IRMCX300_AppDevGuide (Infineon

Application Developer’s Guide
iIMOTION™ motor control IC with additional MCU

About this document

Scope and purpose

The IRMCx300 series motor control ICs are mixed signal devices optimized for permanent magnet motor control.
They combines the iIMOTION™ motion control engine (MCE) with an additional 8 Bit microcontroller (MCU) to
improve application flexibility.

This Developer‘s Guide will begin with the process of initial testing with the target motor, continue with
modification of the MCE design for application specific requirements and conclude with the design of motor
control hardware for the final application. This guide assumes that the user is in possession of an iMOTION™
reference design kit and has already completed the activities in the Quick Start Guide. The user should also review
the “MCEDesigner User‘s Guide”. This guide will refer to MCEDesigner features and actions frequently.

Section 2 starts by describing in detail how to measure the parameters of the target motor, generate the correct
drive parameters, and begin spinning the motor. Next, this section gives instructions on how to tune the speed and
current control loops and optimize the motor start-up parameters. Section 2 concludes with motor drive
performance verification and testing methods using MCEDesigner.

Section 3 introduces the MCE processor in more detail and then gives instructions on how to modify the factory-
supplied MCE design, if desired. The section finishes with some sample program modifications.

Section 4 guides the user through design, testing and optimization of application specific hardware as it relates to
the IRMCx300 motor control IC.

Finally, Section 5 provides application guidance for the power factor correction (PFC) features which are available
on the IRMCS3012 and IRMCS3043 reference design kits. It describes the topology, control loops, parameter tuning,
and hardware design for PFC, with specific references to the design kits.

An additional document, the “IRMCx300 Software Developer‘s Guide”, has instructions on hardware and software
requirements and the development process of the embedded 8051 code. The “Application and Software
Developer‘s Guides” are designed to take the user through the design process. The reference manual, also referred
to frequently in this document, has detailed information on many topics covered here, as well as full descriptions
of the 8051 and MCE hardware registers.

Intended audience

This software developer’s guide is intended for customers implementing an inverterized drive.

Application Developer's GuidePlease read the Important Notice and Warnings at the end of this document Revision 1.3
www.infineon.com/iMOTION 2009-09-22

International
TR Rectifier

User Guide #0608

IRMCx300 Application Developer’s Guide

Version 1.3
By International Rectifier’'s iMotion Team

Table of Contents

T INtroducCtion.........oieei 4
2 Target Motor on IR Reference Board.................... 4
2.1 Measuring the Motor Parameters..........ccccoooiiiiiiiiiiiiieiiicnee 5
211 Importing Drive Parameters into MCEDesigner..............ccccccuvuunnne. 7
2.1.2 Advanced Parameter Measurement—Saturation Effects 8
2.2 Starting Application-Specific Testing........cccocovveviiiiiiiiiiinnn. 9
2.2.1 MCEDESIGNET ... 9
2.2.2 Possible Hardware Modificationsccccccvviiiiiiiiiiiiiiiiiiiiiiee 15
2.23 Variable Scalingcoooiiiiiiiiiiiii 16
224 Verifying SCaliNgSccoiviiiiiiiiiiiiiiieeeeeeeeeee e 19
2.3 Optimizing Starting and Running Parameters...................... 21
2.3.1 Before Start-Upooooeeeeeee e 21
2.3.2 Start-Up TUNING ..eeeeeee e 21
2.3.3 Catch-Spin Startingccoooviiiiiiiiii 26
2.3.4 Control Loop Structure & TuniNgccovvvviiiieiieeiieeeccee e, 27
2.3.5 Braking the Motor ... 38

3 MCE Program Customization............cc.....c.c..... 41
3.1 The Motion Control ENgiNecccuiiiiiiiiiiiieeeece e 42
3.2 IR Standard MCE Programccooviiiiiiiiniiiecee e 44
3.2.1 BlOCK Diagramcooooooeeeeeeeeeeeeeeee 44
3.2.2 Input and Output Registers of the MCE Program..............cccc........ 46
3.3 Simulink MCE Design Componentsccoeeeevevivinnnneennn. 48
3.3.1 MCE Design Hierarchical Format ... 48
3.3.2 The MCE LiDrarycooouiiiiiiiiee e 50
3.3.3 Standard Simulink Library Componentsccccccvvvviiiiiniiinnnnnnn. 52
3.4 New MCE Design—Start to Finish............ccccovvvviiiiiiciinnnnn. 53
3.4.1 Setting up Matlab/Simulinkooviiiiiiiii e, 53
3.4.2 Creating a Complete System Design.........ccooovvviiiiiiiiiiiiiiiiiiiiinnnn. 54
343 The MCE COMPIIET.....ccoeeeiieeeeecee e 58

www.irf.com 1

International

ISR Rectifier

3.4.4 Downloading to the Reference Board...........ccccccovviiiiiiiiiiiiiiinnnnn. 61
3.5 Example Modifications ..o 65
3.5.1 TOrqUE MOAE ... 65
3.5.2 Limiting the Speed Feedback Input Variance..............cccccoeeeeeeeees 67
4 Application Hardware Design..........cccccoeeevneeenneen. 67
4.1 Schematic Elements ..o 67
4.1.1 Component Selectioncoooe i 68
41.2 A/DFeedback Scaling.......ccccoeeeeiiiiiiiiiiciec e 69
4.1.3 Gate Drive SignalS............uuuuueiiimiiiiiiiiiiiiiiiiieiiiiei 70
4.1.4 A/D Converter Offset Compensation.............ccooveeiiiiiiiiieiiiiiiieene, 70
4.1.5 Overcurrent Protection ... 74
4.2 Layout Recommendationscccccuiiiiiiiiiiiiiii i 74
421 Current Feedback Circuit with IRMCF300...........cccovvvvvviiieeiieeeeen. 74
4.2.2 Overcurrent protection layouteuuieiiiiiiiiiiiiiiiiiiiiiiiene 76
4.3 Testing and Optimizationccooevveiiiiiieiiii e, 76
4.3.1 Space Vector PWM and Single Shunt Current Reconstruction76
4.3.2 Inverter-Related Testing and MCEWizard Settings 79
4.3.3 Overcurrent protection.............cevevviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 86
5 PFC Application Development 86
ST B |V (O = o o o = o [87
5.1.1 (01014 1Y 01 3 oo] o J PSR TPP 87
5.1.2 Volage LOOPcooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 90
51.3 Feedforward ... 91
51.4 Enable and Shutdown ..., 92
5.1.5 Input and Output Registers............cooeiiiiiiiiii e, 92
5.2 Using PFC on the IR Reference Board..............cocoveiviennnnnnn. 93
5.2.1 Using the Wizard to create the configuration parameters.............. 93
5.2.2 Overcurrent Protection CirCuitcooovviiiiiiiiiiiiiiiiieeeeee 93
5.2.3 PFC Variable Scalingcooooeiiiii 94
5.2.4 Optimizing Starting and Running..............ccccoviiiiiiiiiiiiciie e, 96
525 Other PFC Features 97
5.2.6 Possible Hardware Modifications ..., 99
5.3 PFC Hardware Designccoooiiiiiiiiiiiiiii e 101
5.3.1 Schematic Elements.........ccooooiiiiiiiiiiii e 101
5.3.2 Layout Recommendations.............cccoueiiiiiiiiii e, 102
5.4 Advanced TOPICS......ccoeuiiiiiieeii e 102
6 Induction Motor (IM) Control..........c.....cccennennee.e. 103
6.1 INtroduCtionccoiiei 103
6.2 1M Control Programi...........cooveeeiiiiiiiiiee e 103
6.2.1 Volts per Hertz (VHz) Mode..........ccoooeeiiiiiiceeeeeeeeeee e 105
6.2.2 FOC MOGE.......cci it 110
6.2.3 Other Features ... 114
6.3 Parameter Configuration..............cceiiiiiiiiiiiiiiii e 118

www.irf.com 2

International

IR Rectifier
6.3.1 Configuring for testing in VHzZ Mode. ..., 118
6.3.2 Parameter Measurement.............oooooviiiiiiiiiie e 119
6.3.3 Configuring for FOC Modecoooiiiiiiiiiiiiiiiiieee 122
6.3.4 Parameter Estimation by Saturation Curvecccccccceeeeee 123
6.4 General TiPS......ooeiiii i 124

Paragraph annotation of the contents of this User Guide.

www.irf.com

International

TSR Rectifier
1 Introduction

There are extensive application development activities which the IRMCx300 Series IC user can
perform before creating the actual application code for the 8051 processor. This Developer’s
Guide will begin with the process of initial testing with the target motor, continue with modification
of the MCE design for application specific requirements and conclude with the design of motor
control hardware for the final application. This Guide assumes that the user is in possession of
an iMotion Reference Design Kit and has already completed the activities in the Quick Start
Guide. The user should also review the “MCEDesigner User's Guide.” This Guide will refer to
MCEDesigner features and actions frequently.

Section 2 starts by describing in detail how to measure the parameters of the target motor,
generate the correct drive parameters, and begin spinning the motor. Next, this Guide gives
instructions on how to tune the speed and current control loops and optimize the motor start-up
parameters. Section 2 concludes with motor drive performance verification and testing methods
using MCEDesigner.

Section 3 introduces the MCE processor in more detail and then gives instructions on how to
modify the factory-supplied MCE design, if desired. The section finishes with some sample
program modifications.

The final design step, before 8051 code development, is covered in Section 4. This section
guides the user through design, testing and optimization of application specific hardware as it
relates to the IRMCx300 motor control IC.

Finally, Section 5 provides application guidance for the Power Factor Correction features which
come with the IRMCS3012 and IRMCS3043 Reference Design Kits. It describes the topology,
control loops, parameter tuning, and hardware design for PFC, with specific references to the
Design Kits.

An additional document, the IRMCx300 Software Developer's Guide, has instructions on
hardware and software requirements and the development process of the embedded 8051 code.
The Application and Software Developer's Guides are designed to take the user through the
design process. The Reference Manual, also referred to frequently in this document, has detailed
information on many topics covered here, as well as full descriptions of the 8051 and MCE
hardware registers.

2 Target Motor on IR Reference Board

This section describes the process of setting up the developer’s target motor for reliable operation
using the IR Reference Board. Section 2.1 gives detailed instructions on measuring the motor
characteristics and using MCEWizard to generate the correct drive parameters. The section
concludes by guiding the user through importing the drive parameters into MCEDesigner and
spinning the motor. Section 2.2 starts testing the target motor in application specific conditions by
creating profiles in MCEDesigner. Section 2.3 will cover the starting and control algorithms
employed by the IRMCx300 IC. This section will also cover the process of tuning the speed and
current control loops, optimizing starting parameters, and troubleshooting initial drive
characteristics.

Before running the motor, the designer should verify that the IR Reference Board is suited to the
target motor. Verify that the power rating, continuous current rating, current sensing range, and
overcurrent protection level are appropriate to the target motor. You may not be able to safely
get full performance from the motor if the hardware does not have the correct ratings. Section
2.2.1.2 gives some simple modifications to the Reference Board that may address this issue.

www.irf.com 4

International
IR Rectifier

2.1 Measuring the Motor Parameters

To efficiently and effectively run a motor, the IRMCx300 motor controller requires certain motor
specific parameters, in addition to a variety of hardware and application parameters which will be
covered later in this Guide. Each parameter within the control IC is scaled based on the
maximum speed, current, voltage, etc. (Specific information on parameter scaling can be found
in Secion 2.2.3.) The MCEWizard tool is supplied so the designer can enter motor, hardware and
application specific information in standard engineering units. When you start, at the Welcome
Page of the MCEWizard, verify that all of the “Custom Design Questions” are unchecked. As the
developer continues through this Guide, these boxes will be checked, giving access to more input
parameters. Default parameter values are specific to the motor(s) and hardware of the
Reference Design Kit, which is selected on the Welcome Page.

To begin configuring the target motor, its specifications need to be entered into the appropriate
sections of the MCEWizard. Often, some of these values can be found on the motor nameplate
(Figure 1) and/or the motor datasheet. However, datasheets are not always clear about the
motor specifications. The user should pay close attention to units and other variations such as
line-line vs. line-neutral measurements and peak-peak vs. rms values.

Note: They way datasheet motor characteristics are specified for A-connected motors are
different than for Y-connected motors. The inputs values to MCEWizard are based on a Y-
connected motor. However, if the parameters are measured using the procedures which follow,
then the correct value will be found regardless of the motor connection.

Most motor characteristics can also be easily measured, except for three values. The rated
current, rated speed and maximum speed should be obtained from the motor manufacturer if they
are not available in the datasheet or nameplate. The maximum speed entered into the
MCEWizard should be based on the application requirements and be less than or equal to the
manufacturer’s stated maximum speed. The controller has overspeed protection, so that a fault
is generated if the motor speed exceeds the maximum speed.

There are two other values to input into the MCEWizard: switch-over speed and minimum running
speed. The minimum running speed is generally set to 5 — 10% of the rated motor speed for
initial testing though it may be changed for application specific requirements. The IRMCx300
controller requires a minimum motor speed to reliably perform closed-loop speed control. Set the
switch-over speed to 5% of the rated speed, or 5% less than the minimum speed. If there are
start-up problems, increase it to 10% of the rated speed.

& ri
GOLDEN AGE
GKe040-6AC31-WE
No:GS040-309602230868

Mo=1.6Nm lo=2.1A
Ke=67V/1000r/min

N« /N max=2000/2600r/min
IMBS IP84 TH.CLF

Figure 1—Motor Nameplate.

www.irf.com 5

International
TR Rectifier

The remainder of the motor characteristics can be measured and calculated using an Ohmmeter,

LCR meter and oscilloscope:

1. Motor Stator Resistance—Attach the Ohmmeter to two phases of the motor and record the
resistance. Measure all three combinations of phases to check the balance of the phases
(they should all be nearly the same). Average the three resistance values and then divide by
two to get the single phase resistance of the motor.

2. Motor Ld & Lq Inductance—Attach the LCR meter to two phases of the motor, as shown in

Figure 2. Change the position of the rotor, seeking out the maximum and minimum value of
the inductance. (The rotor should be stationary and the inductance value stable to get a good
measurement.) Repeat for the other combinations of phases. Average the maximum values
from each phase combination and then divide by two to calculate the value of Lq. Repeat
this calculation with the minimum values to get the value of Ld.
Note: The inductance does not vary with the rotor position for all motors. An interior
permanent magnet (IPM) motor has Lg > Ld, and can generally produce a larger torque per
Amp. In a surface permanent magnet (SPM) motor, Ld = Lg. In this case, enter the same
number for both.

Figure 2—Measuring the Q phase and D phase inductances.

3. Motor Poles—Connect two phases of the motor to an oscilloscope. Turn the motor through
one revolution and record the back-emf waveform on the ‘scope. Count the total number of
positive and negative peaks, which should be an even number. Figure 3 shows an 8-pole
motor. (It can be difficult to get exactly one revolution without extra peaks. One ftrick is to
turn the motor through several revolutions and then divide by the number of revolutions.)
Note that the motor will still spin if this parameter is not set correctly. However, the
mechanical speed of the motor will differ from the requested speed by a factor of [entered
poles] / [actual poles].

Figure 3—Counting the number of poles. This motor has 8 poles.

4. Motor Back EMF Constant (Ke)—Again connect two phases of the motor to an oscilloscope.
Turn the motor at a constant rate and record the waveform as shown in Figure 4. (When the

www.irf.com 6

Infernational
IR Rectifier
motor is turning at a constant speed, the back EMF waveform’s peaks will all have the same

magnitude.) To calculate the back EMF constant, begin by finding the rms voltage and the
frequency (in Hz) of the waveform, then perform the following calculation:

Ke = 1000 * ([rms Voltage] / 3)/ ([frequency] *120/poles)

The factor of V3 changes the voltage from line-line to line-neutral. The final units of Ke are
Vrms,line-neutral/kRPM. Generally, RPM refers to the mechanical frequency, while Hz refers
to the electrical frequency in motor terminology. For accuracy, repeat this measurement at
several speeds for each phase pair, and average the Ke calculated from each waveform.

Figure 4—Measuring the back EMF.

Note: If the back EMF is not sinusoidal, calculate the rms voltage using a numerical method,
like the rms calculation built into most oscilloscopes.

5. Motor Torque Constant (Kt)—If this is not provided by the motor manufacturer, it can be
estimated from Ke. If Ld = Lq, indicating an SPM, then

Kt=(9*Ke)/(100* x)

where the units of Ke are Vrms,line-neutral/lkRPM and the units of Kt are N-m/Arms. If Lq >
Ld (for an IPM), then the torque constant is current dependent. To estimate, increase the
value calculated above by 5%.

6. Motor Total Shaft Inertia—This parameter is application dependent. For example, a full
washer may have large load inertia while a fan has small load inertia at low speeds. The
inertia is used to estimate the motor speed during the open-loop period of the start-up
sequence. Therefore, for a fan, the low speed inertia is the appropriate value to use. In
practice, this parameter does not need to be extremely accurate. During application testing,
this can be varied to optimize the start-up performance of the motor.

The IRMCx300 Series sensorless motor controller can tolerate +/-10% motor parameter error
without noticeable performance degradation. An increased parameter mismatch between the
motor and controller will result in a degradation of torque per Amp capability. The degree of
degradation is dependent on the operating conditions (speed, load) and motor characteristics
(motor parameters and saturation).

2.1.1 Importing Drive Parameters into MCEDesigner

By selecting the correct Reference Design in the Welcome page of the MCEWizard the default
values for the rest of the inputs can be used to configure the controller; just check that the value

www.irf.com 7

International
ISR Rectifier

entered for the Nominal DC Bus Voltage is correct.

From the Verify & Save Page (Figure 5),

press “Calculate” and if there are no Errors, select “Export to MCEDesigner File (.txt).” Save the
file with a name that refers to the motor. Start MCEDesigner and click on the “System” window.
From the File menu, select “Import Drive Parameters” and select the text file you just created.
Choose “Update All” from the next window and press OK.

“W International Rectifier - MCEWizard 1.0.5.2 ==&l
File JumpTo Help
Verify & Save Page v

Verify Parameters

Results

Double-Click an item to JUMP to its associated question

lExport to C Header File (.h)] {Export o MCEDesigner Fils (Ixt)]

Wiarning #1 1 Motor 1 Current Feedback and Sarmple Timing - Current Feedback Shunt
The Motor Rated Amps is less than 1/4 the current feedback
range. This may lower motor performance. The 'Current Feedback Shunt' and 'Current Feedback Gain'
affect this warning,
Information #1 : Systern DC Bus Feedback Scaling
The DC Bus Feedback Scaling is 8,287 counts/Valt
Information #2 : Motor 1 A/D Saturation
The A/D saturates at 15,0886 Apk
Information #3 : Motor 1 Current Feedback Scaling
The current feedback scaling for the Iv and Iw phases 1§ 135,698 counts/apk
Information #4 : Motor 1 Parameter Scalings
L0 Scaling is 0.0128798 rmH/count
Rs Scaling is 8.04984 mOhms/count

Previous Mext

Figure 5—MCEWizard Verify & Save Page

Be sure that the motor is connected and the board is powered up, with the COM active. Double
click the “Configure Motor” function to write the new drive parameters to the controller. Next,
double click the “Start Motor” function. The motor should begin to turn! Verify that you can
accurately vary the motor speed using the “Reference Speed” function. (Right-click and select
“Properties” to change the speed value; double-click to write the new value to the control IC.)

Save the MCEDesigner .irc file with a descriptive name which refers to the target motor. The next
time the .irc file is opened, it will already have the drive parameters saved. Simply run the
“Configure Motor” function to write the values to the controller. For more information on importing
drive parameters, please see the MCEDesigner User’s Guide.

2.1.2 Advanced Parameter Measurement—Saturation Effects

Many motors suffer from saturation effects, where the inductances (Ld & Lq) decrease with
increasing phase current. Check with the motor manufacturer for data about the saturation. To
measure the saturation, apply a DC voltage (Vdc) to two phases of the windings and measure the
current as a function of time. The instantaneous slope of the curve is equal to Vdc/L at the
corresponding current level. The developer may have to use the saturation inductance at the
rated current in order to get the maximum torque. Generally, Lq will exhibit a greater degree of
saturation than Ld. Figure 6 shows a sample saturation curve.

www.irf.com 8

International

ISR Rectifier

Inductance (H)

motor current (A)

Figure 6—Saturation of Motor Inductance
2.2 Starting Application-Specific Testing

Section 2.2.1 will describe the process of testing the target motor in the real target application
using MCEDesigner. Section 0 will then describe some minor modifications which can be done to
the reference hardware to make it more suitable for the target motor or application. Next, Section
2.2.3 gives a list of the important internal variables and the scaling factors to relate them to
physical, measurable quantities. Verifying parameter scaling is an important part of the
debugging process, particularly when modifying the hardware; this process is described in
Section 2.2.4.

2.2.1 MCEDesigner

The main tool to test the motor with application-like profiles and timing is MCEDesigner. A test
profile should recreate the speeds, acceleration, and timing of the real application. After tuning
the drive parameters as described in Section 2.3, the motor should be tested with simulated or
real loads at this stage. Both the Quick Start Guide and the MCEDesigner User’s Guide have
detailed instructions on creating and modifying functions.

Another MCEDesigner tool to become familiar with is the parameter Trace which is also covered
in the Quick Start Guide and the MCEDesigner User's Guide. The parameter trace allows the
designer to see the value of internal registers of the motor controller. Figure 7 shows the Trace
Setup window, where the trigger settings, data sources and output file can be defined. The trace
collects register values on a PWM synchronous basis with an option to down-sample to extend
the trace duration; the trace length is fixed at 1024 samples for each channel. The trigger
options are Force Trigger, Trigger on Level, Trigger on Fault, and Auto Repeat Level.

Some strategies for debugging motor control problem situations using the trace:

o Use the StatusFlags register to trigger the Trace to determine at which stage the problem
happened. This is particularly useful for start-up problems. (The StatusFlags register is
defined below.)

o Use the “Trigger on Fault” setting for unpredictable problems.

e To get an auto-repeating Force Trigger for monitoring a single value, use Auto Repeat
Level, triggering on the RotorAngle register.

www.irf.com 9

International

ISR Rectifier

Trace Setup @ X

Input

CH 1 Source |Motoﬂ_Speed_Loop_Sdelef hd Sighed

CH 2 Source | Mator _Speed_Loop_SpdFhk - Signed

Sample at P/ frequency divided by |1

Trigger [CH 1]-
Level |500 Edge |Rising x|
Mode |F0rce Trigger LJ
R
0% 252 502 i< 1003
Trigger Locator
Output

File Mame]Sdeef & SpdFblk. out Browse...

Generate Graph W CH1 ¥ CHZ

Cancel

Figure 7—Trace Setup Window

2.2.1.1 Motor Control Sequencer

To simplify the execution of certain control operations, an embedded sequencer resides on the
8051 side (in the 8051 code known as the MCEDesigner Agent) where predefined functions can
be initiated by MCEDesigner through special 8051 registers. The sequencer automatically
performs all of the steps required for robust control and startup. An explanation of the available
commands is shown below. More information on the sequencer and MCEDesigner Agent can be
found in the MCEDesigner User's Guide, including the series of actions performed for each
command.

The sequencer has its own group of read and write registers that can be accessed in
MCEDesigner. These registers should only be used when sequencer operation is desired. A
description of these registers is shown below. Examples of the use of these registers can be
seen by looking at the default MCEDesigner functions.

Write Reqisters
e SeqgEnable
This registers defines if the motor sequencer should be enabled.
0 — Sequencing disabled
1 — Sequencing enabled
e SegFaults
This register defines what command, with system scope, is to be performed. This
register will revert to 0 after a command is completed.
Bit 0 — No Command
Bit 1 — TRUE value performs Fault Clear
Bit 2 — TRUE value performs Emergency Stop

e SeqCatchEn_1 & SeqCatchEn_2
These registers are control registers for Motor 1 and Motor 2. They define how
the sequencer should handle starting the motor.
Bit 0 — TRUE value enables Catch-Spin Start, FALSE disables

e SeqCmd_1&Seq Cmd_2
These registers control the specific command that will be sent to the sequencer.

www.irf.com 10

International
IGR Rectifier
Value 1 — performs Motor Start command

Value 2 — performs Motor Stop command
Value 3 — performs Zero Vector Brake command

e FIxThrC_1 and FIxThrC_2
These register’s values are generated by the MCEWizard. This value determines
the level of Flux required to detect if the motor is spinning when performing
Catch-Spin Start. If current motor Flux is above this threshold the motor is
considered to be turning, if it is below then a normal startup is performed. This
value does not need modification.

e ZeroVectTm_1 & ZeroVectTm_2
The values of these registers are generated by the MCEWizard. This value
determines how long the motor should brake the motor before changing its
direction during Catch-Spin Start. This value does not need modification.

Read Reqisters
e SegFaultStatus
This registers is as copy of the FaultFlags register in MCEDesigner as seen by
the sequencer.
e SeqState_1 & SeqState_2
These registers indicate what state the motors are in.
Value is 0 — Not Enabled
Value is 1 — Motor Stopped
Value is 2 — Motor Running
e MrotStatus
Indicates if register values have been properly transferred to the sequencer from
MCEDesigner.
Value is 0 = No Errors
Value is 1 — Motor 1 register transfer failed
Value is 2 — Motor 2 register transfer failed
e MrotDiag
Indicates which register is not transferring to the sequencer. This value should be
given to an IR FAE if such an error occurs.

Some restrictions are placed on register names and functionality if the Motor Control Sequencer
is to be used in MCEDesigner: register names and functionality cannot be changed for the
registers listed below. The 8051 Sequencer relies on these names and functions to control the
system. If these names are changed in the Matlab/Simulink MCE program the MrotStatus and
MrotDiag registers will indicate that register transfer to the sequencer is not functioning and the
sequencer will not enable. If the functionality of these registers is modified then undesired
operation may result.

Restricted Registers

e FItCIr_Tmp
TargetSpeed
SearchAng
MotorSpeed
MotorSpeedR
TargetDir

2.2.1.2 Status Flags

The StatusFlags register is an important and useful tool for identifying and debugging motor
control problems. It provides the motor status, particularly which stages of start-up the motor has
completed. The list below gives the register’s bits and the associated drive status.

www.irf.com 11

International

ISR Rectifier

Bit 0 TwoPhsEnable—Two phase modulation is enabled

Bit 1 FocEnable—Field-Oriented Control regulators are enabled

Bit 2 PwmEnable—PWM gatings are enabled

Bit 3 ClosedLoop—Closed-loop mode is enabled

Bit 4 ParkingDone—Parking done; Parking stage has been completed.

Bit 5 ParkingOne—First stage (25% of the total park time) of Parking has been
accomplished

Bit 6 StartFail—Startup has failed (latched until drive restart occurs).

Bit 7 StartOk—Startup has succeeded (cleared whenever drive stops)

Bits 8 — 15 Unused

The drive status is cumulative, so that in a normal, successful start-up progression, the
StatusFlags register will return the following (decimal) values:

6 PWM and FOC enabled

38 1% Parking Stage Completed (Sequence is currently in 2 Parking Stage)
54 Parking Stage Completed (Sequence is currently in Open-loop stage)

62 Sequence is currently in Closed-loop stage

190 Closed-loop, with successful start (StartOK)

Figure 8 shows the steps which the StatusFlags register (green trace) goes through during a
successful start-up, with the scale in green to the right. The yellow trace shows the speed
feedback

@ Trace Results

SpdFbk & StatusFlag

i 5000—
A4500—
4000—

3E00—

1500—

- A i h -
1000— i i ; ' "h I"' J Hﬂ u' v"“" Ir'n'“uf -.|".-' Nh W u['f',' '..hﬂ“'ﬁ.r".""'-

s00—

100 200 300 0 c G0 700 E!I].D 900 1000

Figure 8—StatusFlags steps (green) and Speed Feedback (yellow) of a successful startup.

www.irf.com 12

International
IR Rectifier

2.2.1.3 Fault Flags & Fault Handling

The FaultFlags register specifies which fault condition has occurred. In MCEDesigner, the fault

status is displayed in the status bar at the bottom of the window. If Motor1, for example, has a

fault, then the status light will be red. Moving the pointer over the red status light will bring up a

small text box which lists the faults. All faults may not be valid, depending on the IRMCx300
version in use. The list below gives the faults associated with each bit of FaultFlags:

Bit 0 OvFault—DC bus over voltage trip fault.
Bit 1 LvFault—DC bus under voltage trip fault.
Bit 2 PwmSyncErr—Pwm synchronization error fault. This fault indicates that

Motor 1, 2 and PFC are out of synchronization. (See the Reference Manual
for more information.)

Bit 3 PFCGateKill—PFC Gate Kill fault.

Bit 4 GateKill_2—Motor 2 Gate Kill fault.

Bit 5 Unused (reserved)

Bit 6 PhsLossFlt_2—Motor 2 phase loss fault.

Bit 7 ZeroSpdFIt_2—Motor 2 zero speed fault.

Bit 8 GateKill_1—Motor 1 Gate Kill fault.

Bit9 Unused (reserved)

Bit 10 PhsLossFIt_1—Motor 1 phase loss fault.

Bit 11 ZeroSpdFIt_1—Motor 1 zero speed fault.

Bit 12 MCEFIt—The MCE has generated a fault condition.

Bits 13 — 15Unused (reserved)

Fault handling is performed in the MCEDesigner Agent by a timer interrupt every 2 ms. This
interrupt will shut down Motor 1 in the case of Motor 1, voltage or MCE fault. Similarly, the
interrupt will shut down Motor 2 in the case of Motor 2, voltage, or MCE fault.

2.2.1.4 Using GPIO from MCEDesigner

In some cases, the user may want to control external devices, switches, or even gate driver ICs
using the general purpose digital 1/0 (GPIO) during initial testing phases, before writing
embedded 8051 code. This capability is available in MCEDesigner from two register groups, one
write (GPIO Control) and one read (GPIO Status), contained in the .irc file. The tables below list
the registers and their address offsets.

www.irf.com 13

International

ISR Rectifier

GPIO Control Write Registers

Name Offset Usage
loPortAlloc 16 Configuration
P1DIR 17
P2DIR 18 N
53DIR 19 Port Direction
P5DIR 21
P1WR 22
P2WR 23 .
P3WR 52 Port Data Write
P5WR 26

GPIO Control Write Registers

Name Offset Usage
P1RD 27
P2RD 28
P3RD 59 Port Data Read
P5RD 31

The procedure for using the GPIO registers is as follows:
Step 1.
Write to the loPortAlloc register to allocate the 1/O ports that you intend to use.

In the loPortAlloc register, a bit is defined to configure MCEDesigner control of each 1/O port.
Setting a bit to 1 informs the 8051 software that you intend to control that port’s 1/O pins from
MCEDesigner. Setting a bit to 0 frees the port to be used for other purposes locally on the 8051.
The bits are defined as follows:

Bit0: Port 1
Bit1: Port2
Bit2: Port3
Bit4: Port5

The other bits are unused and should be set to zero.

Step 2.

For each 1/O port to be used, write to the appropriate port direction register to configure each bit
as an input or an output. Bits 0 — 7 of each port direction register are defined exactly the same as
the corresponding 8051 special function register (SFR) of the same name. (Setting a bit to 0
configures it as an input; setting it to 1 configures it as an output.) Bits 8 — 15 are not used.

Step 3.

To set the value of bits configured as outputs, write the value to the appropriate port data write
register. Bits 0 — 7 of each data write register are defined exactly the same as the corresponding
8051 SFR (P1 — P3, P5). The user must always write the entire data register (i.e. individual bits
cannot be written).

Step 4.

Read the port data input register to get the current value of the corresponding 8051 SFR (P1 —
P3, P5). Reading the data read register shows the value of the pins defined as inputs and also
the value last written to pins defined as outputs.

Note:

MCEDesigner’s interface to the 1/O pins is not integrated with other use of the pins directly from
the 8051 software. On the IRMCF341 Rev. C reference platform, the 8051 software uses 1/0

www.irf.com 14

International
IGR Rectifier

pins P1.5 and P1.6 to control the bi-color LED. When using the reference platform, do not use

the Port 1 I/O pins from MCEDesigner, otherwise the LED will not operate as intended.

2.2.2 Possible Hardware Modifications

All of the hardware modifications described below will require new configuration parameters. The
designer should return to MCEWizard and change the appropriate input values. In the factory
default setting, none of the “Custom Design Questions” on the Welcome Page are checked,
which prevents modification of certain input values that do not need to be changed. For the
hardware changes described below, check the box next to “I have modified the circuit board” to
access the appropriate values.

2.2.2.1 Inverter Module

The motor drive inverter of the Reference Board is an IR Appliance Module (IRAM), which is a
multi-die package of IGBTSs, a gate drive IC, diodes and other components. This component may
be replaced by a pin-compatible part with a different current rating. For example, if the
development kit has a 10A rated IRAM (IRAMS10UP60B), it may be replaced by a 6A or 16A
IRAM; both of which have the same pin assignments and footprint as the 10A IRAM. Generally,
the module would be changed if the factory default IRAM is not suitable for the application, i.e.
being undersized for the current required.

In this case, there are several adjustments which should be made to the motor configuration
parameters. First, the shunt resistor, which is included in some modules, may have changed in
value. Input the new value into the MCEWizard (Current Feedback Shunt) to get the proper
current feedback scaling. Next, follow the instructions in Section 4.3.2 to optimize the current
feedback signal. Finally, evaluate the heatsink’s capability to dissipate the heat from the new
hardware.

