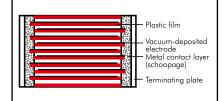
Metallized Polyphenylene-Sulphide (PPS) SMD Film Capacitors with Box Encapsulation. Capacitances from 0.01 μ F to 2.2 μ F. Rated Voltages from 63 VDC to 1000 VDC. Size Codes from 1812 to 6054.

Special Features

- Size codes 1812, 2220, 2824, 4030,5040 and 6054 with PPS and encapsulated
- Operating temperature up to 140° C
- Self-healing
- Suitable for lead-free soldering
- Low dissipation factor
- Low dielectric absorption
- Very constant capacitance value versus temperature
- According to RoHS 2011/65/EU

Typical Applications


For general applications in high temperature circuits e.g.

- By-pass
- Blocking
- Coupling and decoupling
- Timing
- Filtering
- Oscillating circuits

Construction

Dielectric:

Polyphenylene-sulphide (PPS) film Capacitor electrodes: Vacuum-deposited Internal construction:

Encapsulation:

Solvent-resistant, flame-retardant plastic case, UL 94 V-0 **Terminations:** Tinned plates.

Marking: Box colour: Black.

Electrical Data

Capacitance range: 0.01 µF to 2.2 µF Rated voltages: 63 VDC, 100 VDC, 250 VDC, 400 VDC,

630 VDC, 1000 VDC **Capacitance tolerances:** ±20%, ±10% (±5% available subject to special enquiry)

Operating temperature range: -55° C to $+140^{\circ}$ C

Climatic test category:

55/140/56 in accordance with IEC **Insulation resistance** at $+20^{\circ}$ C:

Test voltage:

1.6 U_r, 2 sec.

Voltage derating:

For DC and AC voltages a voltage derating factor of 1% per K must be applied from +100° C and of 2% per K from +125° C.

Reliability:

Operational life $>300\,000$ hours Failure rate <2 fit (0.5 x U_r and 40° C)

monunon	Constan		
U _r	U _{test}	C ≤ 0.33 µF	0.33 µF < C ≤ 2.2 µF
63 VDC 100 VDC	50 V 100 V	≥ 1 x 10 ⁴ MΩ	\geq 3000 sec (M $\Omega \times \mu$ F)
≥ 250 VDC	100 V	\geq 3 x 10 ⁴ M Ω	≥6000 sec (MΩ × µF)

Measuring time: 1 min.

Dissipation factors at $+20^{\circ}$ C: tan δ

at f	C ≤ 0.1 µF	0.1 µF < C ≤ 1.0 µF	C > 1.0 µF
1 kHz 10 kHz	≤ 15 x 10 ⁻⁴ ≤ 25 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴ ≤ 25 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴
100 kHz	$\leq 50 \times 10^{-4}$	-	_

Maximum pulse rise time:

Capacitance		max. pulse rise time V/µsec 63 VDC 100 VDC 250 VDC 400 VDC 630 VDC 1000									
μF	63 VDC	100 VDC	250 VDC	400 VDC	630 VDC	1000 VDC					
0.01 0.022	25	25	30	35	40	45					
0.033 0.068	15	15	20	25	28	32					
0.1 0.22	10	10	12	15	-	-					
0.33 0.68	5	5	6	8	-	-					
1.0 2.2	3	3	-	-	-	-					

Dip Solder Test/Processing

Resistance to soldering heat:

Test Tb in accordance with DIN IEC 60068-2-58/DIN EN 60384-20. Soldering bath temperature max. 260° C. Soldering duration max. 5 sec. Change in capacitance Δ C/C < 5%. **Soldering process:**

Re-flow soldering (see temperature/time graphs page 13).

Packing

Available taped and reeled in blister pack.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

