

Zero-Drift, Rail-to-Rail I/O CMOS Operational Amplifiers

FEATURES

- Low Offset Voltage: 3uV
- Input Offset Drift: 0.03µV/°C
- High Gain Bandwidth Product: 4.3MHz
- Rail-to-Rail Input and Output
- High Gain, CMRR, PSRR:120dB
- High Slew Rate: 2.5V/µs
- Low Noise: 0.93uVp-p (0.01~10Hz)
- Low Power Consumption: 650µA /op amp
- Overload Recovery Time:1us
- Low Supply Voltage: +2.7 V to +5.5 V
- No External Capacitors Required
- Extended Temperature: -40°C to +125°C

APPLICATIONS

- Temperature Sensors
- Medical/Industrial Instrumentation
- Pressure Sensors
- Battery-Powered Instrumentation

Device Information⁽¹⁾

- Active Filtering
- Weight Scale Sensor
- Strain Gage Amplifiers
- Power Converter/Inverter

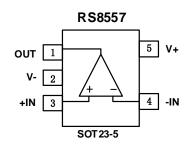
DESCRIPTION

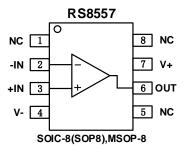
The RS8557, RS8558, RS8559 series of CMOS operational amplifiers use auto-zero techniques to simultaneously provide very low offset voltage ($20\mu V$ max) and near-zero drift over time and temperature. This family of amplifiers has ultralow noise, offset and power.

This miniature, high-precision operational amplifiers offset high input impedance and rail-to-rail input and rail-to-rail output swing. With high gain-bandwidth product of 4.3MHz and slew rate of 2.5V/µs.

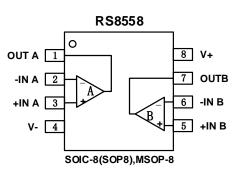
Single or dual supplies as low as $+2.7V (\pm 1.35V)$ and up to $+5.5V (\pm 2.75V)$ may be used.

The RS8557/RS8558/RS8559 are specified for the extended industrial and automotive temperature range (-40°C to 125°C). The RS8557 single amplifier is available in 5-lead SOT23, 8-lead MSOP8 and 8-lead SOIC packages, The RS8558 dual amplifier is available in 8-lead SOIC and 8-lead MSOP narrow surface mount packages, The RS8559 quad amplifier is available in 14-lead SOIC and 14-lead narrow TSSOP packages.


PART NUMBER	PACKAGE	BODY SIZE(NOM)
	SOT23-5	2.90mm×1.60mm
RS8557	SOIC-8(SOP8)	4.90mm×3.90mm
	MSOP-8	3.00mm×3.00mm
D00550	SOIC-8(SOP8)	4.90mm×3.90mm
RS8558	MSOP-8	3.00mm×3.00mm
RS8559	SOIC-14(SOP14)	8.65mm×3.90mm
K30009	TSSOP-14	5.00mm×4.40mm

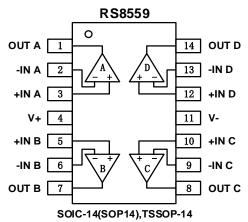

(1) For all available packages, see the orderable addendum at the end of the data sheet.

1


Pin Configuration and Functions (Top View)

Pin Description

		PIN		
NAME	RS8557	RS8557	I/O DESCRIPTION	
	SOT23-5 SOIC-8(SOP8)/MSOP8			
-IN	4	2	Ι	Negative (inverting) input
+IN	3	3	Ι	Positive (noninverting) input
NC	-	1,5,8	-	No internal connection (can be left floating)
OUT	1	6	0	Output
V-	2	4	-	Negative (lowest) power supply
V+	5	7	-	Positive (highest) power supply



Pin Description

NAME	PIN SOIC-8(SOP8)/MSOP8	I/O	DESCRIPTION
-INA	2	I	Inverting input, channel A
+INA	3	I	Noninverting input, channel A
-INB	6	I	Inverting input, channel B
+INB	5	I	Noninverting input, channel B
OUTA	1	0	Output, channel A
OUTB	7	0	Output, channel B
V-	4	-	Negative (lowest) power supply
V+	8	-	Positive (highest) power supply