2.2.2.2 Current Feedback

In some cases, the inverter system maybe suitable, but the current scaling is not optimal. The
current feedback scaling can easily be modified by changing the current feedback op-amp gain or
by changing the shunt resistor. These modifications are useful in situations where the A/D
saturation current (given in the MCEWizard Verify & Save page) is less than or much greater than
the maximum current required by the application.

Figure 9 below shows a sample current feedback amplification circuit. The node labeled “IFB” is
connected to the inverter side of the shunt resistor. In this circuit, the op-amp gain is 11.8/6.11 =
1.93. To modify the op-amp gain, the designer should change resistors in pairs (R83 & R80; R81
& R82; R77 & R79) to preserve the correct circuit biasing at AREF (0.6V reference).

ET7 . 11.8K AREF 19 —
From RAMpi=13 ; S
D R4 ., DNI ciz £€31
O.luF 10wF, 10V
[&D RE . LOOE Bt REL,, . LUK TP '
= 5 1 ARFF
Frop: IRAM pi= 12 4TeF, S0V = :
F FE+ 3 p—
—t 35 TFE- I;
IFBC 32 FE0
[R8O . LOOE 1 RE2, .. SUIE o FT%,, 1LEE -
. . 10gF
Current Shunt Feedback
C4 DMl =

Figure 9—Current feeback circuit

Note: The developer may not be able to change the shunt resistor independent of the IRAM
module, depending on the iMotion Reference Board in use.

www.irf.com 15

International
IGR Rectifier

In the MCEWizard, enter the appropriate value into the Current Feedback Amplifier Gain and

Current Feedback Shunt fields to get the correct drive parameters.

2.2.3 Variable Scaling

This section gives formulas to convert internal MCE variables to real, physical values
corresponding to the motor operation and condition. Some variable in this section may be
unfamiliar to the designer; they will be explained more fully in further sections of this guide. Many
of the parameter scalings are determined by values input into the MCEWizard. Verifying that the
variable scaling is correct is an important step when verifying the correct operation of the
hardware.

2.2.3.1 Speed Scaling

Normal Operating Mode
TargetSpeed, SpdRef and SpdFbk scale such that

Rotor Speed (RPM) = [TargetSpeed] / 16383 * Motor Max RPM
where
Motor Max RPM is an entry of the MCEWizard

Rtr_Freq, the estimated unfiltered rotor electrical frequency, scales such that

Actual electrical frequency (Hz) = Rtr_Freq * FreqgPwm * FreqScl / 2720

where

FreqPwm is the Motor 1 Frequency entry of the MCEWizard

FreqScl is set by bit fields of MtrCtrIBits and MtrCtrIBits_S (See IRMCx300 Reference Manual.)

SpdScl is configured by the MCEWizard as follows:
SpdScl =60 * 2 / poles * FregPwm * FreqScl / 2% * 16383 / Motor Max RPM

where

Motor Max RPM an entry of the MCEWizard

FreqPwm is the Motor 1 Frequency entry of the MCEWizard

FreqScl is set by bit fields of MtrCtrIBits and MtrCtrIBits_S (See IRMCx300 Reference Manual.)

In IR’s release version of the MCE program, SpdScl is used to convert from the Rtr_Freq scaling
to the SpdFbk scaling.

V/Hz Diagnostic Mode
When the FOC block is configured for Volts/Hz diagnostic mode (Register MtrCtriBits), then the
speed scaling of VFFreq, TargetSpeed and SpdRef is as follows:

Rotor Speed Setpoint (RPM) = [SpdRef] * 0.01552583 * 120 / poles

The SpdFbk is invalid in V/Hz diagnostic mode.

2.2.3.2 Torque Scaling

TrgRef is correctly evaluated in terms of current. However, for the purposes of torque estimation
or torque control, the register scales as:

Motor Torque (N-m) = Irated * Kt * TrqRef / 4095

www.irf.com 16

International
ISR Rectifier
where

Irated is the Motor Rated Current in A;s as entered into the MCEWizard
Kt is the Motor Torque Constant in N-m/A,.s as entered into the MCEWizard

It should be noted that this method estimates the torque assuming that Kt is constant over the
speed and motor current range of operation.

2.2.3.3 Current Scaling

When the settings of the MCEWizard are properly set, the scaling of registers IdRef _C, IqRef_C,
Di, Qi, TrgRef, IdRefExt, Id_Decoupler, StartLim, MotorLim, RegenLim are all the same:

Current (A) = Irated * V2 *[IdRef_C] / 4095
where
Irated is the Motor Rated Current in A,s as entered into the MCEWizard

This scaling is achieved by the IfbkScl register, one of the register values calculated in the
MCEWizard. The following diagram and equation show how the value of IfbkScl is determined:

Ishunt

| I |
A/D & u 3-phase to ¢ Cordic || d
R . lv "o ordic | |IfbkScl
shunt urrent | -pnhase Rotati —13
Reconstruct W__conversion| |g otation 2 lq

Figure 10—Current feedback signal path

4095 = Irated * V2 * Rshunt * k * A/D * (3 = 2) * (cordic) * (IfbkScl / 2*%)

where

Irated is the Motor Rated Current in As as entered into the MCEWizard

Rshunt is the Current Feedback Shunt resistor value in Ohms as entered into the MCEWizard
k is the Current Feedback Amplifier Gain entry of the MCEWizard

A/D is the analog-to-digital converter scaling (3412 / Volt)

3 > 2is the 3 phase to 2 phase conversion gain (8.0)

cordic is a factor introduced by the hardware vector rotator (1.64676)

Intermediate Signals

luvw—During each PWM cycle, two of the three phase currents are sampled in the shunt resistor
and digitized in the A/D converter. The current feedback offset (IfbOffset) is subtracted from the
raw A/D output. Finally, the third phase current is reconstructed using the relation U + V + W = 0.
The V and W phase currents correspond to IfbV and IfbW. The scaling for these currents can be
found in the Verify & Save page of the MCEW,izard or can be calculated by:

Current (A) = [IfbV] / (Rshunt * k * A/D)

where

A/D is the analog-to-digital converter scaling (3412 / Volt)

Rshunt is the Current Feedback Shunt resistor value in Ohms as entered into the MCEWizard
k is the Current Feedback Amplifier Gain entry of the MCEWizard

l.,;—These currents are a 2-phase representation of the real U, V, and W phase currents. The o
and B phase currents correspond to registers |_alpha and I_beta. Their scaling is 8 times that of
the real phase currents:

www.irf.com 17

International

ISR Rectifier

Current (A) = [I_alpha] / (Rshunt*k * A/D * (3 =2 2))

where

Rshunt is the Current Feedback Shunt resistor value in Ohms as entered into the MCEWizard
k is the Current Feedback Amplifier Gain entry of the MCEWizard

A/D is the analog-to-digital converter scaling (3412 / Volt)

The IScl parameter specifies the current gain scaler for the flux estimator. The MCEWizard
calculates this parameter. Please do not tamper with this parameter without consulting the
iMotion design team.

2.2.3.4 Voltage Scaling:
Input DC and AC Voltages

DcBusVolts and DcBusVoltsFilt have the same scaling, which is the DC Bus Feedback Scaling
entry of the MCEWizard. (DcBusVoltsFilt has a 0.492 msec time constant.) This scaling is
hardware dependent. In IR’'s Reference Design Kits, the DCBus voltage signal is reduced
through a voltage divider, shown below. Then this voltage is supplied to AINO to go to the A/D

converter.
o B34 RX "
BEF 5 DF apn AR AND | amag
10030 10084 I
B2 a3
+3TE —I_IIJ)?F
DC Bus Feedback —t-

Figure 11—DC Bus feedback circuit
The DCBus voltage can be calculated as follows:

DCBus (V) = [DcBusVolts] / (A/D *r)

where

A/D is the analog-to-digital converter scaling (3412 / Volt)

r is the voltage divider ratio (4.87k / (2M + 4.87k) in the figure above)

CriticalOvThr, DcBusOvLevel, and DcBusLvLevel scale as follows:

Voltage Trip Level (V) = [CriticalOvThr]*16 / (A/D *r)

where

A/D is the analog-to-digital converter scaling (3412 / Volt)

r is the voltage divider ratio (4.87k / (2M + 4.87Kk) in the figure above)

2.2.3.5 Rotor Angle Scaling

RotatorAngle gives the estimated rotor electrical angle from the Rotor Angle Estimator PLL
which scales as follows:

Electrical Angle (degrees) = RotatorAngle * 90 / 1024

www.irf.com 18

International
IR Rectifier
2.2.3.6 Parking Variables

ParkTm sets the duration of the parking stage of the start-up sequence. The parking time is
calculated as follows:

Parking time (s) = ParkTm / 64
Parkl is the DC current injected into the motor during the parking stage. It defines the current in

terms of the peak rated motor current. The actual parking current in a particular phase will also
depend on the parking angle.

Parking Current (A) = Irated * v2 * 0.3399 * Parkl / 100

ParkAng and ParkAngl specify the angles to be used in the parking stage of startup. During
parking, two parking angles are used which are defined relative to the motor U-phase. The drive
will first use ParkAng1l for 25% of the total parking duration); thereafter, the parking angle will
switch to ParkAng to complete the parking duration. These parameters scale such that

Parking Angle (degrees) = [ParkAng] * 90 / 64

2.2.4 Verifying Scalings

2.2.4.1 Verifying Current Scalings

When setting up a new system, it is important to verify that the current scaling is correct. There
are several ways to do this, two of which are described below:

1. VF Diagnostic

The VF Diagnostic is a useful function for verifying proper operation of the power stage
independently of the current feedback and angle estimation. In this function, the motor is
operated in a V/Hz mode, where the ratio of voltage applied to electrical frequency is a constant
determined by VFGain. This mode is particularly useful for driving an induction motor. The VF
Diagnostic only operates in one direction. To turn an induction motor in the opposite direction,
simply switch two of the motor phases.

Using the TargetSpeed and VFGain parameters, run an induction motor with the desired current
level to be verified. Record the V and W phase currents using a current probe and by tracing in
MCEDesigner. Use the scaling value given in MCEWizard to verify that the traced current
matches the real current by comparing the magnitude of the sine waves.

The figures below show the induction motor currents of the V (yellow) and W (green) phases, as
recorded on an oscilloscope (1A/division scale) and the MCEDesigner trace. For the hardware in
this test, the current scaling for IfbV and IfbW is 219.83cts/Amp. From these figures, one can
verify that the current scaling is correct as follows:

The amplitude of the current recorded on the oscilloscope is 3A, peak.

3A * 219.83cts / A = 659.49c¢ts

The amplitude of the current as recorded on the trace is about 675cts, which matches well with
the expected value.

www.irf.com 19

International
TR Rectifier

"~ oezE @

B Trace Results

a00—
EOD—
400 —'1\

P Y
200— kl‘l

. ChlLevel

100 200 300 400 500 00 700 800 300 1000 1100
Samples

2. Parking Diagnostic

The Parking Diagnostic function of MCEDesigner can also be used to verify the current scaling.
The parking diagnostic function simulates the parking stage of the start-up routine of the
IRMCx300 Series IC. During the parking diagnostic, DC current is supplied to the motor
windings. There are several settings to the parking diagnostic including the parking angle and the
parking current. For more information on the parking diagnostic, see Section 2.3.2.2.

Similar to the above procedure, run the parking diagnostic, measure the phase currents on an
oscilloscope and trace the variables IfbV and IfbW in MCEDesigner. Verify IfbV and IfbW using
the measured value and the scaling factor given in the Verify & Save page of MCEWizard.

2.2.4.2 Verifying DC Bus Scaling

To verify the DC Bus scaling, read the register “DCBusVoltsFilt” and then divide by the DC Bus
Feedback Scaling which is an entry of the MCEWizard. Compare this value with the DC bus
voltage measured using a multimeter or other instrument.

www.irf.com 20

International
IR Rectifier
2.3 Optimizing Starting and Running Parameters

This section will include descriptions of the start-up sequencing and control loops of the
IRMCx300 Series ICs. Included with the descriptions will be procedures and suggestions on how
to tune and optimize the control parameters for your application.

2.3.1 Before Start-Up

The MCEDesigner program contains a “Start Motor” function which performs two important pre-
startup actions: Offset Correction and Bootstrap Pre-charge. These actions are not automatically
sequenced by the MCE processor, but are performed in the MCEDesigner Agent sequencer. For
more information, see the Software Developer’s Guide.

MCEDesigner performs the current feedback Offset Correction by writing a 1 to the register
IfbOffsetCalc, waiting 500ms (at minimum 4095 pwm cycles), and then writing 0 back to the same
register. This compensates for offsets in the current feedback path including the A/D offset and
reference voltage offset.

The Bootstrap Pre-charge is performed when 12 (0x0C) is written to register pwmctrl. The
bootstrap pre-charge turns on the low-side IGBTs in sequence to charge the bootstrap capacitors
of the gate drivers. The command to begin the start-up sequence (pwmctrl = 11) follows the pre-
charge after a 1ms delay. The precharge action helps to prevent overcurrent trips. More
information on this topic can be found in the IRMCx300 Reference Manual.

2.3.2 Start-Up Tuning

2.3.2.1 Start-Up Sequence

Because the motor control relies on back EMF for position control, the MCE processor must go
through a special startup sequence to provide for robust starting. The startup control block inside
the Sensorless FOC block (See the Reference Manual.) is used to assist drive startup with the
ability to sequence the controller dynamically to three unique operating states (Parking, Open-
loop or Closed-loop). These three states are illustrated in Figure 12 and described below.

100% 1

Speed

10% bemmmeae

1
I(—)I{—}I{— (3) Closed-LoOp ========——ceeeu-- o

(1) Parking J |_ (2) Open-Loop

Figure 12—Drive Control Modes
State 1: Parking
The initial rotor angle is identified by forcing DC current into the motor and hence forcing the
motor shaft to park at a known angle.

State 2: Open-loop angle estimation

www.irf.com 21

International
TSR Rectifier

Immediately after the Parking stage, the rotor angle is estimated with a simple motor-load

mechanical model. If the mismatch between the external load characteristics and the internal

motor-load model is exceedingly large, start-up performance will suffer. In this stage, the motor
current is controlled and only the rotor angle is estimated.

State 3: Closed-loop angle estimation

Motor speed increases during start-up, resulting in a build-up of the motor back EMF. Useful
information for rotor angle estimation can then be extracted from the motor back EMF voltage
(estimated by using the PWM modulation depth and DC bus voltage). The drive will enter
Closed-loop control mode as shown in Figure 12.

In addition to implementation of these three states, the startup control unit can also detect
successful drive startup and signal the main Motor control sequencer of a startup failure (via the
Statusflags register).

2.3.2.2 Parking Parameters & Parking Diagnostic

There are several parking parameters which are used to optimize the parking state of the start
sequence. These parameters are described below. More detail about each register can be found
in the IRMCx300 Reference Manual.

ParkAngl and ParkAng—These parameters specify the angles used in the parking stage of
startup, which is defined with respect to the motor U-phase. During parking, two parking angles
are used. The drive will first use ParkAng1 for 25% of the total parking duration; thereafter, the
parking angle will switch to ParkAng to complete the parking duration. Two parking angles are
used in order to guarantee that the rotor moves to the final park angle. If the rotor’s initial position
is 90° (electrically) away from the parking angle, then it will not experience any torque.

Scaling: 64 = 90 Degrees Range: 0 -255

Parkl—This parameter specifies the amount of dc current injection during the parking stage as a
percentage of the motor rated current entered into the MCEWizard.
Scaling: 1 = 0.3399% of rated motor current Range: 0 - 255

ParkTm—This parameter specifies the total parking duration. The motor will park at ParkAng1
for 25% of the ParkTm and at ParkAng for the remaining time. The maximum parking duration
that can be set directly using this register is four seconds, though this time can be extended using
the Parking Diagnostic function described below.

Scaling: 255 = 4 sec Range: 0 — 255

The Parking Diagnostic mode of the control IC can be used to optimize the parking phase of the
motor start sequence. One of the functions pre-installed into MCEDesigner is the “Parking
Diagnostic,” which can be activated by double-clicking the function. This function will perform
parking for 10 seconds and then turn off without starting the motor.

It is possible to manually configure an extended parking duration by forcing the drive into parking
mode. This is done by enabling the Parking Diagnostic through the bit fields of the MtrCtriBits
register. The Parking Diagnostic overrides control of parking duration using the ParkTm register.
(ParkTm is still used to determine the duration of ParkAng1.)

The following example illustrates this procedure. In the example, parking time is extended to ten
seconds by activating the Parking Diagnostic for ten seconds (steps 1 — 4) and then resuming
normal drive operation with zero parking time (steps 5 — 7).

1. DiagSelect field of MtrCtriBits = 1 (enable Parking Diagnostic).

2. Start drive.
3. Delay ten seconds.

www.irf.com 22

International
IGR Rectifier

Stop drive.

DiagSelect field of MtrCtriBits = 0 (disable Parking Diagnostic).

ParkTm = 0 (zero parking time since parking is already established).
Start drive.

No o ks~

2.3.2.3 Parking Optimization

Correct parking is particularly important in situations where large starting torque is required. The
parking stage allows the controller to match the starting current phase angle to the rotor electrical
angle, maximizing the torque.

Some parking situations to beware of (with suggestions):

e The rotor is still moving at the end of the parking time. Try increasing the parking time to
allow the rotor to settle down to the parking position.

e The rotor does not move to the proper angle during parking. Try increasing the parking
current to provide more parking torque. A fully loaded washing machine may exhibit this
behavior.

e The rotor oscillates around the parking position. Is the inertia or friction very small, as in
a fan at low speed? Try using a smaller parking current.

e Due to cogging torque, the rotor moves away from the parking position when the parking
current is removed. Experiment with parking angles to find one which is stable when the
motor windings are not energized. Be aware that the parking positions are electrical
angles; this means that there are poles/2 different mechanical parking positions for each
park angle.

o |If the application inertia (at start-up) is low, and the motor friction is very small, then it can
be very difficult to park the rotor. In this situation, it may be more reliable to start without
parking. Set the ParkTm to zero and the open loop stage will begin without parking. This
can often be the case in a fan motor with cogging torque.

e To soften the parking “jolt,” reduce the current regulator bandwidth during parking, as
may be required in a mechanical system with a gearbox. This is also useful for reducing
the overshoot in situations where high parking toque is needed, resulting in less parking
oscillation.

2.3.2.4 Open-Loop angle estimation to Closing the Loop

During the open-loop stage, the motor electrical angle and speed are estimated using the load
inertia and the motor torque constant supplied to the MCEWizard. The open-loop estimated
acceleration rate per amp of starting current is set by the parameter KTorque.

KTorque—This parameter specifies the motor mechanical model gain used in the Open-loop
startup stage. KTorque relates the torque applied by the motor to the drive acceleration. This
gain plays an important role in robust startup. At rated motor current, the scaling is given by:

Acceleration Rate (Hz/sec) = KTorque * FregPwm * FreqPwm / 229
where FreqPwm is the inverter switching frequency in Hz.

For instance: At rated motor current, 10 KHz inverter PWM frequency and KTorque = 100, the
controller will estimate an 18.63 Hz/sec acceleration rate during the open-loop stage. At 50%
rated motor Amps, the acceleration will be 50% of this value.

Once the controller estimates that the motor has reached the threshold speed (internal parameter

WeThr) then the angle estimator PLL is started. It is important that the actual speed be large
enough for the PLL to get good angle estimation (typically 5-10% of rated motor speed).

WeThr—This parameter specifies the transition level (frequency) from Open-loop to Closed-loop
mode operation. The scaling of WeThr is related to internal frequency scaling of the drive by:

www.irf.com 23

International
ISR Rectifier

WeThr = SwFreq * 2220 / FreqScl / FregPwm

where:

SwFreq is the desired switch over frequency in Hz (typically 5 to 10% rated
motor electrical frequency), called “Freq Switch-Over to Closed-loop Control”
in the MCEWizard;

FregPwm is the inverter pwm frequency in Hz; and

FreqScl is the frequency scaler, determined by bit fields of the MtrCtrIBits_S
and MtrCtriBits registers, respectively. (See the IRMCx300 Reference
Manual for more information.)

In the case of KTorque and WeThr it is most convenient to set them using the MCEWizard by
setting the Load Inertia and Threshold Frequency, respectively.

2.3.2.5 Troubleshooting the Closing of the Loop

The most important factor in successfully transferring from open-loop to closed-loop control is the
motor speed. The motor must generate a large enough back EMF for the angle estimator PLL to
lock onto the rotor angle. There are several ways to ensure that the motor reaches this speed
before the controller closes the loop.

e Reduce KTorque (by increasing the Total Shaft Inertia in MCEWizard): With a lower
value of KTorque, the controller will estimate a longer time for the motor to reach the
threshold frequency, and the drive frequency will increase at a slower rate during the
open-loop stage.

e Increase WeThr (by increasing the Switch-over Freq in MCEWizard): This will also
increase the duration of the open-loop period, but the drive acceleration rate will not
change.

o Modify the TargetSpeed: When the loop is closed, the controller will rapidly accelerate
the motor to the TargetSpeed. This can be undesirable, so set the TargetSpeed close to
the threshold speed. Increase TargetSpeed to the desired value after the loop is closed,
and use the speed ramp rate to control the acceleration. More information about the
speed ramp can be found in Section 3.2.

e Low Voltage Fault: If the DC bus supply is not capable of supplying the start-up current,
then Low Voltage Fault may occur. If this is the case, try reducing the Start Limit in
MCEWizard, if the low speed load is small.

The selection of threshold frequency can be evaluated by running the motor at a constant speed
and then checking how well the speed feedback matches the actual speed. Gradually reduce the
motor speed until the speed feedback becomes inaccurate or noisy. Place the threshold
frequency at a value which gives good speed feedback.

Another problem can occur during the switch-over due to the time required for the PLL to
stabilize. Start the motor and trace the speed feedback (SpdFbk variable) during the start-up.
You will see the speed rise smoothly in a parabolic curve during the open-loop stage, and then it
may spike or dip before stabilizing at the running speed due to the PLL stabilizing, as shown in
Figure 13. In Section 3.5.2 an example of modifying the MCE program to dampen this spike is
given.

www.irf.com 24

International
ISR Rectifier

@ Trace Results @

StatusFlag & SpdFbk.

300 400 kil : 70 800 300 1000 1100

Cursor Control o Min Max Seale Olffset Giid

Ee ¥ EIE Lynzea

\|

| £9563.200 £ 1/58.400) 2768, 3. £
Chi aff) ?jj 5, Chiy ._:_J 486 2168.2 _J.1DDU ,__}10 Chl On

87 ,/I 1.000 o 0 Eh?u%

LI

E-hE\I% Ifj E00.934 ’_Jl 301.700 Ch2 Yy f) a4

Aovl fopl Fesd

Figure 13—SpdFbk (green) when the loop is closed at the blue vertical line.

2.3.2.6 Start Fail

The control IC can detect a start failure in the motor. The developer must enable the detection of
this fault mode, if desired.

Start Fail—A start failure is detected by sampling the motor flux at a certain time after the
controller enters Closed-loop mode (set by RetryTm register). This error mode appears as a bit
flag of the StatusFlags register. Start Fail detection can be enabled by setting the NumRetries
register non-zero. The successful-startup flux range is set by the registers FIxThrH and FIxThrL.
More information about these registers can be found in the IRMCx300 Reference Manual. Note
that to attempt multiple start-up retries requires supporting application software in the 8051
processor.

2.3.2.7 Zero Speed Detection

The control IC can detect zero speed errors in the motor. The developer can disable the
detection of this fault mode if desired.

Zero Speed Fault—This fault appears as a bit flag of the FaultFlags register. The Zero Speed
Fault is asserted when the motor speed falls below half the minimum speed (MinSpd) for two
seconds. This allows the controller to detect problems, such as a locked rotor. In MCEDesigner,
a Zero Speed Fault will shut down the drive. This fault can be disabled by setting a bit in register
MtrCtriBits.

2.3.2.8 Phase Loss Fault
The control IC can detect a motor phase loss. This fault can be enable or disabled as desired.

Phase Loss Fault—If one of the motor phases is disconnected, or the motor windings are shorted
together, the parking currents will not have the correct value. When the Phase Loss Fault is
enabled, the controller will detect this condition and turn on the appropriate bit flag of the
FaultFlags register. This fault can be disabled by setting a bit in register MtrCtrIBits. The

www.irf.com 25

International

ISR Rectifier

registers AdjPark1 and AdjPark2 have to be configured properly with respect to the parking
angles; the configuration is correctly done by the MCEWizard. See the Reference Manual for
detailed information.

2.3.3 Catch-Spin Starting

“Catch-Spin Start” is a sub-function available in MCEDesigner designed for situations where the
motor may already be turning. The catch-spin start is generally effective up to the rated speed of
the motor. Catch-spin cannot be done if the motor back EMF voltage is higher than the DC bus
voltage; this usually occurs when the motor is above rated speed. The catch-spin process (in

Figure 14 below) is as follows:
Catch Spin Start

Enable Catch Spin
ParkTm, Parkl =0
Enable PWM

FOC in closed loop with
target current =0

Wait 400ms for
flux PLL to lock

Normal Start

NO Motor YES
Spinning
v ;
Disable PWM Forward
Disable Catch Spin Motor Catch Spin
Restore ParkTm, Parkl Reverse direction _YES
Catch Spin correct
?
Zero vector Brake ’ . .

Normal Start for 8s Disable Catch Spin

Restore
Drive Running A ParkTm, Parkl

2ms loop

crossing

Reverse
Timeout Catch Spin
(>8s) Y without Parking
Restore a0
ParkTm, Parkl ‘ ParkAng = 90
Reverse
Catch Spin
with Parking
(Normal Start) Disable PWM

Disable Catch Spin

Enable PWM
(Start Motor)

Restore
ParkAng, ParkTm, Parkl

Figure 14—Catch Spin Start Sequence

The first step of the catch-spin algorithm is to track the back EMF of the motor while forcing the
motor phase currents to zero. In addition, the parking time and parking current are set to zero to

www.irf.com 26

International
IR Rectifier

avoid a phase loss fault (if the fault is enabled). By tracking the back EMF, the speed and

direction of the motor can be determined:

1) If the motor is turning is the opposite direction than that desired (Reverse Catch Spin),
zero vector braking is initiated (Section 2.3.5.2) to stop the motor. After the motor has
slowed enough, the angle is detected by checking for the la zero crossing. By knowing
the motor electrical angle, the controller can goes into open loop without parking, and
then closed loop. If the angle detection times out, the motor is assumed to be stopped or
turning very slowly and a standard start sequence (with parking) is initiated.

2) If the motor is turning (fast enough) in the same direction as desired, the controller starts
in closed loop mode and then accelerates the motor to the desired speed.

3) If the motor is stopped or turning very slowly, then a normal startup sequence will be
initiated with parking, open-loop and closed-loop.

Catch-Spin is an advanced function. Tuning and debugging of the catch-spin start is best done
from the application (8051) code level of development. The detailed logic and timing for catch-
spin can be found in the sample 8051 code, IRSamples.

2.3.4 Control Loop Structure & Tuning

There are 3 main control loops associated with IRMCx300 Series products. These control loops
are the current control loop, speed control loop and field-weakening control loop. The following
table summarizes the parameter dependence of each control loop.

Parameters Current Speed Field-Weakening
Controller | Controller | Controller

Motor Inductance X X

Motor Resistance X

Voltage constant (Ke) X

Torque constant (Kt) X

System Inertia X

The speed loop is the outer control loop, determining the torque required based on the error
between the reference speed and the speed feedback. The reference torque, which is really a (g-
channel) current reference, feeds the current loop. The outputs of the current loop are the (g-
channel and d-channel) voltage modulation commands, which are converted into the PWM gating
times for the three phases during each PWM cycle. The field weakening loop supplies a d-
channel current reference to the current loop.

2.3.4.1 Current Controller

The iMotion current controller utilizes field-oriented, synchronously rotating reference frame type
regulators. Field-orientation provides significant simplification to the control dynamics of the
current loop. There are two current regulators (one for the d-channel and one for the g-channel)
employed for current regulation. The g-channel (torque) control structure is identical to the d-
channel (flux). The current control dynamics of the d-channel is depicted in Figure 15. The motor
windings can be represented by a first order lag with a time constant © = L/R. This time constant
is a function of the motor inductance and equivalent resistance (R = cable + winding). For a
surface mounted permanent magnet motor, the d and g channel inductances are almost equal. In
the case of an interior permanent magnet (IPM) motor, the g-channel inductance is normally
higher than the d-channel inductance.

In the current control continuous time domain model, Figure 15, the forward gain A models the
conversion of the digital controller output to voltage (including inverter gain) and the feedback
gain B models the transformation of the current feedback (Amps) to internal digital counts via an
A/D converter. The calculation of the Pl compensator gains (Klieg, Kpireg p) is done by using a

www.irf.com 27

International
IGR Rectifier
pole-zero cancellation technique as illustrated in Figure 16 where the current controller is

rearranged to give transfer function block C(s). Setting Kpyeg p/Klireg of C(s) equal to the time

constant of the motor (1), the controller zero will cancel the motor pole (pole-zero cancellation).
Therefore, the model of the controller dynamics can be further simplified as shown in Figure 17.
The equivalent transfer function of Figure 17 is a first order lag with time constant 1¢. By selecting
an appropriate current regulator response (typically 0.5 to 1 msec, MCEWizard entry Current
Regulator Bandwidth = 1/t¢) for a particular application, the current regulator gains can be readily

obtained. It may be noticed that using the pole zero cancellation technique, the motor inductance
enters into proportional gain calculations and the resistance enters into integral gain calculations.

Klireg Controller : Motor
Current :
command + o |1 + A i 1 i
Ll Lot I ™
g s . i R(1+s.1)
I
Ll I
I
* |
I
P B]
I
Figure 15—Current Controller Dynamics
Controller : Motor
Current KPe |
command + Kllreg 1+S(Klgj A Vl‘ 1 i
g i > ™ R(1+s.1)
S |
I
I
I
I
B ::
Figure 16—Pole Zero Cancellation
I
Controller | Motor
Current |) 1
command + Klireg 1 |:>
_ s | R 1+s.T,
l
: R
T, = ————
! ¢ ABKljreg
|

Figure 17—Simplified Current Control Dynamics Due to Pole Zero Cancellation

Based on the pole-zero cancellation technique the controller gains in the continuous time domain
model are evaluated by:

Lq -Current RegBW
A-B

KPireg =

R -CurrentRegBW
A-B

KIIreg =

www.irf.com 28

International
ISR Rectifier

Where A and B are the voltage and current scaling.

In the digital controller implementation, the integrator is a digital accumulator and so the discrete
time domain model for the PI compensator must be used for the integrator. In this case the digital
integrator gain, Kxg , includes a scaling factor for the compensator sampling time.

KXjreg = Kljreg - T

T is the controller sampling time, which in this case is equal to the PWM period

The voltage scaling, A, must account for gains in the forward rotation and the space vector
modulator. The three phase inverter produces a peak line voltage equal to the dc bus voltage Vg,
so at 100% modulation the rms phase voltage is V4/N2/N3. The modulator produces 100%
modulation for a digital input of 2355 while the forward rotation function has a gain of 1.646.
Therefore, the current loop voltage scaling A is given by this equation:

e)

A= v
(2355)(1.647)

The current loop feedback scaling, B, is defined by the shunt resistor, the amplifier gain, the A/D
converter gain and the current feedback scaling register, IfbkScl, described in section 4.4 of the
IRMCx300 Reference Manual. However, the MCEWizard calculates IfbkScl so that a count of
4095 is equivalent to the motor rated rms current. Therefore, the current loop feedback scaling is
simply given by:

_ (4095)

= Arms'1
IRATED

B

The controller gains calculated for the current loop typically yield numbers that are less than one
and so the current loop Pl regulators include post multiplication scaling on the Kp and Kx inputs
to increase the precision of the regulator gains. The multiplier on the Kp input is followed by a
shift of 14 bits while the regulator on the Kx input is shifted by 19 bits. Therefore, the control gains
calculated for this digital implementation are given by:

Lq -Current Re gBW.214

Kplreg = A B

R -CurrentRegBW T.2™1

Kxlreg = AR

The following gain calculation illustrates a drive application setup with MCEWizard entries:

DC bus Voltage: 300V
Calculated voltage gain A: 0.0857 V
Rated motor current: 210A

Calculated feedback gain B: 1950 A™

A B product: (AB): 167.1 VA"

www.irf.com 29

International
TR Rectifier

PWM Switching Frequency: 10kHz

Calculated sampling time T: 10*s
Inductance Lq: 21mH
Inductance Ld: 21mH
Stator Resistance: 6.9 ohms/ph

Current Regulator Bandwidth: 1500 rad/sec

The current regulator gains are calculated as:

~0.021-1500- 2"
167.1

Kplre =3089

14
KplregD — 002115002 _ 00
167.1

. 6.9-1500-1074.21°
J 167.1

Kxlre =3247

The current controller in the Sensorless FOC block module directly uses these gain values.

MCEDesigner provides a current loop diagnostic test function called “Current Reg Diagnostic.”
This test provides the response of the current control loop and also the steady state accuracy.

