mVppd)	Rise Time (ps)	Fall Time (ps)	Jrms (ps)	Jpp (ps)
Reference (No Device)-Left Figure	724	30.4	29.6	1.997	9.6
EMI814x Right Figure	405	60	60.8	3.484	16

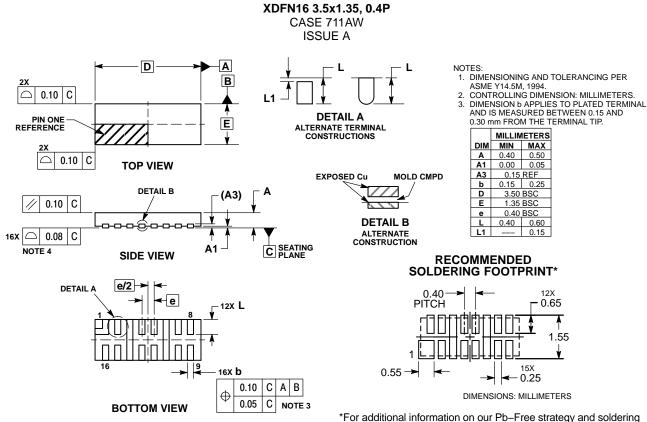
PACKAGE DIMENSIONS


XDFN6 1.40x1.35, 0.4P CASE 711AV **ISSUE A**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.


	MILLIMETERS				
DIM	MIN	MAX			
Α	0.40	0.50			
A1	0.00	0.05			
A3	0.15 REF				
b	0.15	0.25			
D	1.40	BSC			
Е	1.35	BSC			
e	0.40 BSC				
L	0.40	0.60			
L1		0.15			

RECOMMENDED **MOUNTING FOOTPRINT**



PACKAGE DIMENSIONS

XDFN10 2.2x1.35, 0.4P CASE 711AU ISSUE B

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended to support or sustain life, or for any other application in which the failure of the SCILLC product out of use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees ansing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright and is not for resard in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: EMI8141MUTAG