Pin Configuration and Functions (Top View)

Pin Description

NAME	PIN SOIC-14(SOP14)/TSSOP-14	I/O	DESCRIPTION
-INA	2	I	Inverting input, channel A
+INA	3	I	Noninverting input, channel A
-INB	6	I	Inverting input, channel B
+INB	5	I	Noninverting input, channel B
-INC	9	I	Inverting input, channel C
+INC	10	I	Noninverting input, channel C
-IND	13	I	Inverting input, channel D
+IND	12	I	Noninverting input, channel D
OUTA	1	0	Output, channel A
OUTB	7	0	Output, channel B
OUTC	8	0	Output, channel C
OUTD	14	0	Output, channel D
V-	11	-	Negative (lowest) power supply
V+	4	-	Positive (highest) power supply

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
Voltage	Supply, Vs=(V+) - (V-)		7	
	Signal input pin ⁽²⁾	(V-)-0.5	(V+) +0.5	V
	Signal output pin ⁽³⁾	(V-)-0.5	(V+) +0.5	
	Signal input pin ⁽²⁾	-10	10	mA
Current	Signal output pin ⁽³⁾	-55	55	mA
	Output short-circuit ⁽⁴⁾	Conti	nuous	
	Operating range, T _A	-40	125	
Temperature	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±55mA or less.

(4) Short-circuit to ground, one amplifier per package.

ESD Ratings

			VALUE	UNIT
V/rop)	Electrostatic discharge	Human-body model (HBM)	5000	V
V(ESD)	Electrostatic discharge	Machine Model (MM)	400	v

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage, Vs= (V+) - (V-)	Single-supply	2.7		5.5	V
	Dual-supply	±1.35		±2.75	
Specified temperature		-40		125	°C

Thermal Information: RS8557

	THERMAL METRIC ⁽¹⁾	5PINS	8P	8PINS	
		SOT23-5	SOIC-8	MSOP-8	
$R_{\Theta JA}$	Junction-to-ambient thermal resistance	273.8	116	165	°C/W
R _{ØJC(top)}	Junction-to-case(top) thermal resistance	126.8	60	53	°C/W
R _{ejb}	Junction-to-board thermal resistance	85.9	56	87	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	10.9	12.8	4.9	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	84.9	98.3	85	°C/W
R _{ØJC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	N/A	N/A	°C/W

Thermal Information:RS8558

		RS8		
	THERMAL METRIC ⁽¹⁾	8PI	UNIT	
		SOIC-8	MSOP8	
$R_{\Theta JA}$	Junction-to-ambient thermal resistance	116	165	°C/W
R _{ØJC(top)}	Junction-to-case(top) thermal resistance	60	53	°C/W
R _{ejb}	Junction-to-board thermal resistance	56	87	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	12.8	4.9	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	98.3	85	°C/W
R _{ØJC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	N/A	°C/W

Thermal Information:RS8559

		RS	RS8559 14PINS			
	THERMAL METRIC ⁽¹⁾	14F				
		SOIC-14	TSSOP-14			
R _{ØJA}	Junction-to-ambient thermal resistance	83.8	120.8	°C/W		
R _{ØJC(top)}	Junction-to-case(top) thermal resistance	70.7	34.3	°C/W		
R _{ejb}	Junction-to-board thermal resistance	59.5	62.8	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	11.6	1	°C/W		
Ψ _{JB}	Junction-to-board characterization parameter	37.7	56.5	°C/W		
R _{ØJC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	N/A	°C/W		