Byttt e em e 4 v
E ===== Diagnostics =====
+ E YWF Diagnoskic
+-- & Parking Diagnostic
+ E Current Reqg Diagnostic «—
+ 4 Subfunction Librare Definitions:

Once the current regulator diagnostic is executed, the step current response can be observed
from the trace function or current probes on the W-phase. It is recommended to use a current
probe to observe the step current response. In this test, the rotor shaft should not move; if it
does, it should be immobilized. Figure 18 shows the step current response (using a current
probe) of the w-phase when the Current Reg diagnostic function is executed. In this figure, a 25%
rated current step is commanded. The step level can be controlled by parameter Parkl (inside the
Current Reg Diagnostic function). Figure 19 shows the expanded version of Figure 18. The
measured current loop response is critically damped with a 0.65 msec time constant (0 — 66.3%
of the final steady-state value), which is approximately equal to the anticipated current regulator
bandwidth response (1/1500 = 0.667msec).

25%

00 — 1 S

MEll 1.00A O M10.0ms A Chl & 980maA

Figure 18—Step Current Response

www.irf.com 30

International
TR Rectifier

Ml 1.00AC M1.00ms A Chl £ 980mA
0.65 msec

Figure 19—Step Current Response (Expanded Time Scale)

2.3.4.2 Speed Controller

After tuning the current controller, proceed to tuning the speed controller. The speed controller is
the most outer-loop controller in the cascaded speed drive system, so the inner loop must be
tuned first. Figure 20 shows the cascaded control dynamics of the speed control loop. In
practice, the inner current loop has a much higher control bandwidth than the speed controller;
therefore for speed control dynamic purposes, the inner current loop can be ignored as shown in
Figure 21. Parameter M (Figure 21) relates the command current digital counts to the actual
current in Amps. The motor mechanical dynamic is a first order function with mechanical time
constant equal to J/F (Inertia/Friction). The pole-zero cancellation technique (outlined in current
regulator tuning section) can be used to simplify tuning of the speed controller proportional and
integral gains (KpSreg, KxSreg). In practice, information on mechanical friction (F) is difficult to
obtain, therefore it is not modeled here. In addition, a temperature dependent friction
characteristic is present in some applications. Therefore, manual speed tuning may be required to
achieve optimal speed response. Some applications cannot tolerate high speed regulator
bandwidth due to mechanical resonances present in the mechanical system.

Controller 4—1—» Motor

i Speed Current
i Regulator KxSreg : Kxlreg Regulator

e
Speed i O—

Command

Load

v ‘ ' 1
®

Speed

J - Inertia
F - Friction

Kt - Torque constant

| A, B, C- Conversion Gains

Figure 20—Cascaded Control Dynamical Model
controller <—i—> Motor

Speed :

J - Inertia

F - Friction

Kt - Torque constant

C, B - Conversion Gains

i
ﬂ%§>144

Figure 21—Simplified Speed Control Loop Dynamics

www.irf.com 31

International
IGR Rectifier

As mentioned earlier, information on mechanical parameters (i.e. Inertia) may be inaccurate,

causing MCEWizard to output less than optimal gains for the controller. Manual tuning of the

speed regulator can be used to optimize the speed performance. Figure 22 shows the speed

response (trace buffer speed feedback signal) of a high inertia fan under speed ramping. As can
be seen, the speed response shows oscillatory behavior due to non optimized gain values.

Ramp Speed response

3400

3200

3000

2800

rud

2600 - P'

2400 -

Speed (Digital counts)

2200

Time (0.55 sec/Div)

Figure 22—Ramp Speed Response

There are many different approaches to tuning a Pl regulator for various applications. The
following steps provide an example guide line of speed regulator tuning for fan applications.

1) Tuning of KpSreg. Run the drive at a convenient speed; say 30% of the rated rpm.
Perform a small step speed change (step size of 5 - 10% of rated speed) with KxSreg
set to zero. The step response can be achieved by setting a fast speed ramp in the
MCEWizard. Under such conditions, the first order speed response is expected as shown
in Figure 23. This figure shows the speed responses using 3 different proportional gains
(KpSreg = Kp1, Kp2, Kp3).

Step Speed Response

3400
= 3200 - i SO o
c "AEAM A | ik
=}
Q
O 30990 { Increase Kp1
I KpSreg
5 ez
9 2800 A Kp 3
©
]
2
o 2600 - |

it
2400
Time (0.167 sec/Div)

Figure 23—Step Speed Response under Different KpSreg Gains

www.irf.com 32

International

ISR Rectifier

Adjust KpSreg until the desired transient response (Speed regulator bandwidth) is obtained.
For this fan application with a high inertia to friction ratio, Kp3 is selected to yield
approximately 0.2 sec first order time constant.

2) Tuning of KxSreg. After the desired proportional gain (KpSreg) is selected (step 1),
please resume the desired ramp rate and speed regulator integral gain (KxSreg). Under
such circumstance (with KpSreg = Kp3 and KxSreg = Kx1), issue a ramp speed
command over the same speed range as illustrated in step 1. Figure 24 shows the ramp
speed responses under 3 different integral gains (Kx1, Kx2 and Kx3). The response with
the original integral gain (Kx1) exhibits oscillatory behavior. The integral gain is being
reduced (Kx2 and Kx3) just enough to remove speed oscillation. For this fan application,
the response obtained is acceptable with KxSreg = Kx3.

Ramp Speed Response

Speed (200 Digital Counts/Div)

Time (0.275 sec/Div)

Figure 24—Ramp Speed Response under Different KxSreg Gains

3) Figure 25 shows ramp speed response with non-optimized (KpSreg = Kp1, KxSreg =
Kx1) and optimized (KpSreg = Kp3, KxSreg = Kx3) speed regulator gains. A tighter
control response is exhibited due to the gain optimization.

www.irf.com 33

International

ISR Rectifier

Ramp Speed Reponse

AA
. Optimized
o

Speed (100 Digital Counts/Div)

Time (0.55 sec/Div)

Figure 25—Comparison of Optimized and Non-optimized Speed Response

4) It may be noticed that there is still slight overshoot on the optimized Ramp Speed
response (Figure 25). Most applications can tolerate a slight overshoot (<10%).

Increasing KpSreg or reducing the speed ramp rate as shown in Figure 26 can further reduce
speed overshoot. It is recommended to keep overshoot to the minimal possible for
applications (i.e. Washer Spin Mode), which require a Field-Weakening range of more than
1.5 (150% of the rated speed).

Speed Overshoot Reduction

Increase

KpSreg 4

Reduce
Ramp

Speed (100 Digital Counts/Div)

Time (0.275 sec/Div)

Figure 26—Speed Overshoot Reduction

www.irf.com 34

International
IR Rectifier
2.3.4.3 Interior Permanent Magnet Motor Control
The motor torque developed by a permanent magnet motor is given by:
T _ P Fu, + (L, -L), 1)
orque—E- uxM-I, +{L, =L,)1y -1,
| N — | S

Cylindrical Reluctance

Where
P number of rotor poles
Ly, Lq d and g-axis inductance (d axis aligns to rotor magnet).
lg, I d and g-axis current components.
FluxM Flux linkage of the permanent magnets

There are two torque components associated with the motor torque equation. The first
component (Cylindrical torque) is due to interaction between the rotor magnet flux and the stator
g-axis current. The second component (reluctance torque) is due to the motor saliency (difference
in d and q inductance). This saliency term is negligible (Ld = Lq) in Surface Mounted Permanent
magnet (SPM) motors. In the case of an Interior Permanent Magnet Motor (IPM) where Lq not
equal to Ld, the torque per ampere rating is boosted by the saliency torque term. In motoring
operation, a negative Id injection will contribute to the increase in reluctance torque.

Current
Angle
d
(@
A AngLim L
1 |
1 1
1 1
Current ! Current !
Angle : Angle :
(Deg) 1 (Deg) 1
1 1
1 1
1 1
90 } P 90 } P
0 Rated Amps 0 Rated Amps
Current Magnitude Current Magnitude
(b) (c)

Figure 27—Current Angle at Maximum Torque per Ampere

Figure 27a shows the current vector trajectory for optimal torque per ampere generation of an
IPM motor. As the current magnitude increases, the current angle advancement also increases,
which indicates an increase in negative d-axis current demand. The required current angle for
optimal torque per ampere generation is depicted in Figure 27b. In the iMotion control IC, this
optimal current characteristic is approximated by a linear fit as shown in Figure 27b. Two
parameters (AngDel and AngLim) are used to characterize the behavior of the optimal current
angle for generating maximum torque per ampere. Parameter AngDel fixes the slope of the line
and parameter AngLim limits the maximum allowable angle advancement. The MCEWizard

www.irf.com 35

International

IGR Rectifier
computes AngDel with 2 points (zero and rated current point). The implementation of this linear
approximation and the calculation of the commanded d-q current are shown in Figure 28.

TrgRef
- Vi P 1qRef_C To current
Rector regulator
otator commands

——» Id_Decoupler

-AngLim 90 Deg

Figure 28—Current Decoupler for Optimal Torque per Ampere Operation

2.3.4.4 Field-Weakening Controller

Field weakening is required to extend the motor operating point beyond the rated speed. The
back EMF (BEMF) of a motor increases with speed up to the dc bus voltage. A further increase
in the motor speed requires flux weakening to maintain the motor terminal voltage at its maximum

possible level as shown in Figure 29.

x
=]
[
S
o
=
Inverter _|
2 voltage
£ Limit
o
>
1)
o
= I
Crossover
Speed
Speed

Figure 29—Field-Weakening Characteristics

Figure 30 shows a block representation of the Field-Weakening Controller. The output of the
controller (Fwk_Id) is the d-axis current component, which opposes the rotor magnet flux (Flux).
By injecting a negative d-axis current, the resultant flux can be reduced and hence the motor
voltage can be limited to stay within the ceiling voltage of the inverter output. The control loop
gain increases with motor frequency as shown in Figure 30. Inside the Field-Weakening
controller, gain modulation is used to decouple the variation of loop gain due to motor frequency.

www.irf.com 36

International
TR Rectifier

Controller <— : —P» Motor

| Motor

Frequency
Flux
Modulation
level + Field-
Weakening
Controller

Voltage to
modulation
conversion

Figure 30—Field-Weakening Control Model

Figure 31 shows the Field-weakening controller. As can be seen from this figure, when the
modulation exceeds a prescribed level, specified by FwkLvl, a negative d-axis current (Fwk_Id)
will be commanded and reduce the main flux. The Field-Weakening controller acts as a
modulation index limiter. The gain modulation block serves to compensate the increase in loop
gain due to an increase in the motor frequency, as mentioned earlier.

Speed —jp| Gain

Modulation

i

FwkKi FwkKxMod Fwk_Id

Tntegrate (to Inner-loop IdRefExt)

and F———-P

Output limit

"
FwkLvI —>

- FwkLim

Dv (Sensorless Foc

< output)

modulation
computation

|-}——— Qv (Sensorless Foc

output)

Figure 31—Field-Weakening Controller Block

With gain modulation incorporated, the control loop gain is decoupled from the motor frequency.
Figure 32 shows a simplified representation of the Field-weakening controller. The equivalent
transfer function of Figure 32 is a first order lag system. Parameter M in Figure 32 is a function of
motor inductance, nominal dc bus voltage and the motor crossover frequency (function of motor
Ke). The MCEWizard sets the field-weakening controller gain (FwkKi) based on parameter M and
a prescribed field-weakening loop response (0.25 sec).

FwkKi

Modulation

level + 1
— ol

Figure 32—Simplified Field-Weakening Control Model

www.irf.com 37

International

ISR Rectifier

The response of the Field-weakening loop can be observed from the command d-axis current
(using MCEDesigner trace function). Under light Field-weakening condition (-10% rated motor
current on field-weakening controller output current), a step change (-2%) in the modulation limit
level (FwkLvl) is issued. When the modulation limit reduces, the Field-Weakening controller
increases the d-axis motor current (with negative sign) in order to reduce the motor flux and
satisfy the modulation limit (voltage limit). Figure 33 shows a step change in FwkLvl and the
response of the command d-axis current. The first order response is exemplified in Figure 33.
The tuning of the Field-Weakening controller is straightforward since it only involves one
controller gain. The response of the Field-Weakening controller should be high enough to catch
up with speed changes. In practice, most appliance applications do not require high dynamic
speed changes in the Field-Weakening region. Therefore the response of Field-weakening can
be relaxed (typically: 0.1 to 0.4 sec response time. The MCEWizard is preset to 0.25sec).

I Trace Results

Figure 33—Field-Weakening Control Responses,

Vertical: Id command (digital counts) Horizontal: Time (0.1 sec/ div)

Some control hints for high speed operation:

o Reduce the speed loop gain to reduce the torque demanded. The maximum torque may
not be available during field weakening. Otherwise the controller may go into
overmodulation.

o Also, try reducing the values of register MotorLim to increase the voltage available for
BEMF reduction.

¢ Reducing the FWLevel register will begin the field weakening earlier to provide more
voltage margin for control.

2.3.5 Braking the Motor

Naturally, in almost all applications, the motor will need to be stopped as well as started. The
simplest way to stop the motor is to simply stop the drive. The PWM switching will stop and the
motor terminals will no longer be energized. The rotor will coast down to a stop.

However, many applications will require a less passive and more effective braking method. One
such method is to park the motor (DC injection). This may be useful in situations where the motor
is moving slowly and needs to be started again immediately. This section describes two more
braking methods and then concludes by describing a fault condition which protects the hardware
by braking.

www.irf.com 38

International
ISR Rectifier

2.3.5.1 Regenerative Braking

The velocity controller is capable of applying a torque in either the same or opposite direction of
the motor motion. This reverse torque can be used to slow the rotor in a technique know as
Regenerative Braking.

In normal operation, a current is applied to the motor winding. During active braking, the phase of
the current is inverted, so that current is now removed from the motor windings. The rotor
experiences a torque, proportional to the current, opposite the direction of motion, and the DC
bus becomes charged from the motor current. Be careful of overcharging the DC bus during
active braking. Be sure to set the overvoltage fault level at a safe value. One way to dissipate
the energy is to use a brake resistor, which discharges the DC bus in an overvoltage situation.

Implementing active braking is relatively simple. Change the “Regen Limit” input of the
MCEWizard to a non-zero number. The Regen Limit is defined as a percentage of the rated
current, so a larger Regen Limit will result in a higher current and a higher reverse torque. The
(negative of) Regen Limit acts as a lower limit to the Torque Reference output of the speed loop.
The result is that the Torque Reference can become negative, indicating torque in the opposite
direction of the motion and resulting in an inversion of the motor current phase. The Torque
Reference can become negative if the Speed Feedback is greater than the Speed Reference.
The speed loop is covered in detail in Section 3.2.

2.3.5.2 Zero Vector Braking

Another braking method is Zero Vector Braking. In this case, the three motor terminals are
shorted together by alternately turning on all the low-side transistors and then the high-side
transistors of the motor drive inverter. Energy is removed from the mechanical system by the
back EMF of the rotor and is dissipated by the resistance of the motor windings. At an electrical
frequency where the winding impedance is dominated by the inductance, zero vector braking will
produce a constant current in the motor windings. When using this braking method, verify that
the motor can withstand the short circuit current. To enter Zero Vector Braking, write ‘1’ to
register Zero_Vec_Req or use the sequencer by writing ‘3’ to SeqCmd. If the motor speed is high
enough (field weakening regime), then the DC Bus may charge up due to the PWM deadtime.

2.3.5.3 Critical Over Voltage Protection

In order to achieve high-speed operation under limited voltage capability, the motor flux is
suppressed by injection of a negative d-axis current (Field-weakening) to the motor. In case of an
inverter shunt down at high speeds, all inverter devices will be disabled and the negative d-axis
field forcing will be lost. Under such circumstances, the motor flux will resume and the motor
voltage will build up according to the motor Ke as shown in Figure 34. This is a critical over
voltage condition in which the motor BEMF builds up and charges the dc bus capacitor voltage to
an exceedingly large value.

www.irf.com 39

International

ISR Rectifier

Motor Flux

Speed

Voltage
increase

Inverter -
voltage
Limit

Motor Voltage

Speed *

Inverter
shunt down

Figure 34—Inverter Shunt Down during Field-Weakening

In the iMotion control IC (IRMCx300 series), the critical over voltage protection is implemented in
the MCE application software. The critical over voltage condition is detected by comparing the dc
bus voltage feedback to a configurable voltage level (configurable by MCEWizard: DC Bus
Critical Voltage Level). When a critical over voltage is detected, the command bit CriticalOv
(inputs of MCE module Space Vector PWM) will be set. This will trigger a zero vector (low side
devices turn-on) PWM state independent of any condition (including faults). The use of a zero
vector forces short circuit to the motor terminal and hence prohibits charging of dc bus capacitors.
Figure 35 illustrates the critical over voltage condition and the engagement of zero vector
protection. Upon application of the zero vector, the motor current will circulate within the motor
windings and the rotational energy of the motor will be dissipated inside the motor (copper and
core losses).

Critical dc bus
Over voltage

Nominal dc
bus voltage >

Motor
W-phase
Current

+ Hor: 10 msec/ Div
Inverter
Shut down Zero Vector

initiation

Figure 35—Critical DC Bus Over Voltage
(top: dc bus voltage, bottom: motor current)

www.irf.com 40

International
IGR Rectifier
The interface between the critical over voltage detection and the Space Vector PWM module is

shown in Figure 36. The full description of the SVPWM module is available in the Reference
Manual.

,,
I

SVPWM module I 1C Pwm

| PinOuts

PWMUH

!
|

user U —+—————————————————— |
]

User V ——————————————————— >

i u
User W —————————————p| DUy

]

| PwmPeriodConfig — Modulator . Uservuvwen

|

|

‘ L

|
S and port_Ctrl0[5:4] }
UservabEn

|
pwm _lines(g] [00T=Tnput]
o1 [="7"

GCChargePD
GCChargePW

- PWMVL

User Alpha —— 4 Band o !
| : rotec !
From FOC. 1 :] : !
: ; : I i !
User_Beta ———————— ! i i I i N
: — 1
From Foc — > Band |t uf— pwm_lines[9] [
! u Protect Mux wi > D | !
| ———{10]=
| ModScl— Space y Pprecharge /™ B |
H TwoPhsCtrl[l]]— Vector ‘
! el port_Ctrl0[9:8]
|
|

PwmPeriodConfig—{ Modulator w '
|
00 =input]!
P — [‘] 01 -
g) |
‘

VoLTA H
| —* m\ ! criticalov

- !

o 1

i

I

i

I

s l
= 1 \ MCE Applicat

o I

I

i

I

i

tion
Critical Ov protection

Figure 36—Critical Over Voltage Interface

3 MCE Program Customization

This section will begin by describing the Motion Control Engine (MCE), which is the processor
where the main motor control loops and protection logic are contained. The motor control
algorithm is realized through a combination of software elements (i.e. Speed loop) and hardware
elements (Current loop) executed within the MCE on a PWM synchronous basis. The software
control sequence (MCE program) is available for modification by the designer for application
specific functionality, using Matlab/Simulink as a graphical editing tool. Section 3.2 explains the
factory-installed MCE program. The following section will explain the general properties of a MCE
design created in Matlab/Simulink. Section 3.4 will give instructions of how to configure the
Matlab software and modify, compile and download the new MCE program. Section 3.5 will
conclude with two examples of MCE program modifications: “Torque Mode” and “Limiting the
Speed Feedback Input Variance”

The MCE program development environment consists of the following components:
e A library of graphically-represented Simulink control blocks to be used in the design
of a motor control system.
e The MCE compiler, a web-based tool which analyzes the Simulink design and
generates a corresponding program file that is executed by the MCE processor on
the IRMCx300 IC.

www.irf.com 41

International
IR Rectifier
¢ MCEDesigner, which provides a graphical user interface to the IRCMx300 to allow

download of the MCE executable file, control of MCE operation, and analysis of
system function and performance.

The MCE development tools software distribution is organized beneath a main directory named
MCE Compiler, within the iMotion directory. The main MCE Compiler directory contains three
subdirectories: “Simulink Library”, which contains the Simulink library blocks; “Matlab”, which
contains the MATLAB scripts that implement the graphical blocks; and “bin”, which contains the
executable files and linkable object files for the MCE compiler.

The MCE development tools are designed to operate with MATLAB version 6.1 and later. They
may not function correctly with older versions of MATLAB.

Note: MCEWizard may produce incorrect register values if the MCE program is changed. The
designer should carefully consider whether the MCEWizard output is still correct after
modification of the MCE program.

3.1 The Motion Control Engine

The Motion Control Engine carries out the main motor control computations within the IRMCx300
Series IC. Figure 37 is a block diagram of the MCE showing the main components and main
communication bus.

The primary component of the MCE is the MCE processor which handles some computation and
also sequences the Motion Control Modules according to the MCE program instructions.

The MCE program is contained in a configurable block of RAM. The program is loaded to the
RAM during the boot process of the MCE. For more information about the boot process, see the
Reference Manual.

In addition to the MCE program RAM, there is a Dual Port (data) RAM which is accessible to the
8051 processor. The registers contained in this section of RAM are used by the 8051 processor
to control the settings and actions of the MCE. MCEDesigner sends instructions to the 8051
processor, which then starts, stops and changes the speed of the motor by writing to registers
within the Dual Port RAM.

Designed to facilitate and speed the motor control computations, the Motion Control Modules
are a group of hardware computation blocks to do specific functions. Included in these modules
are blocks which produce the gate drive PWM signals for the motor drive or PFC. Also, over-
current shut down signals (GATEKILL) go directly to the MCE blocks to get a fast shut down of
the drive. Another important module reconstructs the motor phase currents from the single shunt
current sampling. More information about single shunt current sampling can be found in Section
4.3.2. Closely integrated with the MCE is the Analog Signal Engine, which contains op-amps,
sample-and-hold circuitry, analog multiplexing and an A/D converter.

www.irf.com 42

International
TR Rectifier

Motion__

Control
Engine
(MCE)

Dual Porf /_/\
RAM
\—/]

512Bytes

MCE
Program
RAM

5.5kB

www.irf.com

sng [0Jjuo) UOHO

6
/, To IGBT
gate drive
Dual [®€—— GATEKILL
Low Loss 5 (compressor)
SVPWM / To FREDFET
gate drive
——— GATEKILL
(fan)
[p TOPFC
F?Vlilcl\:/l | FET drive
foien <§——— GATEKILL
Control (PFC)
Modules | ..
Single shunt
current
reconstruct
<@—— IFB (compressor)
<¢— IFB (fan)
AD <§——— IFB (PFC)
MUX
S/H <¢— DC bus Voltage
<§——— AC Voltage
<——— Analog Ref

Motion Control
Processor

Figure 37—Block Diagram of the MCE

43

International
IR Rectifier
3.2 IR Standard MCE Program

3.2.1 Block Diagram

Figure 39 is a block diagram of the MCE design of the motor 1 control loop. The Simulink model
file (.mdl) and a PDF file of the block diagram can be found within the program installation. The
block diagram has several elements:

e Motion Peripherals—The yellow colored blocks represent the Motion Peripherals, a
subset of the Motion Control Modules. These are controlled by a large number of
registers, which are represented as input and output signals of the yellow blocks.

e Other Hardware and Software Blocks—The other colored blocks in the diagram are 1/0O
blocks or software and hardware elements which are performed (or called) by the MCE
processor.

e Standard Simulink library components—The MCE Compiler recognizes a few of the
standard Simulink library components.

Section 3.3 describes these elements of the block diagram in more detail.

3.2.1.1 Speed Loop

The primary control feature of the MCE program is the speed loop, introduced schematically in
Section 2.3.4.2. The block diagram contains the full speed loop control with protections, limits
and other logic. To follow the speed loop, begin by locating the TargetSpeed register, located
near the upper left corner of the diagram, as shown in Figure 38. After minimum speed protection
and sign conversion (based on direction of rotation) logic, the TargetSpeed becomes the input to
the Speed Ramp block. The other inputs to this block (AccelRate, DecelRate & RampScaler)
control the ramp rate of SpdRef (reference speed). The input to the PI (proportional + integral)
block is the difference of SpdRef and SpdFbk. SpdFbk is the actual motor speed, which is
computed in the FOC yellow block and then scaled in the block diagram. The output of the Pl is
limited for protection, and then fed back to the FOC block as the TrqRef, closing the loop. The
TrgRef (torque reference) actually serves as the current command to the controller, because
torque is assumed to be proportional to current.

Minimum Speed Protection

&
W Wil

Targetspeed

COMPARATORZ

Q MinSpd il

Wite 1— 3T SHIFTT

Targetoir

StartLim Min_Spd StartOk < [StartOK] |
Goto StanCk

Start_Lim

»
> CioszdLoog)
ROTATION] Rotation
v o9

‘emROTATION [E

[TRQ_REF] Rt Goto D -

From TRO_REF FOC (2.
[SREG_IN] = \VEFreg o %
rom SREG_IN Rir_Fi W Wie
[VdoFsk] \do_Fbk A |
| ‘VheEnacle ’7

From VdcFbk ParkingD

Search_Ang

Figure 38—TargetSpeed Register

www.irf.com 44

O

=
QO
[

=
Q
£

3
—
&
ke
H

afio] uopaayoid sng Oq

1o jonuon Guayeap plai4

i uabsy v 1010

[

f the Motor 1 Control Loop

(o)

Figure 39—MCE Simulink Design

45

www.irf.com

International
IR Rectifier
3.2.1.2 Misc Loop: Dynamic Vq Limit

The MCE program contains a Misc Loop, shown in Figure 40 below, which performs dynamic
limiting of the g-axis voltage (Vq). In this subsystem, the VqLimit is calculated by taking the
maximum modulation, ModLim, and removing the d-axis voltage (as a vector calculation) to find
the modulation available for the g-axis. The result is filtered and then written to VgLim register in
the FOC block.

LOWPAZE FILT:

rrrrr

25 COMPARATOR

Figure 40—MCE Simulink Design of the Motor 1 Mics Loop

3.2.1.3 Other Features (of the MCE program)
Here are descriptions of the other control features of the MCE program, as shown in Figure 39.

e The FOC block contains the current loop (described in Section 2.3.4.1) and the angle
estimator. This hardware block also contains reluctance torque control for IPMs (Section
2.3.4.3).

e The SVPWM block is another hardware block which converts the voltage modulation
command to PWM gating signals for the 3-phase inverter. The default source of the
voltage modulation command is the FOC block.

e The Field Weakening Control logic implements field weakening control as described in
Section 2.3.4.4.

o The DC Bus Protection Logic carries out under-voltage, over-voltage and critical over-
voltage fault detection. It compares DC bus voltage feedback with trip levels and
generates MCE Fault and latch signals for each trip. An over-voltage or under-voltage
fault will appear in FaultFlags as an MCE Fault with the OVFault or LVFault register
reading a 1. There is a further, hardware layer of DC bus protection at 400V and 120V
for over- and under-voltage faults, respectively, for the current feedback scaling of the
Reference Board. In digital counts, DC_BUS_VOLTS has hardware over- and under-
voltage fault levels of 3360 and 976, respectively. These hardware faults will show up in
the bit fields of FaultFlags (See Section 0), but are disabled in the Reference Design, so
that only the software voltage fault detection is active.

Two of the Motion Peripherals, the FOC block and the SVPWM block, are particularly important to
the motor control. Each one has a large number of input and output registers, which the designer
may add to the block diagram as required (Section 3.4.2.1). Complete block diagrams and
descriptions of the input and output registers can be found in the Reference Manual. It is
recommended that the designer become familiar with these blocks.

3.2.2 Input and Output Registers of the MCE Program

Torque Limit Registers: StartLim, RegenLim, MotorLim

Range: 0 — 4095 Scaling: Current (A) = [StartLim] * l;4te¢/4095

Function: These registers limit the value of TorqueRef before it becomes the (torque-producing)
current command to the FOC block. StartLim applies only during the open-loop stage of the
start-up sequence, while MotorLim applies during normal closed-loop operation. A non-zero

www.irf.com 46

International
IGR Rectifier

RegenLim allows the TorqueRef variable to become negative, resulting in active braking (see

Section 2.3.5.1). These registers are configured by the MCEWizard.

Speed Control Registers:

TargetSpeed—This register sets the target motor speed and is the value to which the speed
command will ramp. The rate at which the speed command ramps to TargetSpeed is set by the
Ramp Rate Registers, described below.

Range: 0 — 16383 Scaling: Speed (RPM) = TargetSpeed * (Maximum motor speed) / 16383
TargetDir—Set the motor direction with this register. A value of 0 will result in a negative speed,
and a value of 1 will result in a positive speed.

MinSpd—This register sets the minimum motor speed. The maximum value for this register
represents 12.5% of the maximum speed. This register is configured by MCEWizard.

Range: 0 — 255 Scaling: Speed (RPM) = MinSpeed * (Maximum motor speed) / 2048

Speed Regulator Registers: KpSreg, KxSreg

Range: 0 — 32767

Function: These registers set the speed regulator PI block proportional (KpSreg) and integral
(KxSreg) gains. The MCEWizard calculates values for these registers. For more detail on the
speed regulator tuning, see Section 2.3.4.2.

Speed Feedback Registers:

SpdScl—The variable Rtr_Freq, an output of the FOC block, is scaled to the same scaling as
TargetSpeed using register SpdScl. For details about how this register is calculated by the
MCEWizard, see Section 2.2.3.1.

SpdFiltBW—This register sets the cutoff frequency of the digital lowpass filter for the speed
feedback. To send the signal through unfiltered, set SpdFiltBW to 8192.

Range: 0 — 8192 Scaling: Cutoff Freq (Hz) = PWMFreq * SpdFiltBW / 8192

Field Weakening Registers: FwkLvIl, FwkLim, FwkSpd, FwkKx

Function: These registers control the generation of the field-weakening current command and are
set by the MCEWizard. More information on the calculation of these registers can be found in
Section 2.3.4.4.

Ramp Rate Registers: RampScaler, AccelRate, DecelRate

Range: 0 — 31 (RampScaler); 0 — 32767 (AccelRate, DecelRate)

Scaling: Motor Acceleration Rate (RPM/s) = (Maximum Motor Speed / 16383) * ([AccelRate] /
2"RampScaler) * PWM Frequency

Function: The ramp rate of the speed command toward the target speed is controlled by these
registers. Do not change the value of RampScaler while the motor is running; it can cause the
speed command to change abruptly. These registers are configured by MCEWizard.

DC Bus Protection Registers:

CriticalOvThr, DcBusOvLevel, DcBusLvLevel—These registers set the DC bus protection
levels for Critical Overvoltage, Overvoltage and Low Voltage faults, respectively. MCEWizard
calculated values for these registers.

Range: 0 — 255 Scaling:Trip Level (V) = [CriticalOvThr] * 16 / (DC bus feedback scaling)
FItClr_Tmp—Set this register to 1 for at least one PWM cycle to ensure that any DC bus
protection faults are cleared. Set FItCIr_Tmp to 0 for normal operation.

Miscellaneous Control Registers:

VhzEnable—This register is a logic input (0 or 1) for the speed loop when the V/Hz diagnostic
mode is used. This register alone does not enable the V/Hz diagnostic (see Section 2.2.4.1).
SearchAng—This logic register (0 or 1) is only used for the catch-spin function. See Section
2.3.3 for more on catch-spin.

Dynamic Vq Limiting Registers:

www.irf.com 47

Infernational
IR Rectifier

ModLim—This register defines the maximum modulation. The Wizard sets this to 1430 = 100%

modulation. Set this register to zero to turn off the dynamic Vq limiting.

VgLimFiIBw—This register sets the filter time constant for the dynamic Vq limiting. The Wizard

sets it to 4ms.

VgLim—If ModLim = 0, then the Vq limit will be fixed at the value of this register. This register is

different than the VgLim hardware register defined in the Reference Manual.

Read Registers:

MotorSpeedR—This register gives the instantaneous measured motor speed.

Range: 0 — 16383 Scaling: Speed (RPM) = TargetSpeed * (Maximum motor speed) / 16383
CriticalOV_Fault, OV_Fault, LV_Fault—These flag registers indicate the presence (1) or
absence (0) of a critical overvoltage, overvoltage and low voltage fault, respectively.

Traceable Parameters:

SpdFbk, SpdRef—These are the measured and commanded speeds, respectively

Range: 0 — 16383 Scaling: Speed (RPM) = TargetSpeed * (Maximum motor speed) / 16383
TrgRef—This is torque command, which is an input to the FOC block. This becomes the torque
current command.

Range: 0 — 4095 Scaling: Current (A) = TrqRef * |;aeq / 4095

3.3 Simulink MCE Design Components

This section describes the components of an MCE Simulink design. Most of your design
components will be taken from the MCE library, but some components of the standard Simulink
library are also used.

3.3.1 MCE Design Hierarchical Format

This section describes the hierarchical structure of a complete MCE system and provides
instructions for creating a new MCE model template

The MCE design hierarchy has the structure shown in Figure 41.

www.irf.com 48

International

ISR Rectifier

Top Level System
Confizure
PWI Block
Motor 1 PWI Motor 2 PWI PFC PWIW
Subsystem Subsystem Subsystem
Configure Configure Configure
Control Control Control
Loop Block Loop Block Loop Block
Ldise Speed Mlize Speed Current Voltage
Control Control Control Control Control Control
Loop Loop Loop Loop Loop Loop
Subsystem Subsystem Subsystem Subsystem Subsystem Subsystem

Figure 41—MCE Design Hierarchy

The top level of the system design contains a Configure PWM block and up to three PWM
subsystem blocks, which are implemented using standard Simulink Enabled Subsystem
blocks. The Configure PWM block has up to three outputs, labeled Motor 1, Motor 2 and
PFC. Each PWM subsystem is identified by connecting the appropriate Configure PWM
block output to the Enable input of a PWM subsystem block. There are no other blocks or
connections at the top level of the design.

