FM8625H（文件编号：S\＆CIC2082）SPDT Switch for 5G Applications

PRODUCT DESCRIPTION

The FM8625H is a Single－Pole，Double－Throw （SPDT）GSM／LTE／WCDMA／WiFi transmitting and receiving switch．Switching is controlled by an integrated GPIO interface with a single control pin．

The FM8625H SPDT switch is provided in a compact $1.1 \mathrm{~mm} \times 0.7 \mathrm{~mm} \times 0.5 \mathrm{~mm} 6$－lead DFN package which allows for a small solution size with no need for external DC blocking capacitors unless DC is applied externally．

A functional block diagram is shown in Figure 1 and the pin configuration are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Figure 1．FM8625H Block Diagram

FEATURES

－Broadband frequency range： 0.1 to 6.0 GHz
－Low insertion loss： 0.45 dB ＠ 2.7 GHz
－Low insertion loss： 0.65 dB ＠ 5.8 GHz
－High isolation： 30 dB up to 2.7 GHz
－P0．1dB： 38 dBm
－No external DC blocking capacitors required
－Single GPIO control line with voltage regulator：

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CTL}}=0 \text { to } \mathrm{VDD} \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DD}}=1.62 \text { to } 3.3 \mathrm{~V}
\end{aligned}
$$

－Small， $1.1 \mathrm{~mm} \times 0.7 \mathrm{~mm} \times 0.5 \mathrm{~mm} 6$－lead DFN package

APPLICATIONS

－GSM／WCDMA／LTE transmitting and receiving
－WiFi 2．4G／5G transmitting and receiving
－HPUE applications

Figure 2．FM8625H Pinout（Top View）

FM8625H（文件编号：S\＆CIC2082）SPDT Switch for 5G Applications

FUNCTION CHARACTERISTICS

Figure 3．FM8625H Application Circuit
Table 1．Pin Descriptions

No．	Name	Description	No．	Name	Description
1	RF2	RF Port2	6	VCTL	Logic Control Voltage
2	GND	Ground	5	ANT	Antenna Port
3	RF1	RF Port1	4	VDD	DC Power Supply Voltage

Table 2．VCTL Truth Table for RF Channel Operating Mode

VCTL	RF Channel Operating Mode
Low	ANT to RF1 active
High	ANT to RF2 active

FM8625H（文件編号：S\＆CIC2082）
 SPDT Switch for 5G Applications

FUNCTION CHARACTERISTICS

Table 3．Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
DC Supply Voltage	$V_{D D}$	0	＋3．6	
Digital Control Voltage	$\mathrm{V}_{\text {cti }}$	0	＋3．0	V
RF Input Peak Power				
cW	$\mathrm{P}_{\text {IN }}$		37	dBm
20\％DC	$\mathrm{P}_{\text {IN }}$		38	
Device operating temperature	T_{OP}	－40	＋90	${ }^{\circ} \mathrm{C}$
Device storage temperature	$\mathrm{T}_{\text {STG }}$	－55	＋150	
Electrostatic Discharge				
Human body model（HBM），Class 1C	$\mathrm{V}_{\text {ESD（HBM）}}$		1000	V
Machine Model（MM），Class A	$\mathrm{V}_{\text {ESD（MM）}}$		100	
Charged device model（CDM），Class III	$\mathrm{V}_{\text {ESD（CDM）}}$		500	

Note：Exposure to maximum rating conditions for extended periods may reduce device reliability．There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value．Exceeding any of the limits listed here may result in permanent damage to the device．

Table 4．Recommended Operating Conditions

Parameter	Symbol	MIN	TYP	MAX	Unit
Operating Frequency	F_{0}	0.1		5.8	GHz
DC Supply Voltage	V_{DD}	1.62	2.8	3.3	
Logic Control Voltage High	$\mathrm{V}_{\text {CTL＿H }}$	1.62	1.8	VDD	
Logic Control Voltage Low	$\mathrm{V}_{\text {CTL＿L }}$	0	0	0.3	V

FM8625H（文件编号：S\＆CIC2082）
SPDT Switch for 5G Applications
Table 5．Nominal Operating Parameters

Parameter	Symbol	Specification			Unit	Condition
		MIN	TYP	MAX		
DC Performances						
DC Supply Current	IDD		100	130	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$
Current on VCTL	$\mathrm{I}_{\text {ctL }}$			5		$\mathrm{V}_{\text {CTL }}=1.8 \mathrm{~V}$
DC Supply Turn－on／Turn－ off Time	Ton／off			10	$\mu \mathrm{s}$	From 50\％of final VDD voltage to 90\％／10\％of final RF power
RF Path Switching Time	Tsw		2	3	$\mu \mathrm{s}$	From 50\％of final VCTL voltage to 10\％／90\％of final RF power
RF Performances						
Insertion Loss （RF1 or RF2 to ANT pin）	IL		$\begin{aligned} & 0.30 \\ & 0.35 \\ & 0.45 \\ & 0.50 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.45 \\ & 0.50 \\ & 0.60 \\ & 0.75 \end{aligned}$	dB	$\begin{aligned} & \mathrm{F}_{0}=0.1 \text { to } 1.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=1.0 \text { to } 2.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=2.0 \text { to } 3.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=3.0 \text { to } 3.8 \mathrm{GHz} \\ & \mathrm{~F}_{0}=4.8 \text { to } 6.0 \mathrm{GHz} \end{aligned}$
Isolation （ANT to RF1 or RF2）	ISO	$\begin{aligned} & 35 \\ & 32 \\ & 28 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \\ & 25 \\ & 20 \end{aligned}$			$\begin{aligned} & \mathrm{F}_{0}=0.1 \text { to } 1.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=1.0 \text { to } 2.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=2.0 \text { to } 3.0 \mathrm{GHz} \\ & \mathrm{~F}_{0}=3.0 \text { to } 3.8 \mathrm{GHz} \\ & \mathrm{~F}_{0}=4.8 \text { to } 6.0 \mathrm{GHz} \end{aligned}$
Voltage Standing Wave Ratio	VSWR		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mathrm{F}_{0}=0.1 \text { to } 2.7 \mathrm{GHz} \\ & \mathrm{~F}_{0}=2.7 \text { to } 6.0 \mathrm{GHz} \end{aligned}$
Input 0.1 dB Compression Point（ From ANT to RF1 and RF2 ）	$\mathrm{P}_{0.1 \mathrm{~dB}}$	37	38		dBm	$\mathrm{F}_{0}=0.95$ to 6.0 GHz
2nd Harmonic	$2 \mathrm{~F}_{0}$		$\begin{aligned} & -75 \\ & -85 \end{aligned}$	$\begin{aligned} & -65 \\ & -75 \end{aligned}$	dBc	$\begin{aligned} & \mathrm{F}_{0}=900 \mathrm{MHz} @ 35 \mathrm{dBm} \\ & \mathrm{~F}_{0}=900 \mathrm{MHz} @ 26 \mathrm{dBm} \end{aligned}$
3rd Harmonic	$3 F_{0}$		$\begin{aligned} & -75 \\ & -85 \end{aligned}$	$\begin{aligned} & -65 \\ & -75 \end{aligned}$		$\mathrm{F}_{0}=900 \mathrm{MHz}$＠ 35 dBm $\mathrm{F}_{0}=900 \mathrm{MHz}$＠26dBm