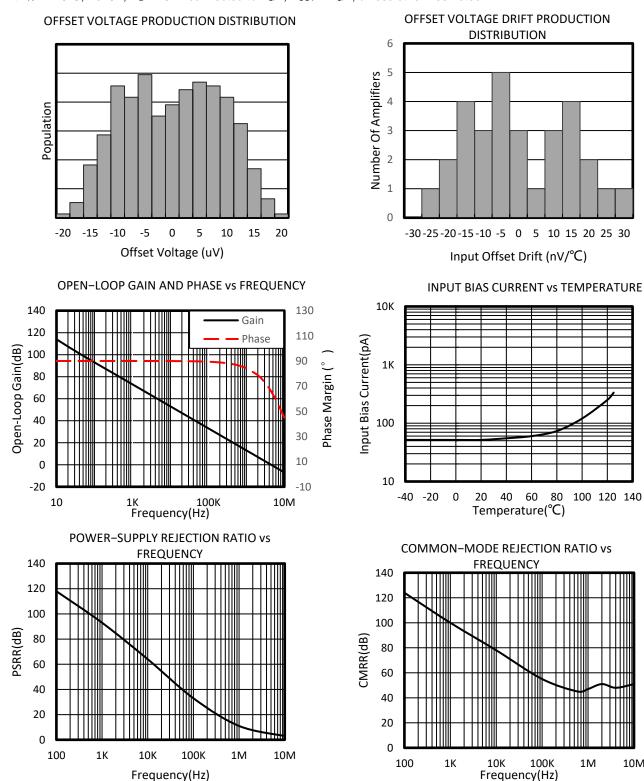
PACKAGE/ORDERING INFORMATION

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking	Package Qty
RS8557XF	SOT23-5	5	1	-40℃~125℃	8557	Tape and Reel,3000
RS8557XK	SOIC-8(SOP8)	8	1	-40℃~125℃	RS8557	Tape and Reel,2500
RS8557XM	MSOP-8	8	1	-40°C~125°C	RS8557	Tape and Reel,3000
RS8558XK	SOIC-8(SOP8)	8	2	-40℃~125℃	RS8558	Tape and Reel,2500
RS8558XM	MSOP-8	8	2	-40℃~125℃	RS8558	Tape and Reel,3000
RS8559XP	SOIC-14(SOP14)	14	4	-40℃~125℃	RS8559	Tape and Reel,2500
RS8559XQ	TSSOP-14	14	4	-40°C~125°C	RS8559	Tape and Reel,3000

ELECTRICAL CHARACTERISTICS

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. (At $T_A = +25^{\circ}C$, $V_s=5V$, $R_L = 10k\Omega$ connected to $V_s/2$, and $V_{OUT} = V_s/2$, unless otherwise noted.)

PARAMETER		CONDITION	RS8557	UNIT		
		oonbinon	MIN	TYP	MAX	0
	M	X - X/2		3	20	
Input Offset Voltage		$V_{CM} = V_s/2$		-	-	μV
VS Temperature VS Power Supply	dV₀₅/dT PSRR	$V_{0} = 10.7V_{0} + 5.5V_{0} = 0$	105	0.03 120	0.2	µV/⁰C dB
	PSKK	VS = +2.7V to +5.5V, VCM = 0	105	0.13		
Channel Separation, dc				0.13		μV/V
INPUT BIAS CURRENT		VCM = Vs/2		50		0
Input Bias Current	I _B	VCIVI = VS/2		50 10		pА
Input Offset Current	l _{os}			10		рА
				0.00		
Input Voltage Noise	e _n p-p	f=0.01Hz to 10Hz		0.93		μVpp
Input Voltage Noise	e _n p-p	f=0.01Hz to 1Hz		0.32		µVpp
Input Voltage Noise Density	e _n	f=1KHz		45		nV/√Hz
Input Current Noise Density	i _n	f=10Hz		2.3		fA/√Hz
					() ()) () ()	.,
Common-Mode Voltage Range	V _{CM}		(V-)-0.2		(V+)+0.2	V
Common-Mode Rejection Ratio	O CMRR	$(V-) - 0.2V < V_{CM} < (V+) + 0.2V$	105	120		dB
Differential				1		pF
Common-Mode				5		pF
OPEN-LOOP GAIN						
Open-Loop Voltage Gain	A _{OL}	RL=10KΩ, VO=0.3V to 4.7V, -40°C~125°C	105	120		dB
DYNAMIC PERFORMANCE						
Slew Rate	SR	G=+1		2.5		V/µs
Gain-Bandwidth Product	GBW			4.3		MHz
Overload Recovery Time				1		us
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	RL=100 KΩ to GND	4.99	4.998		V
		RL=10 KΩ to GND	4.95	4.98		V
Output Voltage Low	V _{OL}	RL=100 KΩ to V+		1	10	mV
		RL=10 KΩ to V+		10	30	mV
Short-Circuit Current	I _{SC}			48		mA
POWER SUOOLY						
Operating Voltage Range			2.7		5.5	V
Quiescent Current/ Amplifier	Ι _Q			650	900	uA