Each of the PWM subsystems contains a Configure Control Loop block and two control
loop subsystem blocks, which are implemented using standard Simulink Enabled
Subsystem blocks. The Configure Control Loop of the Motor 1 block has two outputs,
labeled Speed and Misc. Each control loop subsystem is identified by connecting the
appropriate Configure Control Loop block output to the Enable input of a Configure Control
Loop subsystem block. The PFC subsystem has two outputs, Current and Voltage. There
are no other blocks or connections at the top level of the PWM subsystems.

The procedure described below can be used to create an empty MCE design in the correct
hierarchical format. However, it is generally easier to modify the Standard design, as in the
examples at the end of the Section.

Step 1

Create a new (empty) Simulink model. (From the MATLAB File menu, select New and then
Model.) Right click in the new window and select Model Properties. On the Summary tab
of the Model Properties dialog, you can enter a text description of the design and save your
name as its creator.

www.irf.com 49

International
IGR Rectifier

Step 2

From the Configuration group of the MCE library, drag a Configure PWM block into the

model. From the standard Simulink library’s Subsystems group, drag up to Enabled

Subsystem blocks into the model. Connect each output of the Configure PWM block to the

Enable input of one of the subsystem blocks. Double click the label under each subsystem
block to enter a name of your choice for the PWM subsystem.

Step 3

Double click the Motor 1 PWM subsystem to open it. Delete the default input and output
ports and the line that connects them. From the Configuration group of the MCE library, drag
a Configure Control Loop block into the model. From the standard Simulink library’s
Subsystems group, drag Enabled Subsystem blocks into the model. Connect the outputs of
the Configure Control Loop block to the Enable input of each of the subsystem blocks.
Double click the label under each subsystem block to enter a name of your choice for the
control loop subsystem.

Step 4

Repeat Step 3 to create control loop subsystems for the Motor 2 and PFC PWM subsystems
if required. In the PFC subsystem, remember to connect the Voltage output of the Configure
Control Loop block instead of the Speed output.

Step 5

The hierarchical structure is now complete, and you can begin designing your motion control
algorithms by adding and connecting MCE library blocks in each of the control loop
subsystems.

3.3.2 The MCE Library

The modules of the Simulink library are grouped into seven main categories, with a library model
file in the Simulink Library directory for each category. This section gives a brief description of
each library. Detailed descriptions of each of the blocks are provided in the Reference Manual.
These are:
e Configuration
Registers
Control
Math
Tools
Motion Peripherals
Designs

Simulink library files have a .mdl filename extension (same as Simulink model files). For
example, the Math library file is named Math.mdl.

The MCE library contains various control block modules specific to motor control applications as
well as a number of general-purpose modules for miscellaneous operations and support
functions. The main window of MCE Simulink library is shown in Figure 42. By connecting library
blocks in the MATLAB/Simulink™ environment, the user can design a custom control algorithm
based on application requirements. A graphic compiler analyzes the completed design and
automatically translates it into a sequence of MCE-specific machine code for integration with the
IRMCx300. The two basic types of hardware resources available on the IRMCx300 are Motion
Peripherals and Control blocks.

Motion peripherals process analog and digital signals and interface to external hardware; for
example, the Low Loss Space Vector PWM module (SVPWM), Sensorless Field-Oriented Control
(FOC) module, and single shunt current reconstruction module. These modules are colored
yellow throughout this document and in Matlab/Simulink™ to distinguish them from other

www.irf.com 50

niemational
IR Rectifier

elements. Each motion peripheral module is used only once in an application design (or once for

each motor) since it corresponds to a single hardware resource.

MCEControl Blocks are the math, control, and logic elements implemented in hardware. These
modules can be used in an application design as many times as needed. MCEControl block
signals can be connected to another MCEControl Block or to a Motion Peripheral module.
MCEControl Blocks are colored green (for math) or blue (all others) throughout this document
and in MATLAB/Simulink™. There are no pre-defined registers for control block configuration
and monitoring as there are for the motion peripherals.

Additional blocks are provided for support functions such as data initialization and monitoring,
signal delays and page-to-page connections. Some support functions are implemented using
standard Simulink library components.

All blocks are based on 16-bit signed or unsigned integer input and output.

(=T

File Edit Wew Format Help

DIsHE| 22|02 RhEL

MCE iMOTION Designer Close

wid Libs

{c) 2004 International Rectifier, Inc. Al Rights Reserved Double
Click

Canfiguration Control

Configuration Registers Contral

Tools Motion Peripherals

tath Taals Motion Peripherals [resigns

Ready [100% [Locked v

Figure 42—MCE Simulink Library
The seven library groups are described below.

Configuration

The Configuration group contains the Configure PWM and Configure Control Loop blocks that are
used in the formation of the MCE hierarchical design for a complete system. If you create your
system design using the MCE design template file template.mdl or by modifying the standard
design, these blocks are already included at the appropriate locations in the subsystem hierarchy.
(See Section 3.3.1 for more information.)

Registers

The Registers group contains read and write register blocks, which you can use in any of your
control loop subsystems. If you want to define a configurable parameter that can be set from the
MCEDesigner tool or from an 8051 application, drag a write register block into your design and
connect its output to the input of the appropriate module(s) that will use the parameter. If you
want to monitor a module output from MCEDesigner or an 8051 application, drag a read register
block into your design and connect the module output to it.

Control

www.irf.com 51

International
IGR Rectifier
The Control group contains the special-function motion control blocks that are used to implement

your motion control algorithms. You can drag these blocks into any of your control loop
subsystems.

Math
The Math group contains general-purpose math and logic blocks that you can use in any of your
control loop subsystems.

Tools

The Tools group contains the MCE Compiler block, which you can add to your design to simplify
access to the MCE compiler (see Section 3.4.3 for more information). The Tools group also
includes a Host Register Summary block, which you can add to your design and use to view and
modify the read and write host register blocks you’ve included in your design (see Section
3.4.2.3) and a tool that allows you to customize the inputs and outputs of certain motion
peripheral blocks (CustomMotPer, described in Section 3.4.2.1).

Motion Peripherals

The Motion Peripherals group contains the special-function motion peripheral blocks that can be
included in your control loop subsystems. The blocks in this group have input and output
registers which are described in the Reference Manual. Because some of the blocks have a
large number of inputs and outputs, the designer has the ability to enable only the inputs and
outputs needed for the control loops as described in Section 3.4.2.1.

Designs

The Designs group contains sample designs shipped with the product, as well as the system
template design that you can copy and use as a basis for your system designs. You can add
your custom system designs to this library group if you wish.

3.3.3 Standard Simulink Library Components

The standard Simulink library components described below can be included in your design. Enter
“simulink” in the MATLAB command window to open the Simulink library.

Enabled Subsystem

Use this block to create PWM and control loop subsystems for your system design. If you start
with the MCE design template file template.mdl, the appropriate subsystem blocks are already
present in the design. Refer to Section 3.3.1 for more information about the use of the Enabled
Subsystem block in the MCE design hierarchy.

Constant
Use this block to define a constant value as an input to a block in any of your control loop
subsystems or macro block definition. Double click the constant block to set a value for the
constant.

Scope

If you want a module output in a control loop subsystem to have the capability of being traced
(using MCEDesigner’s trace monitor feature), drag a Scope block into your design and connect
the module output to it. The name you assign to the Scope block will be used in MCEDesigner so
you can recognize the trace item.

Goto and From

If you need to connect elements in two different subsystems of your design, you can use a Goto
block at the source of the signal and a From block at the destination. To avoid cluttering your
diagram with long and roundabout lines, you can also use Goto and From blocks to connect
elements at distant points within the same subsystem.

www.irf.com 52

International
IGR Rectifier

After dragging a Goto into your design, double click it to set its parameters. Set the tag field to a

unique name, which is used to match the Goto with one or more From blocks. Set tag visibility to

“global” if any matching From blocks are in other subsystems or “local” if all matching From

blocks are in the same subsystem as the Goto. (Visibility type “scoped” is not used.) Double

click each From block to set its goto tag. This tag identifies the matching Goto block and must
match the tag you specified in the Goto block.

Unit Delay

You can use the Unit Delay block to introduce a signal delay of one or more PWM cycles. In
certain situations, a delay is required to identify a feedback signal (an input data value obtained
from a previous cycle). For example, suppose an output of block A is used as an input to block B
and an output from block B is used as an input to block A. Both inputs cannot be generated on
the current cycle since one block must execute before the other. A Unit Delay block must be
inserted in one of the two paths (between block A’s output and block B’s input or between block
B’s output and block A’s input) to identify which signal is obtained from a previous cycle. The
compiler uses this information to sequence the blocks correctly.

After dragging a Unit Delay block into your design, double click it to set its parameters. The initial
condition defines the value of the signal used for the initial cycles until stored values (from
previous cycles) are available. The sample time defines the number of cycles to delay. (Note
that the MCE Compiler’s use of the sample time parameter differs from Simulink’s definition.)

3.4 New MCE Design—Start to Finish

This section describes how to create, compile and download MCE designs in the
MATLAB/Simulink environment.

A Simulink model (.mdl) file defines a graphical Simulink model, or design, using a proprietary
syntax in text format. The basic elements of the definition syntax are Systems, Blocks, Ports and
Lines. A System is a functional collection of Blocks and Lines. A Block is an individual design
component or a representation of a subsystem. Ports define the inputs and outputs of a Block or
a System, and Lines are the connections between Blocks. Using a Block to represent a
subsystem enables the creation of a hierarchical design.

The MCE compiler analyzes the graphical elements defined in a model file to generate the MCE
program to implement the represented design on the Motion Control Engine processor. The MCE
compiler analyzes a Simulink model file and uses information in the database to determine inputs
and outputs for each Block and an execution sequence for the Blocks. It then creates an MCE
executable file for a complete system build. The compiler also creates the following optional
output files:
e A register map file that can be imported into MCEDesigner so host read and write
registers defined in the design can be accessed through MCEDesigner at runtime.
¢ A header file in C source code format that defines the host read and write registers so
they can be accessed from an 8051 application resident on the IRMCx300. (See MCE
Software Developer’s Guide.)

3.4.1 Setting up Matlab/Simulink

Before You Start

The very first time you use the MCE design tools with MATLAB, you need to
create a MATLAB search path for MCE so that MATLAB knows where to find the
MCE Libraries and utilities. To set the search path, you'll need to know the
location of the main MCE directory within your iIMOTION software installation.
(The default path is C:\Program Files\iMOTION\MCE Compiler, but a different

www.irf.com 53

International
IR Rectifier
location can be selected during installation.) If you're not sure where the
software is installed on your computer, open an MS-DOS command prompt
window and type the following command:

echo %MCEBASE%
This command displays the full pathname of the MCE base directory.

To set the search path, start MATLAB and select Set Path... from the File menu.
In the Set Path dialog box, click the Add Folder... button and browse for the main
MCE directory. Click OK in the Browse for Folder dialog box and then click Save
in the Set Path dialog box. Click Close to close the dialog box. (If you don'’t click
Save before you click Close, you'll need to add the search path again next time
you run MATLAB.)

3.4.2 Creating a Complete System Design
This section describes how to create a complete system design for execution on the IRMCx300.

Step 1

Start MATLAB, and in the MATLAB command window, type “mceinit” to open the MCE Simulink
Libraries. Open the standard libraries supplied with Simulink by typing simulink in the command
window.

Step 2

Create a new Simulink model file with the appropriate MCE subsystem hierarchy. The easiest
way to do this is to make a copy of the IR Standard model file in the main MCE directory and
open it in MATLAB. If you want to create your own MCE model template, refer to the description
in Section 3.3.1.

Step 3

Compose the design of each control loop subsystem within your model. You can drag and drop
blocks from the MCE libraries into the control loop subsystems. (Do not add blocks to the top
level or the PWM subsystems.) Use Simulink’s graphical design features to arrange, size and
connect the blocks appropriately. To document your design you can add annotations and, if you
wish, assign a descriptive name to each line and block.

Step 4

Customize your read and write register blocks. Write register blocks define parameters that you
want to be able to set through the host interface at runtime. Read register blocks define output
values that you want to be able to view through the host interface. To customize a register block,
double click it. In the Parameters section of the Mask Parameters dialog box, follow the
prompts to enter the desired values. This information is exported to MCEDesigner in the register
map file.

Step 5
When you are satisfied with your Simulink design, it’s time to run the compiler. This procedure is
detailed in Section 3.4.3.

3.4.2.1 Creating a Macro Block Definition

This section describes how to create a macro block, or subsystem block, that you can use in your
system designs. If you want to create a complete system design for execution on the IRMCx3xx,
refer to Section 3.4.2.

Step 1

www.irf.com 54

International
IR Rectifier
Start MATLAB, and in the MATLAB command window, type mceinit to open the MCE Simulink

Libraries. Open the standard libraries supplied with Simulink by typing simulink in the
command window.

Step 2.
Create a new (empty) Simulink model file. Macro block definitions do not use the MCE
subsystem hierarchy required for complete system designs.

Step 3.

Compose the design of your macro block. You can drag and drop blocks from the MCE libraries
into the model. Use Simulink’s graphical design features to arrange, size and connect the blocks
appropriately. To document your design you can add annotations and, if you wish, assign a
descriptive name to each line and block.

To define inputs and outputs for your macro block, use the standard Simulink input and output
port elements. (Refer to Section 3.3.3 for details.)

Macro blocks may not include the following MCE and Simulink design elements:
e “Configure PWM” and “Configure Control Loop” blocks

“‘Read Register” and “Write Register” blocks

Other macro blocks

Simulink Scope blocks

Simulink Unit Delay blocks

Subsystems

Step 4.

Encapsulate your macro block design elements in a masked subsystem. To create a subsystem,
select all the components of the design and then select “Create subsystem” from the Simulink
Edit menu. Simulink creates a subsystem block with input and output ports connected to it.
Delete the input and output ports and the lines that connect them to the subsystem block
so that only the subsystem block itself remains. The components of your design are inside the
subsystem block and can be accessed by double clicking it. Do not delete the input and output
ports inside the subsystem.

To mask the subsystem, click on the subsystem block and then select “Mask subsystem...” from
the Edit menu. In the Mask Editor window, enter the name of your macro block as the “Mask
type” and then click OK.

Once you have created a masked subsystem for your design, you can edit the components of the
design by double-clicking the subsystem or by right-clicking on the subsystem and selecting
“Look under mask” from the menu.

Step 5.

Enter the string IR_MACRO in the Tag field of your masked subsystem’s block properties. To
access the Block Properties window, right click on the subsystem block and select “Block
Properties” from the menu. When you use the macro block in a system design, the compiler uses
the IR_MACRO string to recognize the block as a macro, which requires special processing.

Step 6.
When you are satisfied with your Simulink design, it’s time to run the compiler. This procedure is
detailed in Section 3.4.3.

Step 7.

www.irf.com 55

International
ISR Rectifier

When your macro block is successfully compiled and ready to use, you can add it to the MCE
“Designs” library group (see Section 3.3.2) so it's easy to drag the macro block into your system

designs.

Note: When you add your macro block to the Designs library, the block definition is copied into
the library model file, Designs.mdl. The library does not simply reference the original macro
block model file. If you make changes to the original macro block model file, the macro block

definition in the library file is not affected.

To modify your macro block after you’ve added it to

the Designs library, you should do one of the following: either edit the macro block by opening it
directly from the Designs library; or edit the original macro block model file, then delete the old
macro block from the Designs library and drag the newly modified block back into the library.

3.4.2.2 Customizing Motion Peripheral Library Blocks

The CustomMotPer tool allows you to modify the inputs and outputs of certain motion peripheral
library blocks. You can add and remove inputs and outputs by selecting from lists of available

signals. A full description of the inputs and outputs is available in the Reference Manual.

To customize a motion peripheral block, first drag it from the library into your design. Then drag

the CustomMotPer block from the Tools library into your design and double-click it.

When you double-click the CustomMotPer block, it starts the Customize Motion Peripheral Block
GUI, as shown in Figure 43. The GUI has a single screen, at the top of which is a pull-down list

of the customizable blocks in your design.

Once you've selected the block you want to

customize, the currently defined inputs for the block are shown in the list on the left-hand side of
the window and the currently defined outputs are shown on the right.

<) CustomMotPer

Customize Motion Peripheral Block

Select a Block to Customize:

imple/Fan/Fan CurrentTestFOC

INFUTS OUTPUTS
Festare Defaultsl

Fotation Rtr_Freq

e Fblk StFlgs_ParkDone
StFlgs_Strt0K
Searchiing
|d_Decaupler

ADD | DELETE | ADD | DELETE |

Select an Input to Add:

IAngDeI 'l

Select an Qutputto Add:

ICIDsedLDDp 'l

~=10]]

Summary of the display:

Figure 43—The CustomMotPer Utility

e The pull-down list labeled “Select a Block to Customize” lets you choose any one of the

customizable blocks in the design that’s currently open in Simulink.

e The Inputs and Outputs list boxes show the inputs and outputs (respectively) that are
currently defined for the selected block.

www.irf.com

56

International
IR Rectifier
e The pull-down list labeled “Select an Input to Add” lets you choose from a list of inputs
available for addition to the selected block.
e The pull-down list labeled “Select an Output to Add” lets you choose from a list of outputs
available for addition to the selected block.
e Click the ADD button after selecting an input or output from the appropriate “available”
list.
o Click the DELETE button after selecting an existing input or output.
e Click the Restore Defaults button to restore the entire block (inputs and outputs) to the
standard default settings (as defined in the Motion Peripherals library).
e When you click DELETE or Restore Defaults, a confirmation message with CANCEL and
OK buttons is displayed in red in the upper portion of the window. Click the CANCEL
button to abort the operation or OK to proceed.

To delete an existing input or output:
In the Inputs or Outputs list box, click on the item you want to delete and then click the DELETE
button. In the upper part of the window, click the red OK button to confirm the operation.

To add a new input or output:
Select an available input or output from the appropriate pull-down list. Click the ADD button to
add the new input/output.

To restore the default inputs and outputs:

Click the Restore Defaults button. In the upper part of the window, click the red OK button to
confirm the operation. This restores all inputs and outputs to the default configuration. (You can’t
restore only inputs or only outputs.)

Once you've customized a block in your design, you can copy it to another location in the design
(if the block is intended to be used once for each motor) or drag it into another design. For blocks
that can be used once for each motor, you can customize each usage of the block with different
inputs and outputs.

3.4.2.3 The Host Register Summary Utility

The Tools group of the MCE Simulink library contains a block called “Host Register Summary”.
This utility allows you to view a list of the host read and write registers in your design. To use it,
you must first drag the Host Register Summary block into your design. If you start with the MCE
design template file template.mdl, the Host Register Summary block is already present at the top
level.

Once you have added the block to your design, double-click the block to display a summary of
your host read and write registers. If you click on a register in the list, you can view and modify
the register settings.

The main window of the Host Register Summary utility is shown in Figure 44.

www.irf.com 57

International

ISR Rectifier

<) MCE iMDTION Host Register Summary P =]

Host Register Summary

Satnpletotor] fSpeed LoopFawkLim ;l
Sammpletdotor] 1Speed LoopiFawkl vl
Samplefotor fSpeed Loop/FawkSpd
Sammplefdotor fSpeed LoopMpSrey
SamplefdatoriSpeed Loopk=Sreg
Satnpletotor] fSpeed LoopdLy _Faultt
Satmpletdotor] fSpeed LoopMinSpd
Samplefotor fSpeed LoopiatarLim
Sammplefotor fSpeed LoopMaotorSpeed
Samplefator1iSpeed LoopiOY _Fault
Satnpletotor] fSpeed Loop/RampScaler
Satmpletdotor iSpeed LoopRegenLimn
Samplefotor fSpeed LoopiSearching
Samplefotor fSpeed LoopiSpadF kBN
Sampleotor iSpeed LooptSpdScl
Satrpletotor] fSpeed LoopiStartLim
Sarmplemdotor fSpeed Loop TaroetDir
Samplefotor] fSpeed LoopiTargetSpeed
Sammpletotor iSpeed LoophYhzEnakle

Ll

Type I‘Nrite IUnsigned d
Min Yalue E Max “alue |1
Description

IDirection of ratation (1 = forward, 0 = reverse)

Figure 44—The Host Register Summary Utility

The list box in the top section of the main window lists the full “path” of all the registers in your
design. The path identifies the model name and the subsystem in which the register is defined in
addition to the register name. In the example, the path of the selected register is
“Sample/Motor1/Speed Loop/TargetDir". This means that the model name is “Sample,” the
register is defined in PWM subsystem “Motor1” and control loop subsystem “Speed Loop.” The
register name is “TargetDir.”

The detailed information in the lower section of the window shows the settings defined for the
register that’s selected in the list box. (Just click on a register to select it.) You can modify any of
the settings except the register type (read or write). Changes take effect as soon as they are
entered.

3.4.3 The MCE Compiler

Before You Start

The MCE compiler uses the Simulink model file as input. If your design is open
in Simulink when you run the compiler, be sure to save your changes before
running the compiler.

The Tools group of the MCE Simulink library contains a block called “MCE Compiler”. You can
also access the compiler by copying that block into your design and double-clicking it. If you start
with the MCE design template file template.mdl, the MCE Compiler block is already present at the
top level.

When you double-click the MCE Compiler block, the MCE Compiler input screen appears as
shown in Figure 45.

www.irf.com 58

International

ISR Rectifier

L

MCE iMOTION Compiler

International Rectifier
MCE iMOTION Compiler

Product Type
& Full System Build

l|RMCF341 & () Create Macro Blaock

Input File

CADocuments and Settingstahusain\Desktop\Release Prep | Erowse...

Cutput File

2 Prepiinduction MotorIRMCS3041 Release IMCtrl 2 0 bin
Create MCEDesigner Map File

Prepiinduction MatorlRMCS3041_Release_IMCtrl_2_O.map
Create C Header File

se Prepiinduction MotorIRMCS3041_Release_IMCtd_2_0.h
[] Listing file

_ Status
Compile

Figure 45—MCE Compiler Input Screen

Step 1
To compile a complete system design, click the “Full System Build” radio button. To compile a
macro block definition, click “Create Macro Block” instead. For a complete system, you can
select optional output files:
= If you want the compiler to generate a register map file for use with MCEDesigner, check
“create MCEDesigner Map File”.
= [If you want the compiler to generate C-language register definitions in a header file for
use with your 8051 application, check “create C Header File”.
The optional output files don’t apply to a macro block compilation.

Step 2
Select your product type from the pulldown menu.

Step 3
Enter the pathname of your Simulink model file in the "Upload Design file (.mdl)” edit box, or
browse for the file by clicking the browse button to the right of the edit box.

Step 4

Check the “Listing file” checkbox if you want the compiler to generate an output text file that lists
the order of block execution and all the block connections within your design. This file can be

www.irf.com 59

International
IGR Rectifier

generated for either a full system or macro block compilation. You can use it as an aid in testing

and verifying your design.

Step 5
Select the compiler version you want to use. The most recent version is selected by default.

Step 6

When you’re ready, click the compile button to run the compiler. When compilation is complete,
the MCE Compiler input screen is redrawn and you can scroll to the bottom of the window to see
the output messages from the compiler. An example is shown in Figure 46.

The compiler output includes execution time estimates (in system clock cycles) for each control
loop as well as the total size of the MCE program and data. You should review this information
carefully. The compiler displays a warning message if your code and/or data are too large to fit in
the available memory. However, the compiler cannot warn you if the execution time of your
control loops is too long, because the time available for control loop execution depends on the
PWM frequencies configured at run time. These time estimates can be input into the
MCEWizard, which will give the total MCE processor usage based on the PWM frequencies and
the clock frequency. (Check the “I have modified the MCE Application Program” box on the
Welcome page to modify the Motor 1 Cycles on the Options page.) For more information about
setting the clock frequency, see the Software Developer’'s Guide or the Reference Manual.

Note: The compiler produces worst-case time estimates based on cycle counts for all MCE
instructions it generates, including those that may be executed only under certain conditions. The
execution time estimates documented for each block in the Reference Manual are more accurate
and provide a range of cycle counts when execution time varies depending on conditions. For
this reason, the compiler's execution time estimate will generally exceed the estimate you would
obtain by summing the documented execution times for each block in the design.

www.irf.com 60

International

ISR Rectifier

Compilation Results [Z]

C:%Program FileshitotiontMCE Compiler: Compile300 -p "IRMCE347" - "inner'

-h "C:hDocuments and Settingshahuzaind Yty

Documentzsibotiont RMCS 3041 RMCS3041_Releaze_2_1.h" -m "C:\Documents and
Settingghahuzaind Whdy

Documentssibotions BMC5 30414 RMCS3041_Release_2_1.map" "C:4\Documents and
Settingshahuzaind Yk

Docurmentziibotionh RMCS 30414 RMCS3041_Releaze_2_1.mdl" "C:\Documents and
Settingshahuzain hdy

Documentzsibotions BMCS 30414 RMCS3041_Release_2_1.bin"

IRk CE.300 Compiler wersion 1.4,

Copyright 2009 International Rectifier Carp. All rights reserved.

Opening C header file C:ADocuments and Settingzhahusain by
Documentzhibotiont RFMCS 30414 RMCS3041_Releaze_2 1.h
Opening map file C:hDocuments and Settingshahusaind Yy
Documentssibotiont BMC5 30414 RMCS3041_Release_2_1.map
Opening input file C:40Documents and Settingstabuzaind Wy
Documentzsibotion RMCS 3041 RMCS3041_Feleaze_2_1.mdl
Opening autput file C:A\Documents and Settingzhahuszaind Wy
Documentssibotions BMC5 30414 RMCS3041_Release_2_1.bin
Opening library index file C:%Program Filessitdotion\MCE
Carmpilersbin'wverilib. ids
Opening symbal table file C:\Program Files\ikations b CE
Compilersbin'ststub. labels
Opening self test object file C:\Program Fileshit otionh CE
Coarmpilertbintststub, hex
Analyzing the dezign.
Creating MCE executable file.
Aszembling C:\Program FileshiM otion\MCE Compilersbin\Outloops341, asm
E=ecution time estimates:

for subsystem Mizc_Loop: 174 cycles.

for subsystem Speed_Loop: 1021 cycles.
Code size: 776 words
Data size: 91 waords
MCE code generation complete.

Figure 46—MCE Compiler Results Example

3.4.4 Downloading to the Reference Board

There are two different choices for downloading to the reference board, both available through
MCEDesigner. The option “Download to RAM” will load the MCE program (.bin file) output by the
MCECompiler directly to the MCE program RAM,; if the power to the control IC is removed, then
the program will be lost. “Download to EEPROM” allows the designer to reprogram the boot
EEPROM with the new MCE program. Once the code is stored in EEPROM, the IC automatically
loads and executes it whenever the target platform is powered up or reset.

3.4.4.1 Download to EEPROM

The code for the 8051 microprocessor and the MCE are stored in EEPROM together as a single
boot image. Therefore, when you program EEPROM, you must always download code for both
processors at the same time.

Use the following procedure to download code and store it in EEPROM on the target platform:

1. Start MCEDesigner and open a configuration file.

2. Wait for the status bar to show that the connection is “Up”. If the link comes up, but an
error message is displayed showing that there is a mismatch between the MCE program
and register map, you can ignore the error and proceed with the download. (See Section
3.4.4.3)

3. Click on the System window and then select Load Target from the Tools menu. The
Load Target dialog appears.

4. In the Load box, click the “MCE and 8051 to EEPROM” radio button as shown in Figure
47. The Boot box is not used when loading to EEPROM.

www.irf.com 61

International
IGR Rectifier

5. In the Files box, enter or browse for the pathnames of your MCE and 8051 program files.
The MCE download file is generated by the MCE Compiler and has the filename
extension “.bin”. The 8051 download file must be in Intel hex format, which can be
generated from the Keil uVision3 IDE. This file has the extension “.hex.” (See the
Software Developer's Guide for more information.) MCE Designer Agent is the .hex file
which came with the Reference Design Board.

6. When you have selected valid download files for both processors (MCE and 8051), click
the OK button in the Load Target dialog.

7. A status bar will show the progress of transferring files to the IC over the serial link and
programmed to EEPROM. When programming is complete, the message “Load
complete.” is displayed.

— If errors occurred during EEPROM programming, the message “Load complete
but checksums don’t match” is displayed instead. If this occurs, do not power
cycle or reset the board! Attempt the download process again. If an error occurs
again contact an IR FAE.

8. The downloaded code does not execute until a power cycle or reset is performed on the
reference board.

— Load Boot
{~ MCE to Rk only [~ Start MCE
f+ MCE and 8051 to EEPROM
= MolLoad

— Filez

MCE |E:\Program FilezsiMOTIONYMCED ezigners RMC Browsze... |
2051 |I::'\F'rogram Filez4itMOTIOMAMCE D esignersimmck Browse. . |

Cancel |

Figure 47—Load MCE and 8051 to EEPROM

3.4.4.2 Download to RAM

If you’'ve recompiled your MCE design and want to do a quick test without programming the code
to EEPROM, you can download it directly to RAM and execute it without restarting the target
platform. You can download the code and start execution in a single step, or as separate
operations.

Use the following procedure to download MCE code to shared RAM on the IRMCx IC:

1. Start MCEDesigner and open a configuration file.

2. Wait for the status bar to show that the connection is “Up”. If the link comes up, but an
error message is displayed showing that there is a mismatch between the MCE program
and register map, you can ignore the error and proceed with the download.

3. Click on the System window and then select Load Target from the Tools menu. The
Load Target dialog appears.

4. Inthe Load box, click the “MCE to RAM only” radio button as shown in Figure 48. In the
Boot box, check the “Start MCE” checkbox if you want MCEDesigner to start execution of
the MCE code after it's loaded. If you want to start execution as a separate operation,
leave the checkbox unchecked.

5. In the Files box, enter or browse for the pathname of your MCE download file. The MCE
executable is generated by the MCE Compiler and has the filename extension “.bin”. In

www.irf.com 62

International
IR Rectifier

this mode, the 8051 download file entry box is disabled (grayed out). You cannot load

8051 code directly to RAM using MCEDesigner.

When you have selected a valid MCE download file, click the OK button.

Wait while the file is transferred to RAM over the serial link. This takes only a few

seconds. When download is complete, the message “Load complete; remote boot not

selected” is displayed if you didn’t check the “Start MCE” checkbox or “Load and remote

boot complete” if you did. (If errors occurred during download, the message “Load

complete but checksums don’t match” is displayed instead.)

2] x|
—Load
f+ MCE to RaM anly
" MCE and 3051 to EEPROM
= Mo Load

No

—Files

MCE IC:\F‘ru:ugram Filez\itOTIOMYMCED ezigner BT Browse. .. |

2051 IC:\Prugram Filez4itOTIOMCE D ezignertimck Browse... |
0K I Cancel |

Figure 48—Load MCE to RAM

If you don’t check the “Start MCE” checkbox when you download your MCE code, you need to
perform a separate operation to start execution of the code. To do this, open the Load Target
dialog again. This time, click the “No Load” radio button in the Load box and check the “Start
MCE” checkbox in the Boot box. Then click OK.

3.4.4.3 Design ID and Revision Level Monitoring

MCEDesigner’s design ID and version monitoring is a safety feature designed to prevent
hardware damage caused by using the incorrect register map with a MCE program. This could
cause bad values to be written to critical registers during drive configuration.

A Register Map design ID and version number are stored in every configuration file. These values
identify the MCE program that the file was created to support and the version of the design’s
register map that was last imported to the configuration file. (See the MCEDesigner User’s Guide
for more information.)

If the design ID or version number of the MCE program currently loaded to the IRMCx300 IC
does not match the ID and version specified for the current Register Map (or if no MCE image is
currently loaded), an error message similar to the one shown in Figure 49 is displayed. You can
continue using MCEDesigner in an “offline” mode, but you cannot read or write any registers or
execute any functions until the problem is corrected.

www.irf.com 63

International
ISR Rectifier

0 Detected incompatible dezsign type.

FMCE Program I1D: imncf341_appl_layers 050506
Reqister Map |D: IRMCS53041_Releaze_2 0
Y'ou can only access the dive to load a MCE executable.

e

Figure 49—MCE Program/Register Map Mismatch Dialog

You can see details about the MCE Program and Register Map in the Connection dialog (Click
the System window in MCEDesigner, then select Preferences—>Connection.), as shown in Figure
50.

Connect using: IEEIM4 vl Statuz. Connected

Register access allowed

MCEDesigrer | Rk Crpens
FRegister Map 1D: IRMCS3041 Releaze 2 [MCE Program ID: IRMCS3041_Relea:
Regizter Map Verzion: 1.301 MCE Program “Werzion: 1.301

8051 Wersian: 1.47

Cancel |

Figure 50—Design ID and Version Details

3.4.4.4 Importing an MCE Register Map

While testing the reference design, there is no need to modify MCEDesigner’s register definitions,
since the configuration file shipped with the release exactly matches the reference MCE program.
However, when testing a custom MCE program, be sure to import the modified MCE register map
into the configuration file. MCEDesigner is completely configurable, so it can be used with new
designs as long as the configuration file is updated with the correct register map for the MCE
program.

When making changes to the register definitions, be sure to save the changes in the .irc file
before exiting MCEDesigner. If you select Save from the File menu or answer “Yes” when asked
if you want to save your changes on exit, the current definitions are saved to the file that's
currently open. To save your changes to a different file, select Save As... from the File menu.

When you import a new MCE register map, MCEDesigner modifies the Register Structure
Definition section of the database as follows:

o |If there is a new register in the MCE design that doesn’t exist in your database, the
register is added to the Default register group under Write Registers or Read Registers
(depending on the register type). If the name of the register conflicts with an existing
fixed or 8051 register, the MCE register name is modified by appending the characters
“ USER” to avoid a conflict. (For example, if your MCE design contains a register named

www.irf.com 64

International

IGR Rectifier

“‘pwmcfg”, the name will be changed to “pwmcfg USER” when it's added to the
database.)

o If the definition of an existing MCE register has been modified, the register definition is
updated to match the definition in the map file.

e If there is an MCE register in your database that is no longer defined in your MCE design,
MCEDesigner displays a message box asking if you would like the register to be deleted
from the register definitions or retained with “obsolete” status. You cannot write to or
read from an obsolete register, and MCEDesigner ignores it when it appears within a
function or subfunction.

If you use MCE registers inside functions and subfunctions, MCEDesigner updates your functions
and subfunctions as follows:
e If there is a new register in your MCE design that doesn’t exist in the database, it is not
automatically added to any functions or subfunctions.
o If a register definition has been modified, the register is updated wherever it's used inside
functions and subfunctions. This includes changes to the register description, but not the
Notes field. (The Notes field is your own personal “scratch area” and is never
automatically updated.)
o If a register is no longer defined in your MCE design and you choose to have it deleted
from the register definitions, it's deleted from all functions and subfunctions that use it.
e |If a register is no longer defined in your MCE design and you choose to retain it with
“obsolete” status, it remains in any functions and subfunctions that use it, but it is ignored
when the function is executed.

Use the following procedure to import a register map file into your database:
1. Open the database you want to update.
2. Click on the System window and then select File>Import Register Map from the menu.
3. When the Load Register Map window (Figure 51) appears, you can enter the pathname
of your map file or click the Browse button to browse for the map file.
4. Click OK twice to open the map file and update the configuration file. Be sure to save the
file.

Feqizter Map File

IE:'\F'n:ugram FilezhitOTIOMYWWCEDesignert | RMCK.311 . map Browsze... |

(1] Cancel |

Figure 51. The Import Register Map Dialog

3.5 Example Modifications

This section will give two examples of simple modifications to the MCE program. They are
presented here to demonstrate application related issues or requirements which can be satisfied
by modifying the MCE program and also to present other features of the Library blocks.

3.5.1 Torque Mode

Some motor control situations require that the motor provide a steady torque, rather than a
constant speed. The MCE program can easily be changed to provide such a mode. Figure 52
shows the modified section of the block diagram where two write registers have been added,

www.irf.com 65

Infernational
IR Rectifier
ModeSelect and TorqueReq. They are both inputs to a new SWITCH block added between the

Pl of the speed loop and the LIMIT. Setting ModeSelect to 0 enables Torque Mode, where the
requested torque is supplied directly, while 1 enables the normal speed control mode.

P

NEGATE

SWITCH
‘&1 Wit
W Wit —
=G_IN] 1
REG_IM Fl
TorqueReq [TRQ_REF]
q % Goto TRO_REF
oW
ef
[

1 ModeSelect TrqRet

DIFF

»> Torgueret

SWITCHT1

SATM_V

Figure 52—Torque Mode Block Diagram

As a further design example, below are listed some application-related issues which the designer
should consider when implementing Torque Mode. These issues may best be solved with extra
logic (for example) in the block diagram or in the 8051 application code; this choice is determined
by application and design specifications

= Scaling—The scaling of TorqueReq (which is really a current command) is same as that
of the limit registers. To interpret it in terms of torque: Torque Requested (N-m) =
(TorqueReq / 4095) * laeq * kt, Wwhere the last two terms are the rated current and the
motor torque constant as entered into the MCEWizard.

= Starting—The starting performance may change, depending on the load.

= Current Limit—Note that the SWITCH is placed before the LIMIT block, so that the
StartLimit, RegenLimit, and MotorLimit will still provide protection.

= Speed Limit—There are no speed limiting features in Torqe Mode as implemented. The
application may require some protection logic.

= Changing Modes while running—Application testing can determine whether it is safe to
change modes while the motor is running. The application may require a smooth change
over. (Hint: This can be accomplished using a RAMP block which initializes with the
output of the PI block.)

Naturally, there are other ways to produce a Torque Mode. For example, set the speed loop

gains (KpSreg and KxSreg) to zero so that the output of the PI block is always zero. Then set the
TorqueRef by setting the lower limit of the LIMIT block, LIMIT_M.

www.irf.com 66

International
TSR Rectifier

Note that MCEWizard still properly configures the registers in this modified program, though the

designer must determine the proper values for the two new registers.

3.5.2 Limiting the Speed Feedback Input Variance

In some start-up situations, the speed feedback can exhibit large spikes at the transition from
open-loop to closed-loop due to the time required for the Angle Estimator PLL to stabilize. These
spikes can reduce the reliability of the start-up, depending on the load.

One solution is to limit the input variance of the Speed Feedback filter. Figure 53 below shows
the location in the block diagram. Double Click on the LOWPASS_FILT block and a dialog box
will open which allows the designer to limit the difference between successive inputs to the
LOWPASS_FILT block. The limit value is valid from 0 — 15, and is interpreted as 2"™'; for
example, a value of 8 will limit the difference between an input and the previous input to 256.
There are several blocks with hidden configurable parameters such as this; see the complete
block descriptions in the Reference Manual. In this scheme, the unfiltered speed change is not
limited, but the effect of an integral controller is to filter this feedback component as well.

L P
.
-
i

SWITCHE e
MotorSpeedR

UnfiltSpdFbk Uniitered Speed

e Speed Unifittered Spee Speed Filter

SpdFbk

WooWite Fitered Spesd

7]
SpdFiltBW 5 5 [MOTOR_SPEED]
SpdFiltEn LOWPASS_FILT

Goto MOTOR_SPEED

MUL_DIV

Figure 53—Speed Feedback Section

Note that this block diagram also has an additional scope, UnfiltSpdFbk, as an example of adding
a value which can be monitored with the Trace function of MCEDesigner. This information is
imported into the configuration file as part of the register map file.

4 Application Hardware Design

This final chapter of the Application Developer's Guide will discuss hardware design issues
specific to the IRMCx300 series ICs. Section 4.1 will discuss issues related to the development
of the hardware schematic including the power supply, oscillator, and communication
requirements for component selection, setting the feedback scaling and overcurrent protection.
Section 4.2 will give layout recommendations relating to the current feedback circuit, and Section
4.3 will finish with some suggestions for testing the board and optimizing the settings. This
chapter will reference MCEWizards hardware-dependant settings throughout; to modify these
settings, be sure to check the box next to “| have modified my hardware” in the Welcome page.

4.1 Schematic Elements

This section will begin by giving specifications and tips related to component selection for various
in-circuit functions. Next, it will review the feedback scaling for current and voltage as related to
entering values into MCEWizard. This section will also discuss techniques for A/D offset
compensation and proper overcurrent protection.

www.irf.com 67

International
TR Rectifier
4.1.1 Component Selection

The information in this section will aid the designer in selecting some of the components of a
custom hardware design.

Power Supplies—Figure 54 below plots the supply currents required to provide power to the
control IC. The 1.8V digital supply current (VDD2) is strongly dependent on the clock frequency
used in the IRMCx300. For more information on setting the clock frequency, see the Software
Developer’'s Guide or the Reference Manual.

70
i Supply Currents for IRMCx300 ICs
5 || ——VDD2(1.8Y)
< —= AVDD & PLLVDD (1.8V)
£ 40 1 —a—VDD1(3.3V)
T
£30 | .))
3 20 A -
/
10
—F 3 —n
O I I I I I I
0 20 40 60 80 100 120 140
Clock Frequency (MHz)

Figure 54—Supply Currents for the IRMCx300

Input Clock—The control IC requires an external clock input for proper operation. This clock
may be generated by a quartz crystal oscillator or ceramic chip resonator. The input clock is
connected to a configurable phase-locked loop (PLL) to generate the internal clock for the IC.
The input clock frequency must be between 3.2MHz and 60MHz, with a resulting internal clock
frequency of 32MHz to 128MHz, which is chosen by the user. Details of configuring the PLL to
generate the internal clock are found in the Software Developer's Guide and the Reference
Manual. Note that the IRMCS3041 and IRMCS3012 utilize a quartz crystal oscillator while the
IRMCS3043 uses a ceramic chip resonator.

JTAG Interface—It is important to provide galvanic isolation to the JTAG interface to protect any
external JTAG interface hardware. If this is not done, then the JTAG hardware ground should be
connected to the ground of the DC bus and the power ground of the IC.

The JTAG has a configurable clock frequency (TCK). Be sure to verify that the isolation circuit is
capable of the data speed. The FS2 has a TCK frequency of 500kHz.

RS232 Interface and Driver—Like the JTAG interface, if the RS232 hardware (i.e. the designer’s
computer) is not at the same ground as the IC and DC Bus then isolation should be provided for
protection.

The RS232 interface speed is limited by 8051 clock speed. For full range of options, design
RS232 data circuitry to go up to 155,200 baud rate.

Reset Circuit—Besides galvanic isolation as part of the JTAG interface, the designer may
require bidirectional signal flow for the reset signal. The specific circuit required for a bidirectional

www.irf.com 68

International
IGR Rectifier

signal will depend on the specifics of the JTAG interface and hardware. Another consideration is

if a hard (physical switch) reset is required, or if a software reset is adequate.

EEPROM—If the RAM version (IRMCF3xx) of the IC is used, an external EEPROM is required to
provide boot code, which is automatically loaded at power-up. The EEPROM should be capable
of a maximum data rate of 400kHz for the purpose of boot loading, but the data rate is
configurable for other purposes. For specific information about the EEPROM data format for boot
loading, see the Software Developer’'s Guide.

At boot up, the EEPROM communication protocol is selected by pin P1.3. Pull this pin up to
VDD1 (3.3V) for I12C boot and down to VSS for SPI.

Decoupling Capacitors—The IRMCx300 IC places power supply pins next to ground pins in
order to make it easy for the designer to place decoupling capacitors between these pins; they
should be placed as close as possible to the pins and have values of 0.1uF and 0.01uF,
depending on power supply type and its voltage ripple.

Current Feedback Op-Amp Capacitors—The Reference Designs place capacitors at the output
of the current feedback op-amp, as shown in Figure 56. These capacitors stabilize the op-amp
output, preventing oscillation. The op-amp oscillation varies between production lots and is also
influenced by the layout. The value recommended below will solve this problem provided that the
designer follows the layout guidelines of Section 4.2.1.

We recommend that a 33pF capacitor be placed between the op-amp output and the
analog ground (C33 of Figure 56). The capacitor choice will influences the minimum pulse
width and the sampling delay required because it slows down the response of the op-amp output.
A larger minimum pulse width can result in greater acoustic noise, particularly at low speeds.
See Section 4.3.2.2 for more discussion on choosing the minimum pulse width and the sampling
delay.

4.1.2 A/D Feedback Scaling

There are two important signals which the IC uses in the control of the motor and to protect
hardware: shunt current and DC bus voltage. This section will describe how to determine the
correct values to input into the MCEWizard. The MCEWizard calculates the correct scaled values
to configure the controller based on the user hardware.

pep B34 R0 A M4

DCP Wy A + + AIND
1003 1.00b1 % [
E11 -

43

1H00gF

Figure 55—DC Bus feedback voltage divider

DC Bus Feedback —t-

DC Bus feedback Scaling—This MCEWizard input is the internal scaling of the DC bus in cts/V.
The DC bus is sensed at AINO through a voltage divider. To calculate the proper value for this
cell, one needs to know that 1.2V input at AINO is equal to 4095 digital counts. As an example,
for the DC Bus feedback circuit shown in Figure 55, the value for the DC bus feedback scaling is
calculated as follows:

Scaling (cts/V) = 4095 * (4.87k / (1.00M + 1.00M + 4.87k))/ 1.2 = 8.3 cts/V
Current Feedback Amplifier Gain—This MCEWizard input is the gain of the current feedback

amplifier. The user can configure this gain as desired by changing the resistors of the input
circuit to IFB+, IFB- and IFBO. For example, in Figure 56,

www.irf.com 69

International
ISR Rectifier

Current Feedback Amplifier Gain = 11.8k / (5.11k + 1.00k) = 1.93

Current Feedback Shunt—Enter the shunt current resistor value into this MCEWizard field.

BT7 . .o LLEEK AREF 18 it
From EAM pi= 13 Rk - AREF
[@D RSt .. DNI Ciz =3l
0.1uF 10E 10V
= RE3 100K RE1 IE TP
[G A L A . \T
AREF
From IRAM piz 12 47eF, S0V —_—)
E EB+ 31 [
—— (&Y TE- 30 | oo
EE0 32 | pmn
[RE0 ., LOOE 1 RE2,, . LUE o B9, 1LEE | o
j i 10gF
Current Shunt Feedback
Cf || omn

Figure 56—Current Feedback Circuit

The Verify & Save page of the MCEWizard displays the current at which the A/D converter
saturates. This is calculated based on the shunt resistor value and the current feedback amplifier
gain. It is important to keep the motor drive current less than this value to keep the currents in
control. For example, if the A/D converter saturates at 10Apk, then the motor current should not
be set higher than 6.4Arms, which leaves ~10% margin before the A/D saturates. On the other
hand, leaving too high a margin will result in low current resolution. [f the peak rated current is
less than 25% of the A/D saturation current, then the MCEWizard will display a warning on the
Verify & Save page.

4.1.3 Gate Drive Signals

The primary outputs of the control IC are the six PWM gating signals. When the PWM gating is
disabled, the output pins of the control IC enter a high impedance state where they are weakly
pulled up, to about 2V. These PWM gating pins should be pulled up or down, depending on the
gate driver IC logic, to prevent unwanted turn on of the IGBTs. The recommended pull-up or pull-
down resistor value is 4.7kOhms.

4.1.4 A/D Converter Offset Compensation

The IRMCx300 series motor controllers utilize an internal Analog-to-Digital converter for feedback
of important system parameters. This ADC, like all others, experiences offset in its
measurements. These offsets can be amplified in measurement situations such as monitoring the
DC bus voltage. With a small ADC input range of 0-1.2V potentially amplified into the 300-400V
range, a small 10mV offset could result in a DC bus measurement error of 10V. Such an offset
may not only affect ADC performance, but rotor angle estimation, PFC, and field-weakening
capability as well. These effects can be minimized through the use of an external reference for
offset compensation.

IRMCx300 series controllers have a single Analog-to-Digital converter, which is multiplexed for
motor current feedback, as well as DC bus measurements. A second multiplexer is employed to
provide customer configurable ADC measurements. One of these configurable ‘AINX’ pins can be
used for offset compensation through an external reference. A separate technique employs the
differential amplifiers used for current feedback to reference an external source to compensate
ADC measurements. Because these inputs route to the same ADC, an offset measurement made
on one channel can be applied across the system.

www.irf.com 70

niernational
TSR Rectifier

Compensation Type Advantage Disadvantage

AINX Input Low cost, no performance Requires one AINXx pin

(Recommended Method) |degradation, can use already
present 1.8V supply

Current Feedback Does not require an AINx pin |Higher cost for external non-switch mode
reference, possible noise coupling to Ifb
(Ifb Op-Amps) with switch mode reference

In the case of non-PFC equipped models there is no real danger created by inaccurate DC bus
measurements. The worst-case situation would be the controller detecting an under or over-
voltage condition on the DC bus and turning off the gating signals to the 3-phase inverter. In the
case of PFC equipped controllers, an offset in DC bus measurement will cause the system to
regulate it incorrectly. This regulation offset, if left unchecked, could exceed the limits of the bus
capacitors and cause a catastrophic failure. It is also important to note that the techniques
outlined here will directly affect the PFC regulation (in PFC equipped systems), and if improper
compensation is applied the bus voltage may be significantly different than expected.

This technique utilizes an external reference to compensate for any offset present in the ADC.
This offset can be realized by sampling an accurately known reference source with the ADC. The
difference between the measured and actual voltages will result in the offset of the ADC. This
value can be then subtracted from the DC bus to yield a considerably more accurate
measurement and regulation point for PFC equipped systems.

Two methods are described to use an external reference as compensation. The first uses an
available AINx pin and the 1.8V voltage supply rail as a reference. The benefit of using the
already present 1.8V supply is that a dedicated external reference is not required, but the
accuracy will not be a good as with an external reference chip. The second utilizes a differential
op-amp used for current feedback, where an external reference is supplied by a dedicated
source. Both of these techniques are suitable for a situation where high accuracy is required over
a small range of input voltages, as in PFC DC bus sensing. Depending on the application, more
elaborate compensation techniques may be required.

Note that the feedback offset is not an issue for the current feedback sensing because the IC
hardware already has an offset compensation feature for current feedback.

4.1.4.1 External Reference for AINx

A good place to acquire a moderately accurate voltage reference is directly from the output of a
switch-mode power supply. The IRMCx300 series controllers require a 1.8V supply, which can be
used as a reference for DC bus measurements. This compensation will rely on the accuracy of
the chosen power supply, but any 2% regulator will be sufficient. An external reference should be
used if even greater accuracy is required.

www.irf.com 71

International

ISR Rectifier

§1.25Kﬂ
=

o 0.8V (Ref)

%1?((}

L
Figure 57—Voltage divider to create reference voltage

In its simplest form a voltage divider can be implemented to bring the 1.8V supply within the 1.2V
measurement range (Figure 57). This voltage reference point is important in achieving an
accurate DC Bus measurement. The reference point should be equivalent to the voltage the ADC
will receive when the DC Bus is at its target operating point, although a 0.6V generic reference is
also acceptable.

For example, take the gain between the DC bus voltage and ADC as 0.00243 (as it is in
IRMCx300 Reference Design Kits). If the nominal DC bus voltage were 350V, then a voltage
reference of 0.851V should be used, as in the calculation below. The algorithm to implement this
compensation method is covered in the next section.

‘Nominal Bus’ * ‘Bus to ADC Gain’ = Target Reference
350V * 0.00243 =0.851V

4.1.4.2 External Reference for Ifbk Op-Amps

This voltage source can then be used for the differential op-amp reference already in place for
motor current feedback (Figure 58). Using an external reference connected to R2 will allow for the
output voltage of the differential op-amp to be 0.6V when no current is present. The ADC would
then measure this output, where an offset from the ideal reference (0.6V) can be calculated. This
offset can then be applied as compensation to DC bus measurements. The algorithm to provide
this offset calculation can be implemented in the MCE.

A2
A1 J“'\’l IRMCF Kxxx
-— W\ 0.6V REF
Ta Shunt
— W\, |
R3 ADC
R1=A3 "
R2=R4 R4

Figure 58—External reference to current feedback circuit

www.irf.com 72

International
ISR Rectifier

4.1.4.3 Performing Compensation Calculations

Now that a reference voltage is supplied to the ADC, the controller must calculate the real DC
Bus voltage. This process can be implemented in either the MCE or in the 8051 side of the
controller. This application note covers implementing these offset calculations in the MCE. Figure
59 illustrates how the entire solution can be realized within the MCE for the AINx based
compensation method.

In this example ADC channel 6 is used as the compensation input. Its value will first go through a
low-pass filter to remove any system noise. Next a compensation value will be subtracted from
this measurement. The compensation value is the ADC reference target value in digital counts,
as calculated below. This subtraction will yield the offset value of the ADC. Then by subtracting
this offset from the raw DC Bus voltage measurement the compensated bus voltage is created.
This compensated voltage can then be connected to anywhere the raw bus voltage would be.

(‘Reference Voltage’ / 1.2V) * 4095 = ‘Compensation’
(0.851/1.2)* 4095 = 2904

oo [AN
 — {\ ,l
ANT
#01 ol
{
AN
A2 i
AN
ADZ AD ———
AN
A04)
AUNE
4Dc]pus_vol ADS ()
ANE
4D o -
DClBUS wOL ¥ Input A_D_3H
. 1
W Wit | Qutput
1+5/We
bC_BUS_WOLTAGE
- - 7] ENABLE
Bandwitdh 2]
SpdFiltEnd LOWPASS_FILTA

/.—-— . I i

L ou\?‘.l |

-GG - i Rea

T A fl
+ ou -
} | 2 Compenzated Voltage

o, Wil .

21

Compenzation

Figure 59—AINx based MCE Compensation

4.1.4.4 External Voltage Protection

If a variable DC Bus voltage is not an issue in a particular application, or you do not have an
available ADC input for compensation, external over-voltage protection could be employed
instead. Because the over-voltage protection in the controller relies on the ADC for accuracy, the
system may not properly shut down in the event of an over voltage. By designing an external
comparator to signal the controller when an over voltage has occurred (either through general
digital input or interrupt) potential safety issues can be mitigated. The same can be implemented
for under-voltage protection if necessary. This method, though, will only prevent system damage
and does not improve the ability to read DC Bus voltages.

www.irf.com 73

International
ISR Rectifier

4.1.5 Overcurrent Protection

Overcurrent protection circuitry is required by most applications to prevent damage to the
hardware and the motor. The IRMCx300 IC contains an input pin, GATEKILL, which is designed
to provide the overcurrent shutdown signal to the controller, though it can also be used to signal
an arbitrary hardware fault condition. Upon assertion, all PWM gating is halted and the IC latches
a fault. One method of implementing overcurrent protection is to compare the voltage across the
shunt resistor to a voltage set by a resistor network. The output of the comparator is connected
to the GATEKILL pin of the IC through a resistor. To prevent unwanted overcurrent trips due to
switching noise, connect a capacitor between the comparator input and ground. Additionally, the
register GkillFiltCnt sets a minimum GATEKILL signal time, effectively ignoring any GATEKILL
trip signal shorter than this time. Be sure that the inverter stage is compatible with the
overcurrent shutdown latency. Also, there is an 8051 special function register, STOPS, which
should be configured properly for the GATEKILL function. See the Reference Manual for details
on using setting STOPS.

In some types of IRAM modules which include a shunt resistor, the gate drive IC already has
overcurrent protection built in, with a pin assigned to signal the shut down to the controller. The
gate drive IC shuts down the PWM switching very quickly to protect the power stage. In this
case, connect the pin to GATEKILL so that the control IC is away of the overcurrent shut down,
and stops the PWM signals.

4.2 Layout Recommendations

421 Current Feedback Circuit with IRMCF300

The IRMCx300 series IC has the necessary circuitry to implement single shunt current feedback
including built-in operational amplifiers, sample&hold hardware, and multiplexers. Sample timing
is determined by the PWM logic automatically. The only things the designer needs to do is add
resistors and capacitors in order to configure the internal operational amplifier as a differential
amplifier and then adjust the minimum pulse width and sampling instances to optimal ones by
setting parameters such as TcntMin3Phs and SHDelay. This process of optimization these
settings is described in Section 4.3.2.2.

Figure 60 shows an example of this differential amplifier circuit. Rsh is the shunt resistor in the
negative DC link current path. The voltage across this shunt resistor (displayed as IFB in Figure
63) is used as the input to the amplifier, whose gain [R5 / (R1 + R3)] should be set appropriately
to cover the operating range with maximum resolution, as described in Section 4.1.2. The
capacitor C5 is to stabilize Cmext, which is an un-buffered 0.6V reference, and C4 is for Aref,
which is the buffered 0.6V reference voltage. C2 and C3 may also be required to stabilize the
operational amplifier output, IFBO. Check your Reference Design Kit for appropriate component
values. Feedback resistor R5 (=R6) needs to be in the range of 5K to 20K Ohm. AVDD and
AVSS are power pins for the IC’s analog circuitry and require decoupling capacitors of 0.1 yF and
0.01 yF in parallel.

www.irf.com 74

International

ISR Rectifier

Q3
[@ o Sl
Make it as
~— T shortas —aA' [Motor
possmle ‘
w
G . %0,
L c2
ﬁ IFBO IRMCF341

R1 R3

IFB- S/H1 >
c1 IFB+ MUX —» A/D
T S/H2 >

S .

R5 i C3

. R6 AREF L Reconstruction
Dedicated traces Y VC4 II Logic AVOD
right from the shunt ! — CMEXT (1.8V)
J‘ 0.6V
Make it short C5—— T cé
T AVSS T

—

Figure 60—Current Feedback Circuit for IRMCF341

Layout for the single shunt current feedback should be done very carefully. The most important
thing is to use dedicated traces right from the shunt resistor to the resistors of amplifier. Traces
must not be shared with ground planes. Another important consideration is to make the power
traces among the IGBTs and DC bus capacitors as short as possible. The stray inductances on
these traces increase the size of the voltage spike at the switching instances. Figure 61 is a
layout example from the IRMCS3041 Reference Design Kit. On the bottom layer, a trace starts
right from pin 12 of IRAMS10UP60B (3-phase inverter module) separate from ground, i.e. the
negative DC bus.

(a) Top Layer (b) Bottom Layer

www.irf.com 75

International

ISR Rectifier

B2 11 2K ARER 3l
Finm FAM pio 25 A]] ke
F2d =5l L) D=1}
(I gk
-
. oluF louF, 0%
R23 I ooF, EZ1 5 11K TFd2
i i AREF
Fiom B pio 11 A0, S0 =3 - o
—— iz = g
Fao it a0
E20 | OoF, EE2 A 1IF] Il 2F, |
i Lk i
10pF
Current Shunt Feedback I
cd] —

(c) Schematic
Figure 61— IRMCS3041 Reference Board Layout

Another very important issue is that noise from a switching power supply may significantly
influence the current feedback. It is recommended to separate the IRMCF300 ground not only
from the main power ground but also from the power supply primary side ground.

The internal operational amplifiers are specifically designed for this application. They have high
gain, bandwidth, and slew rate to respond to the rapid rise of current through the shunt resistor. A
sample&hold circuit actually tracks the signal and then holds it to reduce the sampling time. For
more information regarding characteristics of operational amplifiers, sample&hold and A/D
converter, please refer to the datasheet of the control IC.

4.2.2 Overcurrent protection layout

In a similar way to the current feedback layout, the overcurrent protection circuit should have a
dedicated trace from the shunt resistor to the comparator. Additionally, try to route the traces
away from high-current switching nodes to prevent noise induced overcurrent trips.

4.3 Testing and Optimization

Once new hardware is ready for testing, the IRMCx300 IC has registers which can be configured
to help optimize the performance of the motor drive system. This section will discuss the
techniques to test critical aspects of the system and then set register values (or MCEWizard
fields) based on the tests. To begin, a detailed description of single shunt current reconstruction
is presented in the next section.

In addition to the tests described in this section, it is also important to verify the current and
voltage feedback scaling as described in Section 2.2.4.

4.3.1 Space Vector PWM and Single Shunt Current Reconstruction

The IRMCx300 Series IC employs a single shunt current reconstruction circuit and methodology
to minimize external analog and digital circuitry. In order to implement sensorless field oriented
control, it is crucial to measure the motor winding currents precisely. The single shunt current
reconstruction method derives all necessary current feedback by sampling the currents in the
shunt resistor, thus eliminating the need for isolation circuits or magnetic current sensors. The
space vector modulator generates sample timing signals based on the power inverter state. The
IC integrates the A/D converter and amplifier to sample the voltage across the shunt resistor.
Under certain operating conditions the DC link current pulses may become too narrow to
guarantee reliable extraction of winding current data.

www.irf.com 76

International
TR Rectifier

Space vector modulation is a technique to generate the 3-phase power inverter switching signals

based on the desired three phase voltage output. Each leg of the power inverter can connect the

load to either the positive or negative DC bus. In one active inverter state, the switches connect

one winding to the positive rail and the other two windings to the negative rail. In the example

presented here, 2/3 of the bus voltage is across one winding and 1/3 of the voltage is across the

other phase windings. In another active state, the switches connect two windings to the positive

rail and the other winding to the negative rail. In the zero vector states, the switches connect all

three windings to either the positive or the negative rail.

Figure 62 shows the six active vectors and two zero vectors (VO — V7) available using three
inverter switches. It also shows how switching between two active inverter states can produce
any specified inverter voltage. For example, to produce voltage V* in the sector 1, the inverter is
in state V1 for time Ta and in state V2 for time Tb. The inverter is in a zero vector state for the
time remaining in the switching period. Typically half of this time (TO) is in the VO state at the
beginning of the cycle and the other half of the time is in the V7 state at the end of the cycle.
Figure 63 shows the resultant inverter switching signals where voltage vectors VO, V1, V2 and V7
are applied for time periods TO, Ta, Tb and T7. Applying these voltage vectors in the inverse
sequence in the second half of the PWM cycle generates symmetrical PWM signals. Since V* is
closer to V1 (which is aligned with U phase), V1 is applied for a longer time than V2 (Ta>Tb).

\%
Sector 2 V2 (1 1 0)
V3 (010)
Sector 3 Sector 1
_______________ \/*
T
V4 (011) VO0ONL~F,/ V1909 U
VI(111)-/\ Ta |
2
Sector 4 §Vdc Sector 6
V5 (00 1)
Sector 5 V6 (1 0 1)
W

Figure 62—Inverter Output Voltage Space Vectors

A real 3-phase inverter uses a combination of transistors (IGBTs or MOSFETSs) and anti-parallel
diodes as the power switches, as shown in Figure 60. A high voltage integrated circuit provides
level shifting between the logic level signal from the digital control IC and the transistors, which
switch between the positive and negative DC bus. The polarity of the ‘on’ signal may be active
high or active low depending on the design of the gate drive HVIC. There must be a delay, or
“dead time,” between the high side turn-off signal and the low side turn-on signal. This allows the
high side power transistor to turn off completely before the low side transistor turns on (or vice

www.irf.com 77

International
ISR Rectifier

versa) to avoid a shoot through condition that can damage the power devices. The actual gate
drive signals from the control IC include the dead time between all inverter state transitions, so
there are six inverter switching signals: PWMUH through to PWMWL in Figure 63; in this case,
the gate drive circuit accepts active low logic inputs. The modulation circuit typically inserts the
dead time but the gate drive circuit can also provide this function. Active high/low gate logic
selection is available through a control register, pwmcfg, on the IRMCF300.

SYNC SYNC
(lu) (-lw) (-lw) (lu)
VO V1 V2 V7 V7 V2 VA1 VO
PhaseU ’ :
PhaseV
PhaseW
TO Ta Tb TO TO Tb Ta TO
Dead Dead
- Time - Time
PWMUH
PWMUL
Dead Dead
> Time b Time
PWMVH
PWMVL
Dead Dead
b Time - Time
PWMWH
PWMWL
S/H 1 S/H 2 S/H 1 S/H 2
: SHDelay : SHDelay
Voltage 5
across shunt
(IFB) @ | | :
i i i Td_Off! 3 i Td Off 4 ¥
Td_Off - « Td_Off - np - nF Td_Off — n-— - '«— Td_Off —» nr
S i-Tdon i -i-Tdon 5 e S l-Tdon -»i-Tdon
i YU Tdon i §14Td On A
N? (d) Q5 O/F\FA e (h) Q3O/F\FA e m Q1 6\F)l:
(b) Q4 OFF b2 ON (f) Q6 OFF D6 ON () Q2 OFF D4 ON
(© Q1 ON @©a2oN @ QON (i) @6 ON (9 Q5 ON (m) Q4 ON

D4 OFF D6 OFF

Figure 63—PWM Gate Signals in Sector1

D2 OFF

The motor current reconstruction circuit measures the DC link current in the shunt resistor during
the active vectors of the PWM cycle. When the voltage vector V1 is applied, current flows from
the positive rails into the phase U winding and returns to the negative rail through the V and W
phase windings. In this instance, the DC link current flowing from the positive rail equals the U
phase current. When the voltage vector V2 is applied, the DC link current returning to the

www.irf.com

78

International
IGR Rectifier
negative rail equals the W phase current. Therefore, in each sector, two phase current

measurements are available. The calculation of the third phase current value is possible because
the three winding currents sum to zero.

4.3.2 Inverter-Related Testing and MCEWizard Settings

The 3-phase inverter is the major subsystem of the motor drive hardware. It is important to
configure the controller with the correct values for inverter dead time and current sample timing
(for example) to get the best performance from the inverter hardware. This section will describe
registers and settings to align the controller with the inverter.

4.3.2.1 Miscellaneous MCEWizard Settings

Disable Second PWM and/or PFC—Select the IRMCx300 series product in use in the
MCEWizard Welcome Page and the Wizard will automatically set several registers to properly
configure the drive.

Gate Sense section—Check the specifications of the gate driver IC to set these MCEWizard
fields correctly. These parameters will set the logic sense for the PWM gating signals as well as
the GATEKILL signal. The logic level to assert GATEKILL is dependent on the hardware
implementation.

Inverter Dead Time—Dead time is used to prevent shoot-through, a condition where both the
high side and low side IGBTs are on at the same time, which can damage the inverter
components. To choose the dead time, carefully check the turn-on and turn-off times of the
IGBTs. Also, the gate driver IC delay matching should be taken into account.

Bootstrap Capacitor Charge Pulse Width and Delay—These parameters govern the bootstrap
pre-charging process for the gate driver IC. For more information, see Section 4.3.5.5 of the
IRMCx300 Reference Manual.

4.3.2.2 Current Feedback Sample Timing

The current sampling instant should be at the mid point of the active space vector state to sample
the average current. This sample instant for the first current sample is at time Ta/2 after the start
of the first active vector V1, as shown in Figure 63. The space vector modulator calculates this
timing when it calculates the timing for the gate drive signals. In a symmetrical PWM scheme,
there are also two active vectors in the second half of the cycle and so two sets of current
measurements are available. Averaging of the two sets of measurement improves the reliability of
the current feedback.