40 60 80

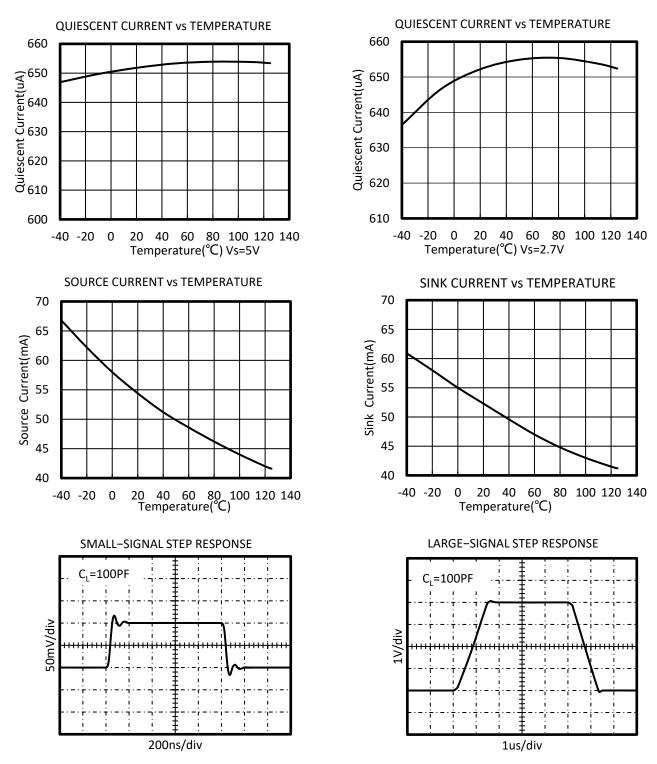
10K

100K

TYPICAL CHARACTERISTICS

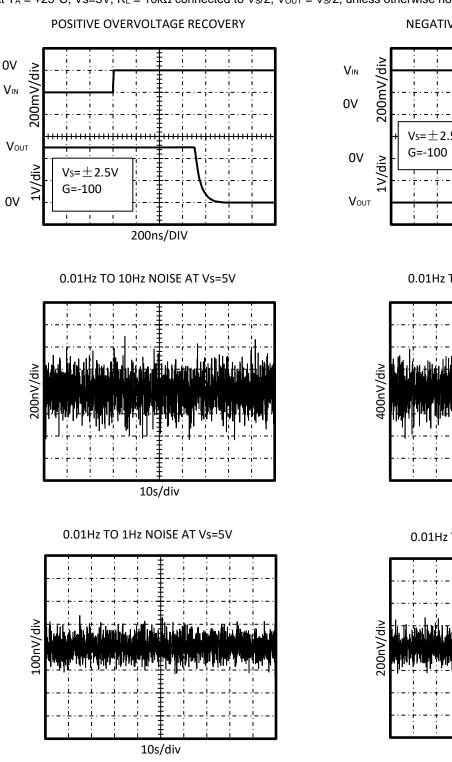
At $T_A = +25^{\circ}C$, Vs=5V, R_L = 10k Ω connected to Vs/2, V_{OUT} = Vs/2, unless otherwise noted.

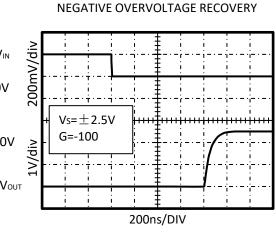
1M

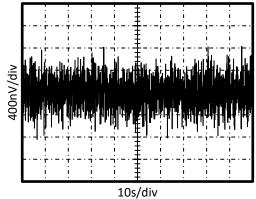

10M

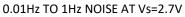
100 120 140

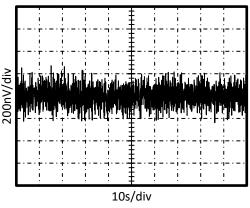
TYPICAL CHARACTERISTICS


At $T_A = +25^{\circ}C$, Vs=5V, $R_L = 10k\Omega$ connected to Vs/2, Vout = Vs/2, unless otherwise noted.




TYPICAL CHARACTERISTICS


At $T_A = +25^{\circ}C$, Vs=5V, $R_L = 10k\Omega$ connected to Vs/2, Vout = Vs/2, unless otherwise noted.



0.01Hz TO 10Hz NOISE AT Vs=2.7V

Detailed Description

Overview

The RS8557, RS8558, RS8559 series op amps are unity-gain stable and free from unexpected output phase reversal. They use auto-zeroing techniques to provide low offset voltage and very low drift over time and temperature.

Good layout practice mandates use of a 0.1µF capacitor placed closely across the supply pins.

For lowest offset voltage and precision performance, circuit layout and mechanical conditions should be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in thermocouple junctions formed from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring that they are equal on both input terminals.

- Use low thermoelectric-coefficient connections (avoid dissimilar metals).
- Thermally isolate components from power supplies or other heat-sources.
- Shield op amp and input circuitry from air currents, such as cooling fans.

Following these guidelines will reduce the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of $0.1 \mu V/^{\circ}C$ or higher, depending on materials used.

OPERATING VOLTAGE

The RS8557, RS8558, RS8559 series op amps operate over a power-supply range of $\pm 2.7V$ to $\pm 5.5V$ ($\pm 1.35V$ to $\pm 2.75V$). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

APPLICATION NOTE

Typical Applications

Bidirectional Current-Sensing

This single-supply, low-side, bidirectional current-sensing solution detects load currents from -1 A to 1 A. The single-ended output spans from 110 mV to 3.19 V. This design uses the RS8557, RS8558, RS8559 because of its low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other provides the reference voltage.

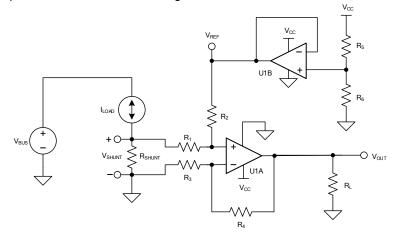


Figure 4. Bidirectional Current-Sensing Schematic

Design Requirements

This solution has the following requirements:

- Supply voltage: 3.3 V
- Input: -1 A to 1 A
- Output: 1.65 V ±1.54 V (110 mV to 3.19 V)

Detailed Design Procedure

The load current, I_{LOAD}, flows through the shunt resistor (R_{SHUNT}) to develop the shunt voltage, V_{SHUNT}. The shunt voltage is then amplified by the difference amplifier, which consists of U1A and R₁ through R₄. The gain of the difference amplifier is set by the ratio of R₄ to R₃. To minimize errors, set R₂ = R₄ and R₁ = R₃. The reference voltage, V_{REF}, is supplied by buffering a resistor divider using U1B. The transfer function is given by Equation 1. $V_{OUT}=V_{SHUNT} \times Gain _{Diff_Amp} + V_{REF}$

Where

VSHUNT=ILOAD × RSHUNT

$$Gain_{Diff_{Amp}} = \frac{R_4}{R_3}$$
$$V_{REF} = V_{CC} \times \left(\frac{R_6}{R_5 + R_6}\right)$$

(1)