Successful implementation of motor current reconstruction requires detailed knowledge of power
inverter operation to account for circuit delays that can result in incorrect current sampling. The
error introduced by sampling delays depends on the magnitude of the motor current ripple, which
depends on the bus voltage, switching frequency winding inductance and motor back emf. The
IRMCx300 includes a sampling delay register, SHDelay that allows the system designer to
compensate circuit delays to ensure accurate current measurement. The voltage across the DC
link shunt resistor, IFB, in Figure 63 illustrates how to calculate the sampling delay compensation.
Figure 64 illustrates current flow associated with the dead time and each switching instance to
display the change of current path and reverse recovery current from the diode. In this example,
lu>Iw >0 > Iv and the IGBT is modeled as a switch with a diode. Depending on the current
direction, sometimes turning on or off the switch doesn’t change the current flow. A thunder mark
on a diode indicates the reverse recovery action of the diode.

www.irf.com 79

International
ISR Rectifier

an }Dl az i Dz =k }D@
Iy >0 3 lu=0 * E f g
I¥s0 1 el -
¥ ¥ ¥ ¥ =0
o }m 13 }DS Qa6 @ A a5 }D& Qb =]
120

(a) Zero Vector VO (b) Q4 OFF

= :
n {] 1 j
an } o oz 0 @ o o }m o oG 03

v -] — w20 =
i 1 fest
r L r w20 x L 2 L3
o = "3 (=) Q6 ce =) D4 a5 o5 Q8
W g Sl -—

I=ly | = v

(c) Q1 ON, D4 OFF (d) Q5 OFF, D2 ON

- -
2 ¥

o ot D1 @2 e a3 D3
4 [i .
e o P! e lu=0 l - !

o b > =0 1
T T e I3 '3 Iy >0
o] a5 =] D4] =] Q6 D6
Aoy > iy >
* a—

Im by

(e) Q2 ON (f) Q6 OFF

2
L]
=}
2
-
e
2
24
27
2
|
2 4
L]
E
g
S o

I =0 = 3 = E — 1| B lu =0
=i L v <
r T k P T 2
o D4 as o5 QB 05 o4 2]]
bt .
VU L
- -

I dw

(g) Q3 ON, D6 OFF (h) Q3 OFF, D6 ON

11
IR
_ L
g
C.T
___1!' 2
'y
Il
E
|5
C g2
TR
a2
i o
CI T
L]

- Iy =0 &
"[we0

-
r ¥ 2 =
™ D4 G5 RD5 G 06
A'u’ﬂ\c"\r

1wy =0

(k) Q5 ON, D2 OFF () Q1 OFF, D4 ON

4

9 o
8

L,]
% o=
g p
LIPS

www.irf.com 80

International

ISR Rectifier

= 2
(m) Q4 ON

Figure 64—Current Flow Example in Sector 1

There’s a delay between gate driver IC input and output, and another delay from gate driver
output to real switching instance of the device such as IGBT. This is a function of gate charge
and gate impedance. Td _On and Td_Off in Figure 63 are the sum of these two delays
respectively. For example if the gate driver delay is 400ns and the IGBT turn on and off delays
are 190ns and 700ns respectively, then

Td_On = gate driver delay + transistor turn on delay = 400 ns + 190 ns = 590 ns
Td_Off = gate driver delay + transistor turn off delay = 400 ns + 300 ns = 700 ns

There is a limitation that an active vector must exist for a minimum time to ensure a reliable
sampling of the DC link current. This minimum time is set by the MCE registers TcntMin3Phs for
three-phase modulation and TcntMin2Phs for two-phase modulation. This lower bound on the
minimum time results in a limitation when the modulation index is small (small voltage) or the
voltage vector passes an active vector. The areas where problems exist are highlighted in Figure
65.

V3 (010) V2 (110)

Sector Crossing Area

Low Modulation
Index Area

5 V1(100)

/’/ Sector s %

V5(00 1) V6 (10 1)
Figure 65—Areas Where Reliable Sampling is Difficult

The minimum time required for reliable current sampling adds an undesired voltage distortion,
which may cause audible noise especially in low speed operation. In order to minimize this time,
it is important to understand when sampling occurs. Ideally, the current sample should occur at
the center of the active vector, which results in an average value of the current regardless of the
slope related to motor inductance. However, as discussed previously, actual switching happens
after a certain period of time from the edges of PhaseU, PhaseV, and PhaseW. This delay can

www.irf.com 81

International
IGR Rectifier

be as short as Td_Off and as long as dead time plus Td_On. Sampling timings can be adjusted

using the SHDelay register such that sampling occurs at one half of the active vector time plus

SHDelay after the edges of PhaseU, PhaseV, and PhaseW. For example, in Figure 63, the first

sampling instance is Ta/2 plus SHDelay after the rising edge of PhaseU. The real switching

instance occurs either Td_Off or Td_On plus dead time after the edge of PhaseX. Thus, SHDelay

can be set to cover worse case as follows.

SHDelay = Td_On + dead time (1)

Since sampling should be done after the ringing settles down even in the case of minimum pulse,
a condition for sampling delay from the PhaseX edge can be derived as below.

minimum pulse /2 + SHDelay > dead time + Td_On + ringing time (2)

The left hand side is the sampling delay in the case of an active vector with minimum pulse and
the right hand side is the actual delay time required to sample without noise.
From (1) and (2), the minimum pulse can be derived to be

minimum pulse > 2 *ringing time 3)

Remember that (1) to (3) are the mid point sampling case. If the slope of the current is not steep,
delaying the sample instance further to the end of the active vector can reduce the necessary
minimum pulse. Because the switching of the next “PhaseX” edge also has at least Td_Off (or
sometimes even dead time plus Td_On) to have a real switching instance, the minimum pulse
can be as small as following equation.

minimum pulse =dead time + Td_On +ringing time - Td_Off (4)
This can be put into (2) to get the proper SHDelay.

(dead time + Td_On +ringing time - Td_Off) / 2 + SHDelay
> dead time + Td_On +ringing time (5)

SHDelay = (dead time + Td_On + ringing time + Td_Off)/ 2 (6)

If the motor inductance is small and the sampling should be done at the center, Equation (3) and
(1) should be used to get the minimum pulse and SHDelay. If the application requires a shorter
minimum pulse and slope of the shunt voltage is not steep due to a relatively high inductance of
the motor or small DC bus voltage, then equation (4) and (6) can be used. Keep in mind that
Td_On and Td_Off can vary depending on the operating condition.

Note that in the MCEWizard there are two input parameters whose sum determines the value of
SHDelay—"“Inverter Dead Time” and “Gating Propagation Delay.” Set the Inverter Dead Time to
the desired dead time, and then set Gating Propagation Delay according to equation (1) or (6)
depending on the application conditions.

4.3.2.3 An Example of Optimizing the Current Feedback

Figure 66 shows the real waveforms for V* in sector 1 of Figure 62. Channel 1 is voltage across
the shunt resistor and the others are low side gate signals (active low case). U phase current (lu)
is positive during vector V1 and negate of W phase current (-lw) is negative during vector V2,
which means W phase current is positive.

www.irf.com 82

International

IR Rectifier

12:88:12

[iecroy]
16 ps
Somy

. ey 1 Ch1IFB
| Ch2: UL
' Ch3:VL
Ch4 : WL

) b L2
——— L ee——
18 ps T
9 5 O &
5 W oD I G543
3.5 v 0Ch _ I00 16V
4.5 v oq STOPPED

Figure 66—Waveforms in Sector 1

Figure 67 is a collection of waveforms when active vector changes. It will be better to understand
together with Figure 63 and Figure 64. It can be observed that ringing is most severe at the
transition from V2 to V1 in which case the largest amount of current is flowing through D2 and
therefore reverse recovery is also most significant.

77-Har-BE CURSORS 5‘2—*“"—“5 CUASORS
12:18:14 12:11:13

iacro, ; fetray [] I T |

2 s ! 1 E;amt.l-, 1

L 1 o

e I N oo I { o

5 : | fimpl i tude 2 v L L L | arplitude
| l 7 -

)=

L4 i

type

[Absolute l

——show
wof | Lt
Slope

PR AP U N IO S| 1

: 2
feFerance 4
7| cursar
Track HH§ 00
e e | ey S e Lon 4 PO,

2 ps T curgar { VB

5o OC & 9 5w OC §

5wty 1 B5/s 5 WoDC g
3.5 v OCg I 2oc 1.3y 3.5 v Oy
4.5 vooca T STORRED 4.5 v
22-Har-06 22-Har-06
12:13:23 1306843

e LeCroy : n LeCroy

Se i S

] +]

2 | l — T3 | S | 2 |
4 I...,..J.’:..' - 2 4
2 pE T 2 pE T
Qbm’ 0 & an e 4

5 v OCg | G5/ 5 oc 4 | G5/
85 v 004 _ s0C 1.9V 3.8 oc I— 40C 19V
4.5 v Cp STOPPED 4.5 o STOPPED

c)V2to V7 (d) V7 to V2

www.irf.com 83

International
ISR Rectifier

22-Har-BE CURSORS 22-Har-BE CURSORS
13:12:12

Sem

2

1 300 1.6V L 20c13v

ot
5| 5 md 00§
5 v ooe
3.5 v
i -

(e)V2toV

ot

9 5w OC 5
[0c

3.5

4

g

(f) V1 to VO

Figure 67—Vector Transition Waveforms in Sector 1

The waveform in Figure 68(a) is captured to measure the longest ringing time at the transition
from V2 to V1. High frequency noise stops within 0.6 usec, but there’s also slow component
which ends in 0.85 psec. However, the operational amplifier output (IFBO) is the one which
needs attention here because this is the input to the sample&hold. Figure 68(b) shows IFBO and
AREF together with IFB. Some slow noise components in AREF are reflected into IFBO. This
ripple ends in 1.25 psec.

F4=Har-0E ; CURSORS 24-Har-05 CHANEL
18:31.45 11:48:51
s Cht e | [Ch1:IFB
25,00 IFB :
2 : HA Ch2 : IFBO
ch2:uL ||
| ch3:vL
Ch3: VL 3
il 1 Ch4: AREF
Ch4
WL
5 ps
5' E"’:’ -'c I:’ 1 G5/s s 1 G5/
£s v L s . B 35 _ -
4 5 v IC4a STORPPED STOPPED

0 oSmy 604
(b) IFBO and AREF
Figure 68—Ringing at Transition from V2 to V1

(a) IFB at V2 to V1

When dead time is set to 500 ns, equation (1) and (3) give
SHDelay = Td_On + dead time = 590 ns + 500 ns = 1.1 ysec

minimum pulse = 2 * ringing time = 2 * 1.25 ys = 2.5 psec

Figure 69(a) is a trace buffer plot from MCE Designer for this case. Figure 10(b) is a plot when
SHDelay is 1.1 pysec and minimum pulse is 1.5 pysec. Some glitches exist due to slow ripple
component.

www.irf.com 84

International
ISR Rectifier

[FIE]) vvace Rosuns

Chl O) 562000 £ 3100 WY m ':'III Jpom o Chl On Chl O) 562000 £ 3100 Ch Y m ':'III Jpom o Chl On

gl) BONDN0)2a000 chzy {500 L] j1.000 o chaon gl) B0N000 |).23000 chzy {500 L] }1.000 o o0
L A \Deely Acoky A \Deely

(a) SHDelay 1.1us and MinPulse 2.5 usec (b) SHDelay 1.1 ys and MinPulse 1.5 usec

chlgl ¢)sa0E j[ace ety ¢ ¢ jam Jjr oo O oh On
a0l [)E0AD00 T ;28000 chav £ 500 < S0 J1.000 i1 oo
L A \Deely

(c) SHDelay 1.5 ps and MinPulse 1.7 usec
Figure 69—Phase Current Plot from Trace Buffer

From equation (4) and (6),

minimum pulse = dead time + Td_On + ringing time - Td_Off
=05+059+1.25-0.7
=1.64 psec

SHDelay = (dead time + Td_On + ringing time + Td_Off) / 2
=(0.5+059+1.25+0.7)/2
=1.52 pysec

Figure 69(c) is a plot for this case and seems as good as 62(a). These plots in Figure 69 verify
equations (1) to (6).

www.irf.com 85

International
TR Rectifier

4.3.3 Overcurrent protection

The overcurrent protection circuit prevents damage to the motor and inverter by shutting down
the PWM switching outputs of the control IC when the current across the DC link shunt resistor
reaches some threshold level. When verifying new hardware, the overcurrent protection circuit
should be tested early in the process.

To test the overcurrent protection circuit, begin by verifying that the comparator input voltages are
at the expected values when the hardware is powered up. Also calculate the expected trip
current. If possible, use a DC current source to run current through the shunt resistor and test the
overcurrent trip level.

Attach current probes to the motor phases. Connect an induction motor to the hardware and run
the “VF Diagnostic” function. To test the trip level, increase the motor current by gradually
increasing the value of VFGain register until a GATEKILL fault occurs. To capture the current
waveform at moment of the fault, trigger on the GATEKILL signal.

As a final, potentially destructive test, short circuit the motor phases; be sure to have current
probes on each phase and to be triggering on the GATEKILL signal with the oscilloscope. Start
the motor, and an overcurrent trip should occur immediately. Check the delay time from the
current reaching the threshold to the trip occurring. Verify that this shut down time is fast enough
to protect the transistors of the 3-phase inverter. Modify the GATEKILL circuit capacitances
and/or the value of GkillFiltCnt to adjust the shut down time.

5 PFC Application Development

Power Factor Correction (PFC) is a technique used to match the input current waveform to the
input voltage, as required by government regulation in certain situations. The power factor, which
varies from 0 to 1, is the ratio between the real power and apparent power in a load. A high
power factor can reduce transmission losses and improve voltage regulation. Regulations will
specify the condition at which to demonstrate the effectiveness of the PFC.

The IRMCx300 series includes three part numbers which provide 1/0 to support active PFC
control: IRMCx343, IRMCx311 and IRMCx312. These ICs include op-amps for sensing the AC
input voltage and PFC current; along with the DC Bus, this sensing allows the MCE to perform
digital PFC control. The Reference Design Kits for these part numbers include an IR-supplied
MCE program to perform the PFC, described in Section 5.1. Figure 70 below shows the
simplified topology of the boost PFC control employed in the reference design kits, with the
necessary sensing parameters labeled.

-
I pfc

Figure 70—Basic PFC circuit

The first section of this chapter describes the MCE program which does the digital PFC control
including the structure of the control loops and the configuration parameters. Next, Section 5.2

www.irf.com 86

International
IGR Rectifier

gives basic information and instructions for using the PFC as implemented in the Reference Kits.

It also describes some hardware modifications, tuning and optimization techniques and advanced

capabilities of the PFC control. Finally, in Section 5.3, this chapter concludes with guidelines for
hardware design, optimization and testing of the PFC as related to the IRMCx300 series IC.

Power AC
PFC Controller (MCE .
() Converter input J
—e
Multiplier q
Vi Voltage | c t
R N JO R L NG R~ L
i A_ PI i 1L Pl + + counter _| e
Vdc Vac | Ipfc
> Feed L
Forward
» controller :;
s
:] Ipfc 1
absolute value \VJ Cqc
M w o
ADC <
Vdc | |

DC output

Figure 71—PFC Control System

Figure 71 above provides a high-level block diagram of the PFC control scheme, as implemented
in the IRMS30xx Reference Design Kits. The digital control portion on the left, in the green
shading, is implemented in the MCE program, while the portion on the right with the blue shading
represents the PFC and DC Bus hardware components.

There are two control loops in Figure 71, an inner current loop and an outer voltage loop, along
with a feedforward (FFW) component. The output of the voltage controller is multiplied by the
rectified ac voltage to produce a current reference. The output of the current controller is added
to the feedforward output to generate the modulation command. This PFC control scheme
requires sensing of the PFC current, AC line voltage and DC Bus voltage.

To view parts of the PFC controller in detail, a PDF version of the Simulink Model file is part of the

files installed with the reference design kit (in My Documents\iMotion). Each component of the
controller will be described fully in Section 5.1.

5.1 MCE Program

5.1.1 Current Loop
A simplified block diagram of the current loop is shown in Figure 72, below.

Controller Modulator Power Stage .
i KI_| |
ref V, 1 PFC
—»(r—»| KP_l+—— — de - >
1 - s PFCPwmPeriod s-L
ADC Amplifier Sensor
2r|
- HW,_ 1« Rionee <
'sense
ADC, gain

Figure 72—Simplified current loop

www.irf.com 87

Infernational
IR Rectifier

The controller gains, KP_| & KIl_ I, are automatically configured by the MCEWizard for a

bandwidth of 1400Hz. This bandwidth is chosen because it satisfies the control requirements

without excessively amplifying current feedback noise. Also, the achievable bandwidth of the

loop is limited by the control delay of 0.5 to 1 PWM cycle. In order to keep a constant loop gain,
based on the diagram above, the current controller Pl gains scale as:

« L - PFCPwmPeriod

KP |
Rsense : Aipfc

- L-PFCPwmPeriod (1+PFC _sync _divider)

KI_I
Rsense ' Aipfc fPWM

where Ay is the current sense feedback gain which includes the resistor divider and A/D
converter gain. The PFCPwmPeriod appears because the modulator scaling is defined as 100%
= PFCPwmPeriod. The value fowy / (1 + PFC_sync_divider) gives the control loop computation
rate. See Section 5.2.5.2 for details on the sync divider.

The complete current loop implementation in the MCE program is shown on the next page in
Figure 73. Here, the output of the voltage loop, VAout, is multiplied by the input AC voltage,
V_IN, to produce a current reference shaped by the line voltage. The difference between the
reference and the current feedback feeds the input of a Pl block. The output of the Pl block is
added to the feedforward component (Section 5.1.2), then limited and scaled to produce the
modulation command for the PFC PWM output. The limit block also provides anti-windup
functionality.

www.irf.com 88

International
ISR Rectifier

PR BTN

Figure 73— MCE implementation of the PFC Current Control Loop

www.irf.com 89

International
TSR Rectifier
5.1.2 Voltage Loop

Current

Voltage Controller Controller DC-link

i load 1 Vd

\% KI_V o N Cc
e KP_V+—= Keur P >. =5, >
I C
n dc

- input | i

Y

ADC ref

2n
ADC | Ksense

ref

Sensor

Figure 74—Simplified voltage loop.

Figure 74 gives a simplified block diagram of the voltage loop in the s-domain. The current
controller represented as a gain component; this can be done because the current regulator
bandwidth is much larger than the bandwidth of the voltage loop. The MCEWizard configures the
voltage controller gains, KP_V & KI_V, in order to achieve a bandwidth of 3.7 Hz. In order to
keep a constant loop gain, from the diagram above, the voltage controller PI gains scale as:

KP V « &
A\/dc ' A\/ac
KI Vo Cue (1+PFC _sync _ divider)

A\/dc ’ A\/ac fPWM

where Ayg. and Ay, are the dc bus and ac input voltage feedback gains, respectively, which
include the resistor divider and A/D converter gain. The ac voltage feedback gain appears here
because the output of the voltage regulator is mutiplied by the rectified ac voltage. The value
fewm / (1 + PFC_sync_divider) gives the control loop computation rate. See Section 5.2.5.2 for
details on the sync divider.

The MCE program implementation of the PFC voltage loop is shown in Figure 75. Starting from
the left side, a ramp block ensures that the PFC voltage is not changed discontinuously. Next,
the reference voltage is compared to the filtered voltage feedback and the difference is input to
the PI block. A LIMIT block keeps the PI output within a specified range and also provides anti-
windup functionality.

v |
vt |

Veltaget copOutpat

ey

[PPChatis |

— —

¥
=

e _AD

#
#

www.irf.com 90

International
IGR Rectifier
Figure 75—MCE implementation of the PFC Voltage Control Loop

5.1.3 Feedforward

IN—VAC - 28CALE1

Ve

A
IN_VDC L"IIT
\
SCALE2 . - ouT
=>< | Limit
+

ADD

Figure 76—FFD Block implementation

Figure 76 provides a block diagram of the internal operation of the PFC_FFD block. The input
AC voltage is divided by the DC Bus voltage, then scaled and limited. The result is subtracted
from a dc component to produce the FFD signal. Figure 77 shows an example of the FFD output
and the current regulator output. The FFD provides a large duty cycle command during the AC

voltage zero crossing which reduces the demand on the current controller.

ey

/
00—

100 200 300 400 a00 EO0 Faa] 300 1000 1100
Samples

Figure 77—Current Regulator Output (yellow) and Feedforward Output (green); 833

corresponds to 100% modulation

Depending on the DC Bus and AC Input voltage scalings, the FFD output can exhibit significant
quantization if SCALE1 is set to too low a number. The quantization can lead to degradation of
the PFC performance. This problem is avoided when using the IR default MCE program and

configuring with the MCEWizard.

www.irf.com

91

Infernational
IR Rectifier
5.1.4 Enable and Shutdown

One thing to note about the PFC control program is that PFCEnable alone does not enable the
PWM output. The register MCE_PFCEnable must be set to 1, otherwise the PFC modulation
command will be zero. The operation of MCE_PFCEnable can be traced in the MCE program
diagram of the current regulator shown in Figure 73. This register provides a means of disabling
the PFC controller without recalculating the current offset.

Another feature of the PFC implementation is PFC Shutdown. The SHUTDOWN signal of the
PFC_PWM block becomes ‘1’ when the DC Bus voltage is lower than the AC input voltage.
When there is a PFC Shutdown event, then the PFC PWM output is blanked and the PI regulator
of the current controller is disabled and reset. For more information on PFC Shutdown, see
Section 5.2.5.1.

5.1.5 Input and Output Registers

This section lists all the input and output registers of the MCE program for PFC. The scaling for
many of the registers is given in Section 5.2.3. Additionally, the hardware registers which control
the PFC can be found in the Reference Manual.

Voltage Loop

Input:

Vdc_Ref—Sets the boost PFC voltage. This voltage should be at least 5% higher than the peak
input AC voltage

Accel, Decel, PFC_RampScl—Together set the voltage ramp rates. The default value for the
IRMCS30xx Reference Design Kits is ~225V/s.

KP_V, Kl _V—Proportional and integral gains, respectively, of the Pl block of the voltage
regulator.

Limit_P_V—The upper limit is set such that the maximum possible current command (in the
current regulator) is within the A/D sensing range of the control IC. The upper limit is calculated
using the current & voltage feedback scaling and the maximum AC input voltage. This register
also sets the level at which the integrator is halted for anti-windup. The lower limit of the voltage
regulator is always set to zero.

Output:
Vdc_Fdb—DC bus voltage feedback

VAOut—Output of the voltage loop. When this value is multiplied by the AC input voltage, the
result is the current command.

Current Loop
Input:
KP_I, KI_I—Proportional and integral gains, respectively, of the PI block of the current regulator

Limit_P_I—The upper limit corresponds to 100% modulation. This register also sets the level at
which the integrator is halted for anti-windup. The lower limit of the current regulator is always set
to zero.

Feedforward

Input:

FFD_SCALE, FFD_MULT, FFD_Limit_ P, FFD_ADD—Set the limits and parameters of the
PFC_FFD block. The FFD block is configured to provide a maximum modulation command of
75% at zero crossings of the AC input voltage. With reference to Figure 76, FFD_SCALE

www.irf.com 92

International
IGR Rectifier

corresponds to SCALE1, FFD_MULT corresponds to SCALE2, FFD_Limit P corresponds to

LIMIT and FFD_ADD corresponds to ADD.

Other
Output:
PFC_SHUTDOWN—Indicates when PFC blanking occurs.

PFCStatus—Indicates the PFC run status.
5.2 Using PFC on the IR Reference Board

At the initial power-up, the Reference Design Kit is already loaded with an MCE program which
includes PFC control. Additionally, the .irc file for the Reference Kit will have the correct
parameters to configure the PFC for the supplied hardware.

One of the features of the digital PFC control is automatic offset correction of the PFC shunt
current. The offset is continuously measured when the PFCEnable register is set to 0. When the
PFCEnable register is set to 1, the offset is latched in and automatically applied to the PFC
current measurements. It is important to set the PFCEnable register to 1 while there is no
load on the system otherwise it may affect the offset measurement. For example, set
PFCEnable to 1 before starting any motors, because the motor currents will flow through the PFC
sense resistor. The “Start PFC” function in MCEDesigner sets PFCEnable to 1.

5.2.1 Using the Wizard to create the configuration parameters

The MCEWizard already contains the correct input values for the Reference Design Kit hardware
selected on the Welcome Page. There are just a few parameters needed to configure the PFC
controller for the specific application. The regulation voltage for the boost PFC is set with the
Wizard parameter, DC Bus Voltage Reference. This group of questions, System DC Bus, also
sets the over- and under-voltage trip levels as well as the scaling for DC Bus sensing. Also, set
the parameters in the PFC Application section of questions. These are all the PFC specific
parameters which should be set if the Reference Design Kit is not modified.

If the designer chooses to modify the hardware, or create a custom board, then the MCEWizard
can generate the configuration parameters for the new hardware. Be sure to select “I have
modified the circuit board” on the Welcome page of MCEWizard to enable the hardware
dependent questions. See Section 5.2.6 for examples of simple modifications which can be
made to the Reference hardware.

As with the motor, configure the PFC and then start PFC in MCEDesigner. Remember to start
the PFC before starting any motors. At light loads, the power factor will be low, but will rise to
higher than 0.9 by the time the output power reaches 150W.

5.2.2 Overcurrent Protection Circuit

The control IC includes an input pin to shut off the PFC switch in the case of an over-current
event. In the Reference Design Kits, a PFC over-current situation is recognized, essentially, by
comparing the voltage across the PFC shunt resistor with a reference voltage; Figure 78 below
shows the circuit from the IRMCS3012. The output of the comparator triggers the PFC gatekill
fault in the control IC.

In the event of a gatekill fault, the PFC PWM pin will immediately change to the off state by

hardware in the IRMCx300 IC. The soonest that the PFC can be re-enabled is the next PWM
cycle by setting the PFC_GK_RESET register to 1.

www.irf.com 93

International

IR Rectifier

== [=
= 4T00pF 250VAC RS3 00155W
q ECR-NVS4J2ME 15FRO1SE
i - - & e & AN —
RC
0A
AN AN {ACV-
R4 R3
- LOM 1.00M
RIS
. 113k
cl6 l
2200pF |
RI7
DNI .
15V
33V hAA T
Q
R2S R
R16 - .| 100k 2.0k
Jka% LB 2 AN —o .
(PGATERIL } : ' s
T R105
LM2003M k105
Tirip=2.55 * (11.3K/10k - 1)/ 15mOhm =22 1A { A F=c2 ——
R 51V WF25V | O.1uF.25V
8 =
0.IuF.25V 100k
BZTSICSVITT 1

Figure 78—PFC Gatekill circuit

The gatekill fault is useful for protecting the PFC hardware components, but in some situations it
can become a “nuisance trip.” The developer may implement an automatic gatekill reset either in
the MCE program or in the 8051 code. However, be sure to provide some means of
distinguishing a nuisance trip from a real overcurrent event which threatens the PFC hardware.
To reset the PFC gatekill, write ‘1’ briefly to the register PFC_GK_RESET. However, if this
register is set to ‘1’ while the PFC is running, then any PFC gatekill will be automatically cleared
at the next PWM cycle, and the PFC will continue operating.

5.2.3 PFC Variable Scaling

Voltage Loop:

The DCBus voltages, Vdc_Ref and Vdc_AD, have the same scaling as defined in Section
2.2.3.4:

DCBus (V) =[Vdc_AD]/ (A/D *r)

where

A/D is the analog-to-digital converter scaling (3412/Volt)

r is the voltage divider ratio used in the voltage sense circuit

AC Voltage Feedback—The figure below shows the AC line voltage feedback path to the terminal
so of the op-amp. There are two parameters in the MCE program which can be traced—
VPFC_AC, which is the AC line voltage and V_IN_Raw, which is the rectified AC line voltage.
The scaling is calculated similarly to the DC Bus feedback:

AC Voltage = [V_IN_Raw] / (A/D * k)

where

A/D is the analog-to-digital converter scaling (3412/Volt)

k is the op-amp gain of the voltage sense circuit

In the sensing circuit show in Figure 79 below, k = 2.43k / (4.87k + 1.00M + 1.00M) = 1.21 x 10°°,

www.irf.com 94

International
IR Rectifier

ACVP

- R2 1
100M 100M
e 1
11
| |_Easth F1 ABC-10
L 1 o~ 2
3 N = L
ﬁ L
557 4700pF250VAC
N ECK-NVS4TIME 3
gR‘S,,n ., —— cx2 H RVI 3
1IM,12W .
uEITSVAC | ga0R275E2
/77) = o o ’
o1 —— ECQ-U24105ML
1WF.275VAC —cn
ECQUAML] A~ 4700pF250VAC
m ECK-NVS4TIME
AN .
R152 oD RC
3076R8 ey
1
a3 R4 R3
= g 1L0OM 1.00M
15V 3 i
| 1 T _T_ 1 EI’ ACVN T G
B AN VN ‘ ==y
5 IPFC- 5T |
PISHUNT- - = VAC+
1 S|
s IPFC- e
330pF 41
o L | vpe-
[FISHUNT= T J. RI120 , , o110k IPFCO jE VDO
E53 _T_ C105 ATNOVDCO
A0y Il i T 150pF
=, = = FGATEKILL
= = NI = - FEWRWL
i i : FEWMWE
i C162 || 0.0IF v :
AC Voltage FEIVLIVIE
= AREF FFWMVH
R121 = W"4‘k FFWMUL
| v 'f\i} l - JAC+ FEWMUH
- .
_L Cl113 CGATEK]
4._061:1, CPWMWL
i T CPWMWH
L7 i - s
Ao _1'_ AP R83 243k L VACO ; CPWLIL
clls cis4 - CENMU
SO . L DT TCATERILE P5.0PFCGEILL
L -, PFC_PWM PFCPUAM

Figure 79—AC Voltage Feedback Circuit

Accel, Decel, and PFC_RampScl combine to set the voltage ramp rate as follows:
Voltage Setpoint Ramp Rate (V/s) = ([AccelRate] / 2*"RampScaler) * PWM Freq / (A/D *r)
where

PWMFreq is the PWM switching frequency in Hz

A/D is the analog-to-digital converter scaling (3412/Volt)

ris the voltage divider ratio used in the voltage sense circuit

Current Loop:

IPFC (PFC current feedback)

PFC Current (A) = IPFC / (Rshunt * k * A/D)

where

A/D is the analog-to-digital converter scaling (3412/Volt)
k is the op-amp gain of the PFC current sense circuit
Rshunt is the PFC current feedback resistor in Ohms

|_REF (PFC current reference

PFC Current Reference (A) = |_REF / (Rshunt * k * A/D)
where

A/D is the analog-to-digital converter scaling (3412/Volt)

www.irf.com 95

International
TSR Rectifier

k is the op-amp gain of the PFC current sense circuit

Rshunt is the PFC current feedback resistor in Ohms

VcPFC (PWM modulation): The modulation scaling is different than in the motors; it is defined in
terms of the PFCPWMPeriod register:
Modulation (%) = 100 * VcPFC / PFCPWMPeriod

5.2.4 Optimizing Starting and Running

The operation of the PFC switching can be understood by the waveforms of Figure 80. A
PFCPWM_SyncPulse occurs at regular intervals according to the PFCPWMPeriod register, at the
minimum of the up-down counter. Unless another control loop is still running, a
PFCControl_SyncPulse initiates the A/D conversion of the PFC Current and Voltage. After the
A/D conversion, the PFC control loop runs, updating the Duty Cycle Command. The duty cycle
gets latched in at the next PFCPWM_SyncPulse. The latched VcPFC is compared to the PFC
PWM carrier up-down counter. The PFC switch is turned on when VcPFC is less than the PFC
PWM carrier.

PFCPUh_SyncPulse

PFCCantrol_SyncPulse

ADC of
PFC Current™oltage

|
;n

WePFC
Doty Cycle Command
(from control loop)

PFC PN Carrier

PN

Latched WePFC

I
|
|
|
|
|
|
|
|
|
|
|
]
I
|
I
I

~L7

7

|
|
|
|
|
1 |
|
PiliM Output !
|
1 |
! .
1 I
: |
|

PFE Inductr \/‘(/\/‘J\J/

Figure 80—PFC PWM cycle timing

|

5.2.4.1 Varying switching frequency

The PFC PWM switching frequency is an important parameter in the design of PFC systems. A
higher switching frequency can allow for a lower PFC inductor value or for a reduction of the
current ripple. The trade-offs from increasing the PWM frequency are increased heating of the
PFC switch due to switching losses and increased use of the MCE processor resources. If you
increase the PWM frequency be sure to check the MCE usage on the ‘Options’ page of the
MCEWizard and then create new drive parameters based on the new frequency. Many gains will
change with a change of PWM frequency. It is recommended that the utilization not exceed 85%
to ensure that none of the calculations are missed.

To increase the switching frequency without increasing the MCE usage, set up a non-zero sync
divider value as described in Section 5.2.5.2.

www.irf.com 96

International
IR Rectifier
5.2.4.2 PFC Start-up/Voltage Ramp Rate

The PFC is automatically configured with a voltage ramp rate of ~225V/s. See the equation in
Section 5.2.3 to calculate the ramp rate. Note that changing the switching frequency, sync divider
ratio or the voltage feedback gain will change the ramp rate. When increasing the ramp rate,
verify that the resulting input current during PFC start-up is not too large.