There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the shunt resistor and the ratios of R_4 to R_3 and, similarly, R_2 to R_1 . Offset errors are introduced by the voltage divider (R_5 and R_6) and how closely the ratio of R_4/R_3 matches R_2/R_1 . The latter value impacts the CMRR of the difference amplifier, which ultimately translates to an offset error. Because this is a low-side measurement, the value of V_{SHUNT} is the ground potential for the system load. Therefore, it is important to place a maximum value on V_{SHUNT} . In this design, the maximum value for V_{SHUNT} is set to 100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV and maximum load current of 1 A.

$$R_{\text{SHUNT(Max)}} = \frac{V_{\text{SHUNT(Max)}}}{I_{\text{LOAD(Max)}}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m}\Omega$$

(2) The tolerance of R_{SHUNT} is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5% was selected. If greater accuracy is required, select a 0.1% resistor or better.

The load current is bidirectional; therefore, the shunt voltage range is -100 mV to 100 mV. This voltage is

divided down by R₁ and R₂ before reaching the operational amplifier, U1A. Take care to ensure that the voltage present at the noninverting node of U1A is within the common-mode range of the device. Therefore, it is important to use an operational amplifier, such as the RS8557, RS8558, RS8559, that has a common-mode range that extends below the negative supply voltage. Finally, to minimize offset error, note that the RS8557, RS8558, RS8559 has a typical offset voltage of $\pm 3\mu V$ ($\pm 20\mu V$ maximum). Given a symmetric load current of – 1 A to 1 A, the voltage divider resistors (R₅ and R₆) must be equal. To be consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, $10k^{\Omega}$ resistors were used. To set the gain of the difference amplifier, the common-mode range and output swing of the RS8557, RS8558, RS8559 must be considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing, respectively, of the RS8557, RS8558, RS8559 given a 3.3V supply.

$$\begin{array}{c} -100 \text{mV} < \text{V}_{\text{CM}} < 3.4 \text{V} \\ 100 \text{mV} < \text{V}_{\text{OUT}} < 3.2 \text{V} \end{array} \tag{3} \\ \begin{array}{c} (3) \\ (4) \end{array}$$

The gain of the difference amplifier can now be calculated as shown in Equation 5.

$$Gain_{Diff_{Amp}} = \frac{V_{OUT_{Max}} - V_{OUT_{Min}}}{R_{SHUNT} \times (I_{MAX} - I_{MIN})} = \frac{3.2 \text{ V} - 100 \text{ mV}}{100 \text{ m}\Omega \times [1 \text{ A} - (-1 \text{ A})]} = 15.5 \frac{\text{V}}{\text{V}}$$
(5)

The resistor value selected for R₁ and R₃ was $1k\Omega$. $15.4k\Omega$ was selected for R₂ and R₄ because it is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.

The gain error of the circuit primarily depends on R₁ through R₄. As a result of this dependence, 0.1% resistors were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.

Application Curve

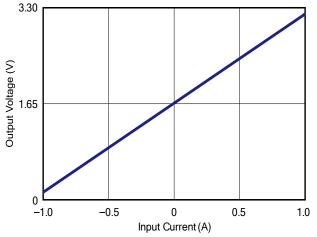


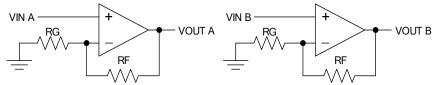
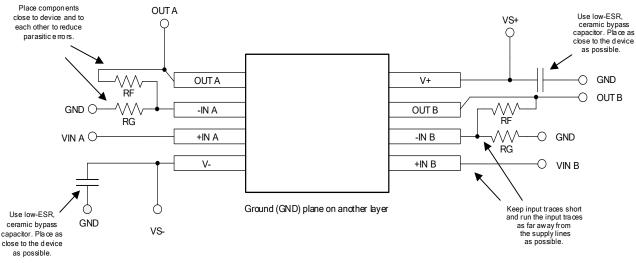
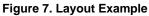
Figure 5. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current

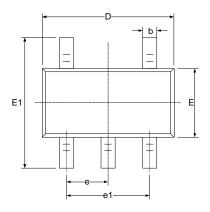
LAYOUT Layout Guidelines

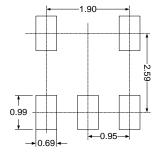
Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1uF capacitor closely across the supply pins.

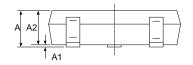
These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

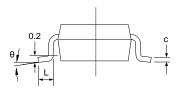
Layout Example

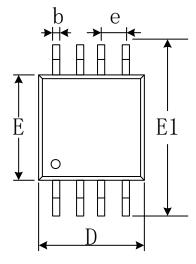

Figure 6. Schematic Representation

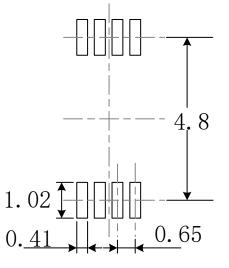


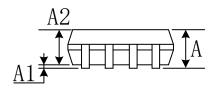


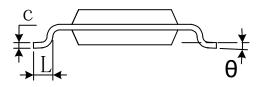


PACKAGE OUTLINE DIMENSIONS SOT23-5

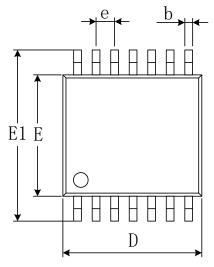


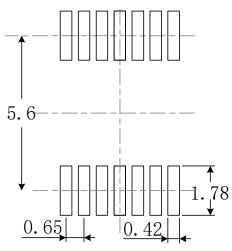



Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°



MSOP-8

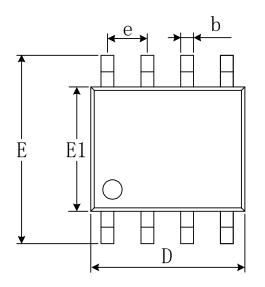


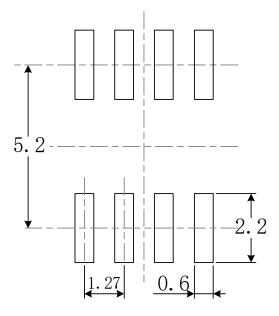


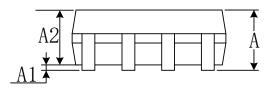
Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
с	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
е	0.650(BSC)		0.026(BSC)	
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°

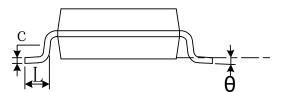


TSSOP-14

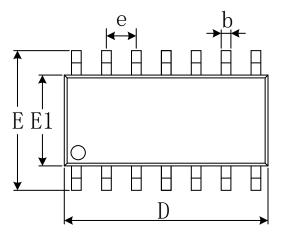


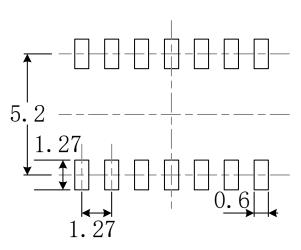

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A		1.200		0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.190	0.300	0.007	0.012
с	0.090	0.200	0.004	0.008
D	4.860	5.100	0.191	0.201
E	4.300	4.500	0.169	0.177
E1	6.250	6.550	0.246	0.258
е	0.650(BSC)		0.026(BSC)	
L	0.500	0.700	0.020	0.028
Н	0.25(TYP)		0.01(TYP)	
θ	1°	7°	1°	7°

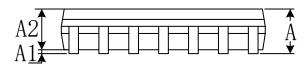


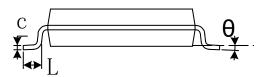

RS8557,RS8558,RS8559

SOIC-8(SOP8)






Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270(BSC)		0.050(BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°



SOIC-14(SOP14)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Мах	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.310	0.510	0.012	0.020
С	0.100	0.250	0.004	0.010
D	8.450	8.850	0.333	0.348
е	1.270(BSC)		0.050(BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°