5.2.4.3 Voltage Loop Tuning

The voltage loop requires a much lower bandwidth than the current loop. The Reference Design
Kits automatically set the voltage loop bandwidth at 3.7 Hz, but the optimal bandwidth depends
on the application requirements. For example, some situations may specify a high voltage ramp
rate with little or no overshoot. This may be achieved by increasing the integral gain (KI_V). This
will also reduced the voltage rise after a sudden drop in load power. However, increasing the
gain too much will reduce the damping make the voltage regulator unstable. It is up to the
designer to verify the voltage loop performance meets the application requirements.

5.2.4.4 Current Loop Tuning

In general, the current loop should have as high a bandwidth as possible. However, there are
several factors which will limit the achievable bandwidth, including the control delay from the
current sampling to the update in the modulation command or the amount of noise in the current
feedback. The MCEWizard configures the current loop to have a bandwidth of about 1400 Hz.

5.2.5 Other PFC Features

There are several other features of the PFC which are available to the designer for improving the
PFC operation, reliability, and ability to handle short line disturbances.

5.2.5.1 Blanking

PFC blanking is a function which disables the PFC PWM switching in situations where the DC
Bus voltage is lower than the instantaneous input voltage. The full-mode boost PFC operation
requires that the DC bus voltage be higher than the peak of the AC input voltage. However,
during input voltage transients or a sudden large increase in load, the peak of the AC input
voltage can be higher than the DC bus voltage. If the PWM switching continues, the boost
inductor may go to saturation because its volt-seconds can not be balanced. Consequently, large
currents can be generated, causing a nuisance over-current fault. The PWM_Blanking feature
provides protection by generating an output ShutDown signal to blank the PFC PWM output.

The Blanking function compares the instantaneous DC Bus and AC input voltages to determine if
the PWM switching should be blanked. The registers PFC_OffsetDC, PFC_OffsetVin and
Blanking_Gap provide offset and adjustment for the comparison, and are used to calculate
signals Vdc_Compare and Vin_Compare as described below:

Vdc_Compare = Vdc_ADC + PFC_OffsetDC
Vin_Compare = 2 * Vin_ADC + PFC_OffsetVin
Note: The computation above implies that the DC Bus voltage scaling (in counts/volt) must be

twice the AC input voltage scaling. This is true in all Reference Design Kits.

Blanking_Gap provides hysteresis for the Blanking function. For a detailed description of how
this register is used, see Section 4.3.8.2 of the Reference Manual.

Basically, if Vdc_Compare > Vin_Compare then Shutdown = 1 and the PWM output is blanked.

True operation is more complex than just this comparison; it is describe fully in the Reference
Manual.

www.irf.com 97

International

TR Rectifier
The Shutdown signal will stay on for minimum time of CountOneSet / PFC_PWMFrequency,
which corresponds to CountOneSet number of PFC PWM cycles. Once the CountOneSet
duration has expired, then, based on the circuit operational status (Vin, Vdc, IPFC and Iref),
ShutDown will transit from 1 to 0, allowing the PWM Output to be sent out. This provides fast and
smooth transitions between the PWM enable and disable modes. CountTwoSet is a register
which provides additional filtering of the current feedback comparison. For detailed information
about ShutDown turn-off criteria and the use of CountTwoSet, see Section 4.3.8.2 of the
Reference Manual. Note also that the integral component of the PFC current controller is reset on
Shutdown.

The Wizard provides typical values for the PFC Blanking registers, but the optimal configuration
should be found by testing anticipated AC input voltage disturbances and possible step changes
in the load.

5.2.5.2 SyncDivider

The SyncDivider feature of the PFC can allow the designer to use a higher PFC switching
frequency without increasing the computational load on the MCE. When using the SyncDivider,
the PFC switches at the frequency defined by the PFCPWMPeriod register. However, the PFC
current and AC input voltage are only sampled at some fraction of the PFC frequency, as defined
by the PFCSyncRatio, the lowest four bits of the register PFC_sync_divider. Also, the PFC
component of the MCE program will only run during the PWM cycles when the PFC current is
sampled, reducing the computational load on the MCE. The A/D sampling and control loop
frequency is equal to PFC PWM Frequency / (PFCSyncRatio + 1)

FFCPU_SyncPulse

FFCControl_SyncPulse

|
|

ADC of
FFC Currentifoltage

WePFC
Cruty Cycle Command
(from control loop)

FFLC Pk Carrier

Latched WoPFC

< ________________':___‘:r—__:l

3
%ﬁ

/.

Pulihd Output I

FFC Inductor
Current

Figure 81—PFC PWM timing when PFCSyncRatio = 1

Figure 81 shows the PFC operation with a PFCSyncRatio = 1. Compare this diagram with the
normal situation (PFCSyncRatio = 0) shown previously in Figure 80. In the figure above, the
current and voltage are sampled only every other PWM cycle, and the Duty Cycle Command is
also updated at this reduced frequency.

www.irf.com 98

Infernational
IGR Rectifier

There is one important restriction on the selection of the SyncDivider usage: The PFC A/D

Frequency (= PFC PWM Frequency / (PFCSyncRatio + 1)) must be an integer multiple of the

master PWM frequency (usually Motor 1). If this constraint is not met, then the actual frequency

of the A/D sampling and control loop will vary between [PFC PWM Frequency / (PFCSyncRatio +
1)] and the PFC PWM Frequency over the course of one master PWM cycle.

5.2.5.3 PFC Phasing

PFC Phasing is an extension to the SyncDivider feature. The PFC phasing offsets the PFC
Current & Voltage sampling from the Master PWM Sync pulse (usually Motor 1, but user
configurable). The value of PFCPhasing (PFC_sync_divider[4:7]) specifies the number of PWM
cycles the PFC A/D sampling is delayed following the master motor control sync pulse. The PFC
control loop runs right after the A/D sampling. Figure 82 depicts the PFC phasing in an example
with the following settings:

* PwmMasterSel is set to 0, selecting Motor 1 as the master.

* Motor 1 PWM frequency is 5 KHz and PFC PWM frequency is 40 KHz, so that a Motor 1 sync
pulse occurs on every eighth PFC PWM cycle.

* PFCSyncRatio is set to 3, configuring PFC A/D sampling on every fourth PFC PWM cycle (10
KHz) and PFCPhasing is set to 2.

L Y A A O O B

Motor 1 | | | | 5KHz

PFC AD | | | | | | 10 KHz
H_/

PFCPhasing = 2
Delay PFC PWM sampling two cycles
following the master (Motor 1) PWM cycle

Figure 82—PFC Phasing Example

Again, the PFC A/D frequency should be a multiple of the Motor 1 frequency. If it is not, then the
actual A/D frequency will not be correct and the phase relative to Motor 1 will not be predictable.
One final constraint when using the phasing is that the value of PFCPhasing < (PFCSyncRatio +
1), or else the PFC will not run at all.

5.2.6 Possible Hardware Modifications

This section describes several simple hardware modifications which the designer can do to adjust
or extend the capabilities of the Reference Kit to optimize it for the application. In each case, be
sure to generate new configuration parameters using MCEWizard.

5.2.6.1 Shunt Resistor

Changing the PFC shunt resistor can change the range of currents which the hardware can
sense or change the GK current trip level. For example, the IRMCS3012 Reference Design Kit
has a 15mQ shunt resistor for sensing the PFC current. Increasing the shunt resistor value will
reduce the current range (for the same op-amp gain), but increase the resolution. Always make
sure that the shunt resistor is rated for the current and power which will be dissipated in it.

Note that another way to change the GK current trip level is to modify the comparator voltage. In
Figure 78, change R105 and R24 to set the voltage at the inverting input to the comparator.

www.irf.com 99

International

IR Rectifier
5.2.6.2 Feedback Gain

Modifying the PFC current feedback gain is another way to change the range of current which the
controller can sense. Figure 83 shows an example of the op-amp circuit involved in the PFC
current sensing.

RS3 0.015.5W
15FROLSE

AN
TPi6
PIS+
R21 LOOk —5rerTs
1 15 YV oo L_PISHUNT- >
TP37
PIS-
o co8 33pF 61
PFC Shunt & | PEC+
AREF s DEC-
5
‘;‘ﬁk J IVCIA TN Lo
IPEC+ - _
BISHUNT- AN —— S vact
- VAC-
59 By
cl1s IPFC- VACO
330pF 41
VDC+
EIELTT RI120 , , A 110k IPECO :% De
RO3 " AINOVDCO
STy C105
Clo1 | [33pF 150pF
FGATEKILL 16 .
= [FGATEKII : FGATEKILL
= FPWMWT. EE’:‘}:’V[,‘{L, 1? FPWMWT

Figure 83—PFC Current Feedback Circuit

In the same way as for motor current feedback, the gain of this circuitis 11.0/(5.11 + 1.00) = 1.8.
To modify the op-amp gain, the designer should change resistors in pairs (R92 & R93; R119 &
R120) to preserve the correct circuit biasing at AREF (0.6V reference).

5.2.6.3 DC Bus Sensing

In the default configuration, the DC bus sensing is accomplished through a voltage divider and
then feeding to the A/D converter through pin AINO/VDCO. This pin is the output of an
operational amplifier which is disabled. To use the op-amp for sensing instead, make the
following modifications:

1) Install a 4.87kQ resistor at R44 and a 0Q resistor (jumper) at R85.

2) Remove R47 and R125.

3) Inthe 8051 code set sfr HWCFG to OxdF. (See Software Developer’'s Guide.)

With these modifications, the DC bus voltage scaling will not change.

5.2.6.4 Inductor

The inductor may be changed to a different value based on the application requirements. For
example, increasing the inductor value will reduce the PFC current ripple, while decreasing the
inductor will reduce the system cost. In order to ensure correct PFC operation, it is required that
the inductor value exceeds

[20 / fpy:c] mH

where fprc is the PFC PWM frequency in kHz.

The inductor is easily changed by connecting the new inductor in place of the old one at the
connector (J2 in the IRMCS3012 Reference Kit). Be sure to generate new configuration
parameters using MCEWizard. Note that the size of the inductor is not the only factor in
selection—for example, in some applications the saturation characteristics may be important.

www.irf.com 100

International
IR Rectifier
5.3 PFC Hardware Design

5.3.1 Schematic Elements

5.3.1.1 DC Bus and AC Input Voltages
The DC Bus capacitor sizing can be determined by the hold-up requirements and ripple tolerance

of the application. The MCEWizard estimates the DC Bus ripple and provides a warning if the
ripple exceeds 20V. The voltage ripple can be calculated as follows:

B P
PP Anf, . - C Ve
Where
Viipple iS the peak-to-peak voltage ripple
fac is the AC line frequency

C is the DC Bus capacitance
Vpc is the DC Bus voltage

\Y,

An additional consideration is that in order for PFC Blanking to operate correctly, the DC Bus
scaling (in counts/V) must be twice the AC Input Voltage scaling. This is already true in the
Reference Design Kits.

5.3.1.2 A/D Converter Offset Compensation

In power factor correction, the accuracy of the DC Bus voltage feedback is important. The
designer can use one of the schemes described in Section 4.1.4 to compensate for any A/D
converter and reference voltage offset. Note that this compensation is automatically achieved for
the PFC current feedback. When PFCEnable is set to 0 the IC measures the PFC current offset
and then latches this value when PFCEnable is set to 1. For this reason it is important to set
PFCEnable to 1 only when there is a very small or no load on the DC Bus.

The IRMCS3012 Reference Design Kit hardware has a provision to provide voltage references of
1.1 V at AIN3 and 0.1V at AIN4 by dividing down the 1.8V supply. The designer may uses these
analog inputs to perform offset correction.

5.3.1.3 EMI Filter

The Reference Design Kits contain an EMI Filter which can be used as a starting point for the
filter required for the application. The Figure 84 below shows the schematic of the EMI Filter in
the IRMCS3012. CX1 and CX2 act to filter the differential mode noise, while CY1 and CY?2 filter
the common mode noise. Additionally, L1 acts as a common mode choke to attenuate the
common mode noise, while the leakage inductance of L1 also provides filtering of the differential
mode noise.

www.irf.com 101

International

ISR Rectifier

L vV A A AL
hjl
Earth - Fl ABC-10
] L 1 2
§ N ~ WAV
—— CYl
TP57 4700pF 250VAC
N ECK-NVS4TIME] [, o i
A W -0
INCL2W 1uF.275VAC
/77 = o
X1 ”— ECQ-UZA105.
1uF,275VAC A=
ECQ-U2A105ML oY~ 4700pF.250VAC
1 ECK-NVS472ME
AN —
8121-RC

R152 L1
SRICRE 1miL 20A

Figure 84—EMI Filter

However, additional Y-Caps should be placed between the PFC shunt resistor and the motor
drive inverter. These components will prevent common mode EMI current from flowing through
the PFC shunt resistor, reducing current feedback noise and increasing the achievable control
bandwidth. For an example, see CY3 and CY4 in the Compressor Inverter schematic of the
IRMCS3012 Reference Design Kit.

5.3.2 Layout Recommendations

Section 4.2 gives some detailed layout recommendations concerning the current feedback and
overcurrent protection circuits. Those guidelines are also applicable to the layout for the PFC
current feedback and overcurrent protection.

5.4 Advanced Topics

Automatic Gatekill Handling

In some applications, noisy, unstable or unreliable AC input voltages can cause nuisance trips,
even with the aid of the PFC Blanking. However, these trips can be handled automatically within
the MCE program using the PFC_GK_RESET register of the PFC_PWM block. Use the FAUTLS
block to provide the signal that a PFC Gatekill has occurred, then construct some logic to reset
the fault depending on the conditions.

Moving voltage loop to execute at lower frequency

Though the voltage loop executes at the same frequency as the current loop, the voltage
changes much more slowly than the current and requires a much lower bandwidth. This would
allow the voltage loop to be moved to a component with a lower PWM frequency, such as motor 1
or motor 2. The benefit of moving these blocks would be that the current loop could execute at a
higher frequency, since more MCE computing resources would be available.

The gains of the voltage regulator should be modified if it is moved to a lower switching
frequency.

Using PFC PWM output for other functions
Note that the PWM output pin could be used for control of any switching desired by the user. The
MCE program for the PFC could be replaced by a custom designed control algorithm as required.

Rectified Input Voltage Sensing

In the reference design, the AC input voltage is sensed before the diode bridge. If the rectified
line is sensed, then use the RAW_VIN_SENSE signal from the PFC_SENSE block instead of
VPFC_REC. (For details about RAW_VIN_SENSE, see the Reference Manual.)

www.irf.com 102

International

ISR Rectifier

6 Induction Motor (IM) Control

6.1 Introduction

The IRMCx300 Series motor control ICs are designed to perform sensorless field oriented control
(FOC) of a permanent magnet motor. However, the MCE program can be extended to allow
sensorless FOC of an induction motor without any hardware modification. The general
architecture of the IRMCx300 controller is preserved, containing a speed loop and current loop,
with modified MCE code to accommodate the IM control function. Section 6.2 describes this
MCE program in detail. Also, measurement and configuration of the motor parameters are
covered in Section 6.3.

The resources for IM control listed below are installed at “My Documents\iMotion\Induction
Motor.”

e |RMCS3041_Release IMCtrl_2_ 0.mdl (Simulink model file)
0 IRMCS3041_Release IMCtrl_2 0.pdf (PDF of model file)
e |RMCS3041_Release IMCtrl_2_0.bin (binary file for program download)
o0 IRMCS3041_Release IMCtrl_2_0.map (register map)
¢ IRMCS3041_Release_IMCtrl_2_0.irc (MCEDesigner file for drive interface)

These files are designed for the IRMCS3041 Reference Design Kit only, though IM control could
be implemented in any of the controller versions. Contact an IR FAE for support for other
Reference Design Kits. Additionally, MCEWizard supports configuration of IM control.

The IRMCS3041 Reference Design Kit is initially configured to run the supplied PM motor.
Before running an induction motor, the MCE program needs to be replaced with the Induction
motor control version (the binary [.bin] file mentioned above). Section 3.4.4 describes the
process of downloading a new program in detail.

6.2 IM Control Program

The induction motor control components are implemented in the MCE Misc loop subsystem as
shown in Figure 85. The interface from the Misc loop to the existing PM controller is implemented
in the Speed Loop subsystem; the interface specifics are shown in Figure 86.

www.irf.com 103

International

I&R Rectitier
Induction Motor

Enable Control Specifics

/

¥

Misc Loop

To Misc Loop

-l

To Speed Loop

Configure Control Loop

Speed Loop

Figure 85—IM Control Implementation Location in MCE Program

FOC
: @ Block
* Fix M Fix_M
Ang_VHz
H — ExtFwdAng|
Induction [~ P>| ExtFwdAngle
cRcp
Motor . P VdcRep
Mag_VH i
Controller O P{UgFeedFwd
- Rev_Ang_VHz:
: (ac:d Onst d =19 ——»| ExtFwdAngle
‘|(implemente
: . Slip MCE Speed
in MCE) - Loop
4 . ISREG in| DC Bus
VdcRaw D Voltage
Induction Motor 300series Permanent
Control Add-ons *: Magnet controller

Figure 86—Interface between IM Control Add-on and 300 Series PM Controller

The IM control implementation fully utilizes the existing PM motor controller with a few add-ons to
complete the entire IM drive control. By setting the appropriate drive parameters; two IM control
modes—Field-Oriented Control (FOC) and Volts per Hertz (VHz)—can be obtained.

There are several major and minor components inside the IM Controller add-ons of Figure 86,
each applicable to one or both of the two IM control modes. These aspects of IM control will be
described in the sections below:

e Volts per Hertz Mode
o Voltage magnitude and Angle calculation
o Voltage Boost
0 Pre-Flux for VHz

e Field-Oriented Control Mode
o0 Slip speed compensation

www.irf.com 104

International
IGR Rectifier
0 Magnetization current injection

0 Continuous Flux Checking
0 Pre-Flux for FOC

e Common to both modes
o0 DC Bus Compensation
o Non-Regenerative Braking

= B select valts Per Hertz Mode

- - volt Per Hertz 1

- =T volt Per Hertz 2

= E] select Field-Oriented Control Mode
31} Yolt Per Hertz 1

- Yolt Per Hertz 2
Figure 87—Subfunctions for Mode Selection

The user can select between the two IM control modes—Field-Oriented control (FOC) and Volts
per Hertz (VHz)—by setting the appropriate parameters. Two sub functions (Volt Per Hertz 1 and
Volt Per Hertz 2) are provided in IRMCS3041_Release IMCtrl_2 0.irc for setting these
parameters, as shown in Figure 87. Selection functions for FOC and VHz mode are built based
on these two sub functions. The specific parameter settings to select between the VHz or FOC
modes are described in the appropriate sections below. FOC is the default mode after execution
of the “Configure Motor” function in MCEDesigner.

It should be noted that the Critical Overvoltage protection was removed. This applies a zero
vector when the DC bus rises above a threshold value. It is not useful for induction motors
because there is no back-EMF, so the zero vector has no effect.

6.2.1 Volts per Hertz (VHz) Mode

The “Volts per Hertz” mode supports a Volts-Hertz profile with voltage boosting. This mode is
simply an open-loop system, which provides a configurable voltage to frequency relationship, with
uncontrolled motor current. The VHz control block is shown schematically in Figure 88 below
along with its transfer characteristic (Figure 90).

VHz mode is open loop in nature and does not require current feedback. Due to the bypassing of
the speed and current loops, there is no need for speed or current regulator tuning. Therefore,
drive setup is extremely simple. In VHz mode, the voltage command is generated from a
prescribed voltage-frequency profile. Because of the open loop nature of the control, VHz mode
can provide better voltage utilization in field-weakening (high speed) operation as compared to
current controlled systems (for instance, FOC), which limit the DCBUS voltage utilization when
applying current control.

The VHz mode provides additional features, such as automatic field-weakening, voltage boosting
and reverse-frequency operation, which the existing diagnostic mode (VF Diagnostic) does not
support. The VF Diagnostic function is a scaled down version of the VHz mode described here.
Its original intent is for diagnostic purposes only (mainly for checking current feedback integrity).

6.2.1.1 Angle and Voltage Calculation (with Voltage Boost)

The input SREG_IN of Figure 88 below is a speed command signal that is driven by the speed
ramp block (in the MCE speed loop subsystem) of the existing PM control algorithm. The outputs
are the voltage modulation index (Mag_VHz) and electrical angle (Ang_VHz). These signals feed
the external interface handles UgFeedForward and ExtFwdAngle, respectively, of the existing

www.irf.com 105

International

IGR Rectifier
FOC library block as shown in Figure 89. Details on these handles are given in the IRMCx300
Reference Manual (Figure 47, SENSORLESS FOC block diagram).

RPMScaler VHz_Gain VHz_Boost

+ VHz_ModLim
SREG_IN "% 1
M 14 Mag_VHz
]
fIN A o ~~3——P» Ang_VHz
: t (0 - 4095)

! ENABLE

VHzEnable
Figure 88—Implementation of Volts per Hertz with Voltage Boost

The actual Simulink implementation of the diagram in Figure 88 is shown in Figure 91. Note that
the calculation path is also used to generate voltage modulation and angle for Non-regenerative
Braking, as described in Section 6.2.3.2, below.

‘ C16 SHIFT 1
tartLim Min_Spd

Start_Lim Goto StantOk
ClosedlLoop

[

From ROTATION

Rotation
From TRQ _REF
[Qv —bm |
[TRG—REF\; From vdcrok 7| TPanef Goto Qv
Vde_Fbk £ > - 2
From Ang _\Hz Goto Dy !

ExtFwdangle Oc PwmEnable
ParkingDone: Parking _Done

From VdeRep

[VdcRep] WdcRep
| [Mag _-.‘.-|_21/ P LgFesdFwd o - Goto Parking _Done_
From Mag _VHz1)
[Rev_Ang _':-'I—z]}* ExtRevang] Gotolg
From Rev _Ang_\VHz Fix_M —.'< Flx_M |
[vaLimDyn] P \/alim Goto 2
From “glLimDyn Rir_Freg

Search _Ang

ldRefExt ld_Decoupler
SENSORLESS _FOC

Figure 89—Interface to FOC Block

There are five parameters (VHz_Gain, VHz_Boost, VHz_ModLim, VhzEnable and RPMScaler)
associated with VHz mode. These parameters are calculated by the MCEWizard based on motor
data entries. The definition and scaling of these parameters are given below.

VHzEnable—This register provides the switch for enabling and disabling the outputs (Mag_VHz,
Ang_VHz) of the Volts per Hertz function.
Range: 0 or 1 Scaling: 1 = enable, 0 = disable

Angle and Voltage Generation Registers:

www.irf.com 106

International
IR Rectifier

RPMScaler—This parameter translates TargetSpeed to internal frequency counts for integration
to generate the correct angle each PWM cycle such that the actual motor drive frequency
matches the commanded speed (TargetSpeed: 16383 = Motor Max RPM from MCEWizard).
Range: 0 — 32767

Scaling: RPMScaler = 2" * Motor Max RPM * Poles / (120 * PWMFreq)

VHz_Gain—This parameter adjusts the inverter output voltage-to-frequency ratio (Flux), which
determines the operating flux level of the motor at the rated speed condition. The calculation in
MCEWizard provides a VHz profile such that the rated motor voltage is obtained at the rated
frequency.

Range: 0 — 65535 Scaling: Flux = VHz_Gain * DC Bus Voltage / PWMFreq / 31.6 [Volt-sec]
VHz_Boost—This parameter provides a constant motor voltage boost, which allows higher motor
starting current. Applying an exceeding large VHz_Boost value will cause an over-current trip.
Reducing the VHz_Boost value will reduce the motor starting torque. The MCEWizard sets this
parameter (using stator resistance and rated current information) to target for the highest possible
starting torque without exceeding the motor rated current.

Range: 0 — 32767

Scaling: Rms line-to-line voltage = VHz_Boost / 1430 * DC Bus Voltage / \(2) [Vrms]
VHz_ModLim—This is the maximum modulation output of the VHz function. Normally, it is set
lower than 100% to allow a margin for DC bus ripple voltage compensation.

Range: 0 — 32767 Scaling: % modulation index = VHz_ModLim/1430 * 100 %

VHz_ModLim =

VHz_Boost -

SREG_IN
Figure 90—Transfer Characteristics of Volts per Hertz Function

The three parameters, VHz Gain, VHz Boost, and VHz_ModLim, define the transfer
characteristic of the VHz mode, shown in Figure 90. VHz_Boost provides for higher starting
current, resulting in a higher starting torque. VHz_Gain sets the slope of the transfer
characteristic, and VHz_ModLim sets an upper limit to the voltage modulation.

[SREG_IN]
From SREG_IN | NEGATEY i NEGATE
Py
From 2 swrTcHe Signed1l
Signed12 MUL_DI SWITCH
Signediz Signed? COMPARATOR
MUL_DIve
13 Z_Angvhz =1
Signedd
Fram vhaEn able Goto Ang_WHz
Or (2l Rev_Ang_vHz|
BrakeEnable]> L CUMULATOR SWITCHZ
Fram 3 L Goto Rew_Ang_VHz
Signed? DIFF3 VHz & |
www.irf.com 107

International

IR Rectifier

[
WHz_Boost

Goto Mag_WHz
SWATCHS

28 MUL_DIvA % Wil

Brake_Woltage

BirakeEnabla]>
o
From 4 WHz_MadLim
' Rev_Ang_WHz| Signedl

L, Goto Rew_Ang_\hz

SMITCHA

%—,,, Wi
h!
k.l

VHz & Braking Angle and Modulation Generator

Figure 91—MCE Implementation of VHz (and Braking) Components (split into two parts)

6.2.1.2 Preflux for VHz Mode

In VHz mode, motor preflux is done in open loop (no closed-loop current control) fashion. Preflux
is achieved by applying a DC boost voltage during the parking time. The voltage is set by
VHz_Boost and the parking duration is specified by parameter ParkTm. In order to achieve
preflux, a modification is made in the speed loop subsystem of the MCE design. The speed
reference (TargetSpeed) is held at zero for the parking duration as shown in Figure 92. After the
parking is done the speed reference is allowed to ramp to TargetSpeed. ParkTm is configured by
the MCEWizard.

?;i WWrite:
=

TargetSpeed

SYWITCHT1

Farking_Done
Prking_Done —>

EirakeEnalieds

J

S

SYWITCH1S COMPARATOR

8 ! :
gy e MinZpd
CiE SHIFT]
=
StartLim »vin_spd
F— Goto StantOk
'mm_\ ClosedLoop

Figure 92—Speed Reference Holding for Preflux

6.2.1.3 VHz Mode Selection

As mentioned earlier, certain parameters need to be set to select between VHz mode and FOC
mode. These parameters can be set using the subfunctions Volt Per Hertz 1 and Volt Per Hertz
2, as displayed in Figure 93. The upper part of the Figure shows the registers written by Volt Per

www.irf.com 108

International
IGR Rectifier

Hertz 1, which sets the parameters to configure and enable VHz mode. Except for VhzEnable,

these values are calculated by the MCEWizard.

The lower part of Figure 93 shows the registers written to by the Volt Per Hertz 2 subfunction,

which prevents certain FOC actions from interfering with the VHz mode:

e MinSpd = 0—This allows VHz operation to low motor speeds and prevents zero speed faults.

e TCntMin3Phs = 2—This reduces the minimum pulse width since current feedback is
unnecessary in VHz mode.

e VqLim, VdLim = 0—These registers set the output of the current regulator to zero, so that the
modulation is only set by writing to the UgFeedFwd register.

e PlIFregLim, PllntLim, PIIKp, PIIKi = 0—Setting these registers to zero forces the angle
estimator output to zero so that the ExtFwdAngle determines the motor electrical angle.

B International Rectifier -- MC EDesigner(tm) - [Motor1]

: File Yiew Preferences ‘Window Help

? 88 ¢ 9

--E& Select Yalts Per Hertz Mode |~ | | Register Name | walue ko wWrike |
=34 Bl YhzEnable 1
Wh vhzEnable RPMScaler 2495
¥R RPMSCaler Y¥Hz_MadLim 1355
WR YHz_ModLim ¥Hz_Boost 178
""h \-'Hz_Bonst VHz_ain 3655
Wi WHz_Gain
-1 % valt Per Hertz 2
Y Minsnd

IB International Rectifier -- MC EDesigner(tm) - [Motor1]

"] File Wiew Preferences ‘Window Help

B 88 ¢ L

—I-- BB select wolts Per Hertz Mode |+ | | Register Mame | Walue ko Write |
=% valk Per Hertz 1 Minspd]
e vhzEnable TCntMin3Phs z
Y& RPMSCaler '*"ql-!"“ 0
W WHz_ModLim vdlim - o
W YHz_Boost F‘IIFreu:_|L|m i}
- PlTnkLim]
Pllkp 0
Pllki 0

Ye TCntMInGPhs
e vaLim
e vdlim
Y& PlFreqLim
Y& PlIAtLim
g Fllkkp
e Pllki
+--] select Field-Criented Contre
- 4% Subfunction Library Definitions
Figure 93—VHz Mode Selection Parameters

6.2.1.4 Startup Characteristics of VHz Mode

A typical VHz startup current trace of an induction motor washing machine is shown in Figure 94.
The current consumption during startup is higher than in the case of FOC control (Figure 101).
This washer requires high (100%) startup torque, therefore a large voltage boost must be applied
to ensure proper startup. In applications (for instance: fan, pump) where low startup torque can
be tolerated, the voltage boost (VHz_Boost) can be reduced to decrease startup current. VHz can
operate at lower speeds than the FOC control if high torque demand is not required for the

www.irf.com 109

International
TSR Rectifier

application. In addition, VHz will provide better voltage utilization than FOC under deep field-

weakening operation.

2.00 AQ M 200ms A Chl &£ 600mA

Figure 94—\VHz Startup Currents
(lw — yellow, lu — Blue, horiz. 0.2sec/div, vert. 2A/div)

6.2.2 FOC Mode

FOC mode utilizes current and speed feedback to feed the current and speed loops. This mode
of control provides the highest torque per ampere current rating, which is crucial for high starting
torque applications. With proper parameter settings (using the MCEWizard), the existing PM
FOC controller can be easily adapted for IM control. The adaptation requires two new add-ons:
Slip compensation and Magnetization current injection.

6.2.2.1 Slip Compensation

In a permanent magnet motor drive, the speed and motor frequency are equal (no slip). However,
in the case of an induction motor, the frequency and speed are related by slip. The slip
compensation addition is necessary to compensate for the speed inaccuracy due to the inherent
slip speed of Induction motors. A simplified block diagram of the MCE slip compensation is shown
in Figure 95. The input is torque current (Iq) and the output is Slip speed in digital counts. Figure
96 shows the implementation of slip compensation in Simulink, while Figure 97 shows how the
Slip speed signal is used in the MCE speed loop.

SlipGn
SliplgLimit
Iq Low I * 1 | slip
—p»| Pass I_> —P> ?,) —
Filter

|
-SliplgLimit
MinlgOffset

Figure 95—Slip Speed Compensation

The Slip speed compensator corrects the frequency (speed) output of the FOC block in order to
account for motor slip. The torque current, Iq is first filtered, and then the MinlqOffset is
subtracted from the filtered current. MinlqOffset accounts for core loss effects and is calculated
by the MCEWizard from the core loss resistance. The SlipGn is a configurable parameter for the
slip compensation. This parameter is calculated by the MCEWizard based on the motor rated
speed and frequency information. Finally, the slip compensation is enabled only after the StartOk
signal in order to enhance startup reliability.

www.irf.com 110

International
IR Rectifier
Slip Compensation Registers:
SlipGn—In an induction motor, the shaft speed decreases as load increases (slipping). A slip
gain adjustment (SlipGn) is provided to model this slip behavior.
Range: 0 — 32767 Scaling: Slip = Iq * SlipGn * Maximum Motor Speed / 227 [rpm]
MinlqOffset—This parameter models the effect of the core loss resistance in an induction motor.
It is subtracted from the torque current feedback (Iq).
Range: 0 — 32767 Scaling: Offset Current = MinlqOffset / 4095 * Irated [Arms]
SliplqLimit—This parameter sets a maximum torque current for slip compensation.
Range: 0 — 32767 Scaling: Limit Current = SliplgLimit / 4095 * Irated [Arms]

Signed 4

Goto Slp

[StartOk]

SliplqLimit

2] MUL_DIV2 From SWITCH3
NEGATE2 LIMIT 1
From g2 SWITCHS Slip Estimation c2
Figure 96—Slip Compensation Implementation
] Targeiolr . e::mn:o::::nll
ok —b@ NOT ‘ ‘ ‘ Speed Ramp
ot Stanok .\ Write: .* Wiite .\ Wite
P
\—. RampScaler —‘ DecelRate
] o \ VnzEnatie
Gomar , Gato VhzEnasle
Dv FJ|
comOr WhzEnable

Bl

fne Farking _Done

Gato Parking _Done

catog

Fx_M

Speed Flter

SpaFiEn 2

MUL_DIV
LOWPASS _FILT 1 Pt s

SpaFi=n 1

‘SpaFitEn

Figure 97—Slip Compensation Interface to Speed Loop

LOWPASS _FILT

From 4 _Ref_Ext

SUM 1

6.2.2.2 Magnetization Current Injection

A magnetization current parameter (Id_Mag) is summed into the d-axis current reference input
(IdRefExt) of the Sensorless FOC block as shown in Figure 98 to support magnetizing current
control of the motor. This parameter (Id_Ref: 4095 = rated current) is configured by the
MCEWizard and sets the magnetization current level in FOC mode.

Id_Mag—This parameter sets the magnetization current level for the induction motor. It is

summed with the Field Weakening current to give the Id current.
Range: -4096 — 4095 Scaling: Magnetization Current = Id_Mag * Irated / 4095 [Arms]

www.irf.com 111

International

IR Rectifier

From TR _ReF [012 W9 e
o< |

RO R om vidcrok iz Goto Qu
[vdcRaw] Vide_Fbk 2 —@
From Ang _VHz Goto Dv
ExiFwdAngle PwmEnable
From VdeRep

[\,"d: cRep] >—W VidcRep ParkingDone —@
[Mag _‘MD—D UgFesdFwd Goto Parking _Dor
; o]

Qi

From Mag _VHz1
[Rev_Ang_\Hz] > ExiRevAngle Gotolg
From Rev _Ang_\VHz Flx_M —>< Flx_M |
[WgLimCyn | aLim Goto 2

From YWgLimDyn Rir_Freq
P Search _Ang

IdRefExt Id_Decoupler

SUM1 From Id _Ref_Ext

Figure 98—Magnetization Current Injection

6.2.2.3 Stopped Rotor Detection

The estimated flux is low pass filtered and then compared to a threshold, FIx_MThr, as shown in
Figure 99. If the flux exceeds this level, then an OverLoad_Fault is latched in and also an MCE
Fault is flagged in register FaultFlags. The MCEWizard sets the FIx_MThr to a fixed value of 950.
The designer may modify this value to tune for the application. Note that the stopped rotor
detection only applies to FOC mode.

N FI— b
= BIT_LATCH1
.—’ MceFault
Q\
Wil ORS

OR7
Fl N 2
DcBusLvLevel COMPARATOR 5 D

T

Fl \
LV_Fault

. >

P |

2]

n Raad
LOWPASS _FILT2 COMPARATOR 7 ORE

Overload _Fault

Fal et

Flx_MThr BrakeEnde: .
From 3

Figure 99—Stopped Rotor Detection

MCE_FAULT

BIT_LATCH2

BIT_LATCH3

Stopped Rotor Detection Registers:

FIx_MThr—This parameter sets the flux level above which the rotor will be interpreted as
stopped. This is signaled as a ‘1’ in the Overload_Fault register.

Range: 0 — 4095 Scaling: Flux Threshold = FIx_MThr / 500 [% of Rated Flux]
Overload_Fault—This read register signals that the rotor flux has exceeded the FIx_MThr,
indicating a stopped rotor condition. When this fault occurs, it is also signaled as an MCE Fault.
Range: 0 or 1 Scaling: 0 = No fault, 1 = Overload Fault

www.irf.com 112

International

IR Rectifier
6.2.2.4 Preflux for FOC
DC current injection applied in the parking time is used to preflux the induction motor before
torque is applied. ParkTm and Parkl control the DC injection current level and duration. In the
case of a PM motor these parameters are user entries in MCEWizard. However, for IM control,
these parameters are calculated instead. Parking current is calculated based on the motor
magnetization current level and parking time is calculated based on the IM rotor time constant.

6.2.2.5 FOC Mode Selection

In a similar manner to VHz mode, certain registers must be correctly configured to enable proper
operation of the FOC mode. The upper image of Figure 100 shows that the VHz registers are all
set to zero, while the lower image shows that the FOC registers are set to their appropriate
values, calculated by MCEWizard. The parameter settings written by the Configure Motor
function in MCEDesigner select the FOC mode by default.

B International Rectifier -- MC EDesigner(tm) - [Motor1]

: File Yiew Preferences Window Help

®

Register Name | Walue ko Write |
YhzEnable 0
RPMscaler 0

¥R RPMScaler YHz_ModLim 0

Wk vHz_ModLim VHz_Bonst a

""h WHz_Boost ¥Hz_Gain u

Y vHz_Gain

+- ¥ volt Per Hertz 2
| = = kFonction Likears Definitinn

B International Rectifier -- MC EDesigner(tm) - [Motor1]

"] File Wiew Preferences ‘Window Help

B 88 9

= &Y select Field-Criented Contre|» | | Register Wame | value to write |
=T walk Per Hertz 1 MinSpd 10z
Wh vhzEnable TCnEMin3Phs a5
e RPMSCaler VqL?m 1011
¥R vrz_Modim PiFrectin i
¥ VHz_Boost PIIrELirn 37
Pllkp 24740
Pl £45
=4 subfunch

Figure 100—FOC Mode Selection Parameters

6.2.2.6 Startup Characteristic of FOC mode

A typical FOC startup current trace of an IM washing machine is shown in Figure 101. The initial
DC current injection is the preflux (parking) period. If high starting torque is not required, the
preflux period can be reduced.

www.irf.com 113

International
TR Rectifier

Figure 101—Startup Currents
(lw — yellow, lu — Blue, hor. 0.1sec/div, ver. 2A/div)

6.2.3 Other Features

6.2.3.1 DC Bus Voltage Ripple Compensation

DC bus voltage ripple compensation is an additional feature of the IM control program. The
function provides improved current stability especially if open-loop control (VHz mode) is
employed. This compensation function is shown in Figure 102. The input is raw DC bus feedback
(VdcRaw), which is obtained from the DC bus feedback block of the MCE speed loop subsystem
(Figure 86). The compensation function generates an output (VdcRcp), which represents the
inverse of the DC bus ripple. This signal is being fed to the FOC block (Figure 89) to dynamically
adjust the modulation index in order to attenuate the effect of DC bus ripple on the motor current.
Details on modulation adjustment using VdcRcp are given in the IRMCx300 Reference Manual

VdcRaw 1 +

— —>> 2_8 D‘ P VdcRep
* 5589 -

. o + Low pass
VdcRcpGn 200 65536T> ° _ Filter
! }
4096
VdcRcpFil_WC

Figure 102—DC Bus Voltage Ripple Compensation

Note: The FOC block allows DC bus compensation only if the lregCompEnb bit is set to 1
(MtrCtriBits_SJ[4], section 4.4.9 of IRMCx300 Reference Manual). This is automatically set by
MCEWizard when the motor type is set to “Induction Motor.”

Normally, DC bus compensation is done using the direct inverse of the DC bus voltage feedback
to compensate the inputs of the PWM modulator. When the average value of the DC bus falls (for
example: low ac line), the PWM modulator will enter overmodulation (at high speeds) and the
effectiveness of the DC bus ripple compensation will be significantly reduced. Here, DC bus
compensation is done such that overmodulation can be avoided. The average value of the output
(VdcRcp) is maintained at 4096 digital counts by a low pass filter (Figure 102). This is done to
ensure that the PWM modulator operation can stay within the linear range (no overmodulation)
even during a low ac line condition.

www.irf.com 114

International

ISR Rectifier

Signed 14

DIVIDE

MUL_DIv2 VDG_RCP

2]
Signed 18 LIMIT2

DC Bus Compensation

WecRepFiI_WC
]
LOWPASS_FILT

Figure 103—MCE Program Implementation of DC Bus Compensation

Figure 103 shows the implementation of the compensation function in the MCE program. Figure
104 illustrates the output signal (VdcRcp) and the actual modulation command (Qv). As can be
observed from this figure, the average values of VdcRcp and Qv are fixed at 4096 (nominal
VdcRcep) and 1358 (1430 = full modulation), respectively. In VHz mode, the limit of the average
value of Qv can be adjusted using parameter VHz_ModLim. The MCEWizard calculates
VHz_ModLim allowing a 5% modulation index margin to accommodate the DC bus ripple.

| Trace Results

Test YoltHz

4400—

100 a0 E00 o0 00 1000
Cursor Control Axiz Control Min Mar Scale Offset Grd
i % ’_J‘ 0 ’_J‘l 1024
Chi On ’_)1 1.772 ’_)1 4095779 ChlY ’_)‘1 3000 ’_)‘1 4500 ’_)‘1 1.000 ’_)‘1 0 Chl On
4 1024.000 #4 1350000 444200 241800 234,000 230
ci2gd 9 J er2y 3 J J J cr20f
| s | Rescll

Figure 104—VdcRcp (yellow) and Qv (green) Characteristics

DC Bus Compensation Registers:

VdcRcpGn—This parameter provides proper scaling for DC bus compensation.
Range: 0 — 32767

Scaling: VdcRcpGn = 819200 / (Nominal DC bus Voltage * DC bus feedback scaling)

www.irf.com 115

Infernational
IGR Rectifier

VdcRcpFil_WC—This parameter sets the low pass filter bandwidth. This filter is used for

maintaining the average value of VdcRcp at nominal digital counts (4096). The MCEWizard sets

this filter time constant to 5ms.
Range: 0 — 8192 Scaling: Filter time constant = 2413 * PwmPeriod / (VdcRcpFil_WC) [sec]

6.2.3.2 Non-Regenerative Braking

A non-regenerative braking function with brake ended detection is implemented in the IM
controller. In this mode, the motor is driven at a low frequency in the opposite direction as the
motion. This is an inefficient state of the motor and kinetic energy is dissipated in the motor
windings.

Regenerative braking is still available in FOC mode; simply set the RegenLim register to a non-
zero value and then command a decrease in speed. The motor kinetic energy will be
regenerated to the DC bus, causing it to rise.

The non-regenerative braking function makes use of the same calculation path as the VHz mode
to generate the angle and voltage parameters to the FOC block. Write to the TargetSpeed
register to choose the braking frequency. Note that the MinSpd check is disabled during braking
to ensure that the correct drive frequency is used. When BrakeEnabled is set high, the speed is
automatically set to be in the opposite direction. The braking voltage modulation level is set by
register Brake Voltage. The implementation of the braking is shown in Figure 91 above.

To activate non-regenerative braking, the correct sequence of register writes must be performed,
as listed below and also implemented in the function “Brake Function” in the MCEDesigner file
IRMCS3041_Release IMCtrl_2 O0.irc:

1) Stop the PWM

2) Set TargetSpeed to desired (low) frequency

3) After charging the bootstrap capacitors, enable the PWM (not the FOC) by setting

pwmctrl = 9

4) Set BrakeEnable =1

5) Stop the PWM when BrakeEnded_Signal = 1. (MCEDesigner will do this automatically.)

6) Set BrakeEnable =0

7) Clear the fault to start the drive again.

An additional feature of the braking is automatic shut-off; the MCE program implementation is
shown in Figure 105 below. This shutoff is achieved by comparing the (filtered) torque current
(Iq) with a threshold set by register BrakeThr. When the current falls below the threshold level
the end of the braking is signaled by the register BrakeEnded_Signal. Also, the MCE Fault (in
register FaultFlags) is tripped to signal that the drive should be stopped. For the brake end
detection to work properly, the drive should be configured to FOC mode.

Brake Ended Detection

SWITCHS
g f —
‘C‘ Wi COMPARATORZ
b

Signed 10

COMPARATOR!

‘.‘. Wiite

SrakeFilt LOWFASS FILT2 L

Signed 18 2_lqForBraks
>
MErake

Figure 105—Brake Ended Detection

Fal
BrakeEnable

www.irf.com 116

International

ISR Rectifier

The tuning of the braking parameters (brake frequency, Brake Voltage & BrakeThr) is best done
by testing the desired induction motor. The MCEWizard gives parameters which will work for a
wide variety of motors, but optimization must be done empirically. The trace parameter,
Z_lgForBrake, is provided to aid in tuning the braking.

In order to tune the braking, use the NBrake signal as the trigger to trace the Z_lgForBrake and
collect traces as shown below. Higher frequency braking is somewhat slower, but has a more
distinct threshold for turning off the drive, as shown in Figure 106 below. If the braking voltage
and frequency are not turned off at the right time, then the motor could start turning in the
opposite direction.

e e e e I e e e e o e 1
a 200] L] 500 600 o0 &0 500 1000 1100

M X0 40 M. RM M AN 0 Jan 110
Somples .

Figure 106—Z_IqForBrake signals for braking at several frequencies, with constant
BrakeVoltage. TargetSpeed = 180 (upper left) 360 (upper right) and 720 (lower) in these plots.

Non-regenerative Braking Registers:

Inputs
BrakeEnable—Enables non-regenerative braking.
Range: 0 or 1 Scaling: 0 = No Braking, 1 = Braking Enabled

Brake_ Voltage—This parameter configures the magnitude of the braking voltage as used in
Figure 91. The MCEWizard sets this parameter to 100.

Range: 0 — 1430

Scaling: Rms line-to-line brake voltage = Brake_Voltage / 1430 * DC Bus Voltage / V(2) [Vrms]
BrakeFilt—This register sets the cutoff frequency of the lowpass filter of Iq for brake ended
detection. The output of the filter is the Z_lgForBrake signal. MCEWizard sets this parameter to
100.

Range: 0 — 8192 Scaling: Filter time constant = 2413 * PwmPeriod / BrakeFilt [sec]
BrakeThr—This parameter defines the Iq current level below which the braking should stop. The
MCEWizard sets this parameter to 2500.

Range: 0 — 4095 Scaling: Braking Current Threshold = BrakeThr * Irated / 4095 [Arms]
Outputs

Z_lgForBrake—This is the signal which is compared to BrakeThr to determine the end of
braking. It can be traced for the purpose of setting the braking frequency, voltage and threshold.
Range: 0 —4095 Scaling: Braking Current = Z_lgForBrake * Irated / 4095 [Arms]

www.irf.com 117

International
IR Rectifier

BrakeOn—This trace parameter mirrors BrakeEnable and is provided as a signal to trigger on for

the purpose of tuning the braking registers.

Range: 0 or 1 Scaling: 0 = Braking Disabled, 1 = Braking Enabled

BrakeEnded_Signal—This read register signals that the braking should be turned off. When the

brake ending is detected, it is also signaled as an MCE Fault.
Range: 0 or 1 Scaling: 0 = No Brake Ended, 1 = Brake End Detected

6.3 Parameter Configuration

The IRMCX300 motor controller requires certain motor parameters and other hardware specific
parameters to run the motor. These values are entered into the MCEWizard parameter
configuration utility as real numbers and then converted to scaled, digital versions that can be
used by the controller. The induction motor can be configured to run in open loop using the basic
parameters which are normally found on the motor nameplate. The full induction motor equivalent
circuit parameters are required to run the motor in closed loop with FOC control. Figure 108
below shows the per-phase equivalent circuit for an induction motor. The equivalent circuit
parameters should be supplied by the motor manufacturer in the datasheet but they can be
measured experimentally if the information is not available. The measurement process is
detailed in the following sections.

Most of the application-related parameter entries (in MCEWizard) for setting up the Permanent
Magnet motor controller also apply for the Induction motor controller.

The majority of IM manufacturers specify the frequency and rpm value corresponding to rated flux
operation (Point A of Figure 107). The frequency and rpm values that MCEWizard expects are
based on the rated magnetization current level (Point A). Point B specifies the maximum
frequency of the motor. This point corresponds to reduced flux operation (and therefore reduced
torque). Please be aware that some manufacturers may specify point B in the motor nameplate
instead of point A.

Rated A /B\
Voltage | e
: :
Rated Max
Frequency Frequency

Figure 107—Motor Nameplate Operating Points

6.3.1 Configuring for testing in VHz Mode

The procedure for measuring the motor circuit parameters begins by using MCEDesigner to run
the motor in open loop (VHz) mode. Using the No-Load test and the Blocked Rotor test, the
circuit parameters can be derived and entered into MCEWizard for configuring the drive.

The following motor parameters are needed to configure the induction motor for VHz mode:
Motor Rated Line Volts (V,ateq)
Motor Rated Amps (l;ateq)
Motor Rated Frequency (frated)

www.irf.com 118

International
TSR Rectifier

Motor Rated Speed (W;ateq)

Motor Poles (p)

Motor Stator Resistance (R,)
Motor Max RPM

The first four parameters are typically listed on the motor nameplate. The motor pole number, p,
can be calculated from the ratio of the rated frequency, fratep in Hz and speed, wWratep in RPM:

B — frated

2 (Wrated / 60)
(Round down to the nearest even integer to account for slip)
The stator winding resistance is measured directly using an ohmmeter. Measure the line to line
resistance for all three phase pairs to check the balance of the phases (they should all be nearly
the same). Average the three resistance values and then divide by two to get the per phase

resistance of the stator: Ry. Finally, the Motor Max RPM should be less than or equal to point B
of Figure 107.

Enter the values for the parameters listed above into MCEWizard. When starting the MCEWIzard
program select the appropriate reference design kit from the Welcome page, then on the “Base
Configuration Options” page, select “Induction Motor” from the “Motor Type” selection menu to
enable induction motor questions. Enter the six parameters listed above and leave the remaining
default values. From the “Verify & Save” page, export the drive parameters to a .txt file. Import
the .txt file into MCEDesigner to prepare to run the motor in VHz mode.

Next, use MCEDesigner to enter VHz mode by first running the “Configure Motor” function and
then the “Select VHz Mode” function. Finally, run the “Start Motor” function and the motor should
begin to turn.

6.3.2 Parameter Measurement

The parameter tests recommended by the IEEE require the measurement of the motor input
voltage, current and power (or power factor) when driven from a fixed frequency variable ac
supply. The measurements are made when motor is unloaded (No Load Test) and when the rotor
is blocked (Blocked Rotor Test).

Figure 108 shows the IM per phase equivalent circuit model, where the R, and L, refer to the
stator resistance and leakage inductance, respectively, and R, and L, refer to the corresponding
rotor values. L, and |, are the magnetization inductance and current, while R, models the core
losses including eddy currents and no-load friction. The tests and calculations described in the
next sections will provide the parameters of this model. Note that in the tests to follow, Rgoe will
be assumed to be large enough to neglect, though it will be estimated.

uv,w R L Lo
CO— W —"Y T Y YA
Vin Reore L §52
S
n
C,

Figure 108—Induction motor per phase equivalent circuit

www.irf.com 119

International
IR Rectifier

6.3.2.1 Measurement Setup

Figure 109 illustrates the power measurement circuit, showing the phase current I. and line-to-

line voltage V,. A 3-phase variable voltage supply could be achieved using a 3-phase AC line

and a 3-phase Variac, but the procedure below will utilize the Reference Design Kit to drive the

motor. A power meter measures the current in two phases and the voltage in the two phases

relative to the third phase. In general when testing motors, it is also a good practice to monitor
the phase current, for example with a current probe and oscilloscope.

Power Meter

Vv I
() >
Mot 1) R iX
iMotion
Reference -®-_1 VLT
Design Kit @ ¢ \Xn
IM

Figure 109—Parameter measurement circuit

6.3.2.2 No Load Test

The motor should be driven at rated voltage and rated frequency without any shaft load. Once
the motor has been started in VHz mode, use the “Reference Speed” function to run the motor at

rated voltage and frequency. (Enter [faeq * 60 * 2 / p] in Reference Speed to command the
correct speed.)

C
= Ro__.
VNLT I iXm 5 82>>Jxm
C

Figure 110—No Load circuit

When the motor is unloaded the slip is close to zero and the rotor branch of the equivalent circuit
can be ignored (Figure 110). The no-load input power (Py.), current (Iy.) and line voltage (VL)
should be noted. Referring to the measurement circuit in Figure 109, the line voltage and input
current are calculated as follows:

V, = —VL l =1
NL — dINL T TL
V3
Then the no-load impedance (Zy.) and resistance (Ry.) can be calculated:

V P
Zy = —L -

www.irf.com 120

International
ISR Rectifier
where Xi = 272-1:rated Li

Note that Ry, includes the stator winding resistance as well as rotational losses. The no load
input reactance can be calculated from:

xNL = \/(ZNL2 - RNLZ)

The no load input reactance is the sum of the stator leakage reactance and the magnetizing
reactance. These parameters will be separated in the next test.

Xu =X+ X,
The core and rotational losses (P..re) are derived from the no load power by subtracting the no
load stator winding losses, and then the core loss resistance (Rc.re) can be approximated:

P = PNL _3|§1LR1

core
2
R ~ VNL
core ~
I:)core / 3

Finally, at no load the phase current equals the magnetizing current:

Im :INL

6.3.2.3 Blocked Rotor Test

For this test, the motor is run at rated current and rated frequency while the rotor is fixed so that it
cannot rotate. Before starting the motor, reduce VHz_Gain to 1/10 of the configuration value
given by MCEWizard. Next, start the motor and use Reference Speed to achieve the rated
frequency. Gradually increase the VHz_Gain until the phase current achieves the rated level.
The phase current can be monitored using a current probe or by tracing |4 and . When \/(Iq2 +
Id2) = 4096, then the phase current has reached the rated current.

R1 jX1 JX2
—WW— Y e A
|
BR ;
VBRT : § R2
G :
Xm>>|R2, Xy

Figure 111—Blocked Rotor circuit

When the rotor is blocked, the rotor circuit impedance is very low and the magnetizing branch of
the equivalent circuit may be ignored (Figure 111) so that:

Zgr =R +R, + J(X1 +X2)
The blocked-rotor input power (Pgr), current (Igr) and line voltage (Vggr) should be noted. Recall
that, according the measurement circuit in Figure 109:

V,
VNL :TE’INL = IL

The input resistance (Rgr) and reactance (Xgr) can now be calculated.

www.irf.com 121

International

TR Rectifier
P
R — BR
"3,
V
LZeg = IBR
BR

Xgr = \/(ZBR2 - RBRZ)

The blocked rotor resistance is the sum of the stator and rotor resistance so the rotor resistance
can now be determined:

Rz = RBR _R1

The blocked rotor reactance is the sum of the stator and rotor leakage reactance. Assume the
stator and rotor reactance are the same and so that the leakage inductances can be determined:

X
X, =X, ="FR
1 2 2
S
27Z—frated

The magnetizing inductance can now be determined:
X=Xy =Xy
L, = m
m =
2 rf

rated

Note that setting X; = X, is an approximation and may be different for different classes of motors.
The table below gives the distribution of leakage reactance for several types of induction motors.

Blocked Rotor Leakage
Motor Type Reactance Distribution
Xi Xo

Squirrel-cage Class A 0.5Xgr 0.5XzR
Squirrel-cage Class B 0.4Xgr 0.6XzR
Squirrel-cage Class C 0.3XgR 0.7XzR
Squirrel-cage Class D 0.5XzR 0.5XzR
Wound rotor 0.5Xgr 0.5Xgr

6.3.3 Configuring for FOC Mode

Using the motor characteristics measured and calculated in the previous section, the full FOC
configuration parameters can be obtained. Return to MCEWizard and fill in the following fields, in
addition to the values from VHz Mode:

Motor Stator Leakage Inductance (L+)

Motor Rotor Resistance (Ry)

Motor Rotor Leakage Inductance (L;)

Motor Core Loss Inductance (Rgore)

Motor Magnetization Inductance (L)

Motor Magnetization Current (I,,)

Minimum Running Speed

Closed-Loop Switch-Over Speed

www.irf.com 122

International

ISR Rectifier

Set the Minimum Running Speed to 15% of the Motor Rated Speed and the Closed-Loop Switch-
Over Speed to 10% of the Motor Rated Speed. (This ensures that the speed command is higher
than the closed loop speed at startup, due to slip.)

Go to the “Verify & Save” page, export the drive parameters and import them into MCEDesigner.
Configure and then run “Start Motor” to control the motor in FOC mode. Tips for starting the
motor are given in the next section.

6.3.4 Parameter Estimation by Saturation Curve

For some applications it may not be possible to block the rotor without damage, or a power meter
may not be available. In these situations, the motor parameters may be estimated using the
saturation curve method described below.

Begin by configuring the motor to run in V/Hz mode as described in Section 6.3.1. Before
starting, reduce the VHz_Gain to 1/10 of the configured value and then run the motor unloaded at
the rated frequency (or the frequency at which the motor will operate). Gradually increase the
VHz_Gain, measuring the phase current I, and line-to-line voltage V,. Plot the phase current I,
vs phase voltage V,/\3 as shown in Figure 112.

Leakage Inductance (L4 + L,)—Measure the line-line inductance at each phase pair. Average the
values and then divide by two to get an estimate of the total leakage inductance at each phase.
This assumes that the magnetization inductance is much larger than the rotor leakage
inductance.

Magnetization Amps (I.,)—The point at which the curve begins to deviate from a straight line
defines the magnetization current. Figure 112 below shows an example saturation curve and the
approximation of the magnetization current of 0.5 A at the dashed line.

Vrms versus Irms
100
80 - / /
2 /
S 60 Zd
X A
> 1
(] 1
@ 40 e .
= |
o / |
20 |
|
|
1
0 T T
0 0.2 0.4 0.6 0.8 1 1.2 14
Amps (rms)

Figure 112—Saturation Curve

www.irf.com 123

International
IGR Rectifier

Magnetization Inductance (L,)—At the magnetization current, calculate the magnetization

inductance as follows

VA

m =
27Z-frated Im
Rotor Resistance (R,)—At the magnetization current, calculate the rotor resistance as follows

Loy 1 Wy, - (27/60)p/2)

L

2

R. =
i g =12
rated = 'm
where wgj;, is the slip mechanical frequency at the rated conditions:
VVslip = frated - 60 2/p ~— W i ated

6.4 General Tips

Starting
In FOC mode if the motor is unloaded, then at start-up the rotor can begin turning and then the

current drops to zero, resulting in a Fault and a failed start. Sometimes the rotor may turn, stop,
turn and stop rapidly before finally triggering a Fault. This happens because the motor speed
rises quickly past the speed reference, causing the torque reference to fall to zero and thereby
eliminating the torque current. The fix is to increase the integral gain of the speed loop PI block.

The other starting tips from Chapter 2 also apply: increase the closed loop frequency or reduce
the value of register KTorque, but do not modify the parking parameters. The purpose of the
parking parameters is to provide a preflux of the induction motor.

Magnetization Current

The magnetization current, as measured above, will allow the motor to deliver the rated torque.
However, if the rated torque is not needed in the application a reduced magnetization current may
be used. This can reduce motor and inverter heating during operation. Other configuration
parameters may need to change if the magnetization current is reduced, for example, the closed
loop speed may need to be increased to in order to achieve good angle estimation.

Slip Tuning
The slip estimation parameters may require some tuning, particularly when the load torque is
much smaller (or larger) than the rated torque.

Speed Range
Note that some induction motors are designed to operate only at 60Hz line frequency. Attempting

to run the motor at speeds significantly different the rated frequency may have problems such as
increased acoustic noise or instability, which cannot be improved by tuning the drive parameters.

www.irf.com 124

Trademarks of Infineon Technologies AG

MHVIC™, uIPM™, uPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, I1soPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowlIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2009-09-22

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
IRMCx300_AppDevGuide

IMPORTANT NOTICE

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	Application Developer’s Guide
	Table of Contents
	1 Introduction
	2 Target Motor on IR Reference Board
	2.1 Measuring the Motor Parameters
	2.1.1 Importing Drive Parameters into MCEDesigner
	2.1.2 Advanced Parameter Measurement—Saturation Effects

	2.2 Starting Application-Specific Testing
	2.2.1 MCEDesigner
	2.2.1.1 Motor Control Sequencer
	2.2.1.2 Status Flags
	2.2.1.3 Fault Flags & Fault Handling
	2.2.1.4 Using GPIO from MCEDesigner

	2.2.2 Possible Hardware Modifications
	2.2.2.1 Inverter Module
	2.2.2.2 Current Feedback

	2.2.3 Variable Scaling
	2.2.3.1 Speed Scaling
	2.2.3.2 Torque Scaling
	2.2.3.3 Current Scaling
	2.2.3.4 Voltage Scaling:
	2.2.3.5 Rotor Angle Scaling
	2.2.3.6 Parking Variables

	2.2.4 Verifying Scalings
	2.2.4.1 Verifying Current Scalings
	2.2.4.2 Verifying DC Bus Scaling

	2.3 Optimizing Starting and Running Parameters
	2.3.1 Before Start-Up
	2.3.2 Start-Up Tuning
	2.3.2.1 Start-Up Sequence
	2.3.2.2 Parking Parameters & Parking Diagnostic
	2.3.2.3 Parking Optimization
	2.3.2.4 Open-Loop angle estimation to Closing the Loop
	2.3.2.5 Troubleshooting the Closing of the Loop
	2.3.2.6 Start Fail
	2.3.2.7 Zero Speed Detection
	2.3.2.8 Phase Loss Fault

	2.3.3 Catch-Spin Starting
	2.3.4 Control Loop Structure & Tuning
	2.3.4.1 Current Controller
	2.3.4.2 Speed Controller
	2.3.4.3 Interior Permanent Magnet Motor Control
	2.3.4.4 Field-Weakening Controller

	2.3.5 Braking the Motor
	2.3.5.1 Regenerative Braking
	2.3.5.2 Zero Vector Braking
	2.3.5.3 Critical Over Voltage Protection

	3 MCE Program Customization
	3.1 The Motion Control Engine
	3.2 IR Standard MCE Program
	3.2.1 Block Diagram
	3.2.1.1 Speed Loop
	3.2.1.2 Misc Loop: Dynamic Vq Limit
	3.2.1.3 Other Features (of the MCE program)

	3.2.2 Input and Output Registers of the MCE Program

	3.3 Simulink MCE Design Components
	3.3.1 MCE Design Hierarchical Format
	3.3.2 The MCE Library
	3.3.3 Standard Simulink Library Components

	3.4 New MCE Design—Start to Finish
	3.4.1 Setting up Matlab/Simulink
	3.4.2 Creating a Complete System Design
	3.4.2.1 Creating a Macro Block Definition
	3.4.2.2 Customizing Motion Peripheral Library Blocks
	3.4.2.3 The Host Register Summary Utility

	3.4.3 The MCE Compiler
	3.4.4 Downloading to the Reference Board
	3.4.4.1 Download to EEPROM
	3.4.4.2 Download to RAM
	3.4.4.3 Design ID and Revision Level Monitoring
	3.4.4.4 Importing an MCE Register Map

	3.5 Example Modifications
	3.5.1 Torque Mode
	3.5.2 Limiting the Speed Feedback Input Variance

	4 Application Hardware Design
	4.1 Schematic Elements
	4.1.1 Component Selection
	4.1.2 A/D Feedback Scaling
	4.1.3 Gate Drive Signals
	4.1.4 A/D Converter Offset Compensation
	4.1.4.1 External Reference for AINx
	4.1.4.2 External Reference for Ifbk Op-Amps
	4.1.4.3 Performing Compensation Calculations
	4.1.4.4 External Voltage Protection

	4.1.5 Overcurrent Protection

	4.2 Layout Recommendations
	4.2.1 Current Feedback Circuit with IRMCF300
	4.2.2 Overcurrent protection layout

	4.3 Testing and Optimization
	4.3.1 Space Vector PWM and Single Shunt Current Reconstruction
	4.3.2 Inverter-Related Testing and MCEWizard Settings
	4.3.2.1 Miscellaneous MCEWizard Settings
	4.3.2.2 Current Feedback Sample Timing
	4.3.2.3 An Example of Optimizing the Current Feedback

	4.3.3 Overcurrent protection

	5 PFC Application Development
	5.1 MCE Program
	5.1.1 Current Loop
	5.1.2 Voltage Loop
	5.1.3 Feedforward
	5.1.4 Enable and Shutdown
	5.1.5 Input and Output Registers

	5.2 Using PFC on the IR Reference Board
	5.2.1 Using the Wizard to create the configuration parameters
	5.2.2 Overcurrent Protection Circuit
	5.2.3 PFC Variable Scaling
	5.2.4 Optimizing Starting and Running
	5.2.4.1 Varying switching frequency
	5.2.4.2 PFC Start-up/Voltage Ramp Rate
	5.2.4.3 Voltage Loop Tuning
	5.2.4.4 Current Loop Tuning

	5.2.5 Other PFC Features
	5.2.5.1 Blanking
	5.2.5.2 SyncDivider
	5.2.5.3 PFC Phasing

	5.2.6 Possible Hardware Modifications
	5.2.6.1 Shunt Resistor
	5.2.6.2 Feedback Gain
	5.2.6.3 DC Bus Sensing
	5.2.6.4 Inductor

	5.3 PFC Hardware Design
	5.3.1 Schematic Elements
	5.3.1.1 DC Bus and AC Input Voltages
	5.3.1.2 A/D Converter Offset Compensation
	5.3.1.3 EMI Filter

	5.3.2 Layout Recommendations

	5.4 Advanced Topics

	6 Induction Motor (IM) Control
	6.1 Introduction
	6.2 IM Control Program
	6.2.1 Volts per Hertz (VHz) Mode
	6.2.1.1 Angle and Voltage Calculation (with Voltage Boost)
	6.2.1.2 Preflux for VHz Mode
	6.2.1.3 VHz Mode Selection
	6.2.1.4 Startup Characteristics of VHz Mode

	6.2.2 FOC Mode
	6.2.2.1 Slip Compensation
	6.2.2.2 Magnetization Current Injection
	6.2.2.3 Stopped Rotor Detection
	6.2.2.4 Preflux for FOC
	6.2.2.5 FOC Mode Selection
	6.2.2.6 Startup Characteristic of FOC mode

	6.2.3 Other Features
	6.2.3.1 DC Bus Voltage Ripple Compensation
	6.2.3.2 Non-Regenerative Braking

	6.3 Parameter Configuration
	6.3.1 Configuring for testing in VHz Mode
	6.3.2 Parameter Measurement
	6.3.2.1 Measurement Setup
	6.3.2.2 No Load Test
	6.3.2.3 Blocked Rotor Test

	6.3.3 Configuring for FOC Mode
	6.3.4 Parameter Estimation by Saturation Curve

	6.4 General Tips