Continuation

General Data

		63	3 VDC/40 VAC*		10	0 VDC/63 VAC*	250 VDC/160 VAC*				
Capacitance	Size	H	Part number	Size	H	Part number	Size	H	Part number		
	code	± 0.3	Fan number	code	± 0.3	Fan number	code	± 0.3	ran number		
0.01 µF	1812	3.0	SMDIC02100KA00	1812	3.0	SMDID02100KA00	2220	3.5	SMDIF02100QA00		
p.	2220	3.5	SMDIC02100QA00	2220	3.5	SMDID02100QA00					
0.015 "	1812	3.0	SMDIC02150KA00	1812	3.0	SMDID02150KA00	2220	3.5	SMDIF02150QA00		
	2220	3.5	SMDIC02150QA00	2220	3.5	SMDID02150QA00					
0.022 "	1812	3.0	SMDIC02220KA00	1812	3.0	SMDID02220KA00	2220	3.5	SMDIF02220QA00		
"	2220	3.5	SMDIC02220QA00	2220	3.5	SMDID02220QA00	2824	3.0	SMDIF02220TA00		
0.033 "	1812	3.0	SMDIC02330KA00	1812	3.0	SMDID02330KA00	2824	3.0	SMDIF02330TA00		
	2220	3.5	SMDIC02330QA00	2220	3.5	SMDID02330QA00	4030	5.0	SMDIF02330VA00		
	2824	3.0	SMDIC02330TA00	2824	3.0	SMDID02330TA00					
0.047 "	1812	3.0	SMDIC02470KA00	1812	3.0	SMDID02470KA00	2824	5.0	SMDIF02470TB00		
	2220	3.5	SMDIC02470QA00	2220	3.5	SMDID02470QA00	4030	5.0	SMDIF02470VA00		
	2824	3.0	SMDIC02470TA00	2824	3.0	SMDID02470TA00					
0.068 "	1812	3.0	SMDIC02680KA00	2220	3.5	SMDID02680QA00	2824	5.0	SMDIF02680TB00		
	2220	3.5	SMDIC02680QA00	2824	3.0	SMDID02680TA00	4030	5.0	SMDIF02680VA00		
	2824	3.0	SMDIC02680TA00								
0.1 µF	1812	3.0	SMDIC03100KA00	2220	3.5	SMDID03100QA00	2824	5.0	SMDIF03100TB00		
	2220	3.5	SMDIC03100QA00	2824	3.0	SMDID03100TA00	4030	5.0	SMDIF03100VA00		
	2824	3.0	SMDIC03100TA00				5040	6.0	SMDIF03100XA00		
0.15 "	1812	4.0	SMDIC03150KB00	2824	3.0	SMDID03150TA00	4030	5.0	SMDIF03150VA00		
	2220	3.5	SMDIC03150QA00				5040	6.0	SMDIF03150XA00		
	2824	3.0	SMDIC03150TA00				6054	7.0	SMDIF03150YA00		
0.22 "	2220	4.5	SMDIC03220QB00	2220	4.5	SMDID03220QB00	4030	5.0	SMDIF03220VA00		
	2824	5.0	SMDIC03220TB00	2824	5.0	SMDID03220TB00	5040	6.0	SMDIF03220XA00		
							6054	7.0	SMD1F03220YA00		
0.33 "	2220	4.5	SMDIC03330QB00	2824	5.0	SMDID03330TB00	5040	6.0	SMDIF03330XA00		
	2824	5.0		4030	5.0	SMDID03330VA00	6054	7.0	SMDIF03330YA00		
	4030	5.0	SMDIC03330VA00								
0.47 "	2220	4.5	SMDIC03470QB00	2824	5.0		6054	7.0	SMDIF03470YA00		
	2824	5.0	SMDIC03470TB00	4030	5.0	SMDID03470VA00					
0.40	4030	5.0	SMDIC03470VA00	1000	5.0						
0.68 "	2824	5.0	SMDIC03680TB00	4030	5.0	SMDID03680VA00					
	4030	5.0	SMDIC03680VA00								
10 5	0001	5.0		50.10	1.0						
1.0 µF	2824	5.0		5040	6.0	SMDID04100XA00					
	4030 5040	5.0	SMDIC04100VA00 SMDIC04100XA00								
1.5		6.0		1051	70			Part	number completion:		
1.5 "	4030 5040	5.0 6.0	SMDIC04150VA00 SMDIC04150XA00	6054	7.0	SMDID04150YA00					
	3040	0.0						loler	rance: 20 % = M		
2.2 "	6054	7.0	SMDIC04220YA00	6054	7.0	SMDID04220YA00			10 % = K		
2.2 "	0054	7.0		0054	7.0	SIVIDID042201A00			5% = J		
								Pack			
								Pin le	ength: none = 00		
* AC voltages	+ < 100	H_{-} 1									

* AC voltages: f \leq 400 Hz; 1.4 x U_{rms} + UDC \leq U_r

Dims. in mm.

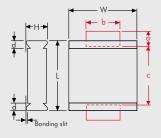
Rights reserved to amend design data without prior notification.

Continuation page 25

Taped version see page 160.

Continuation

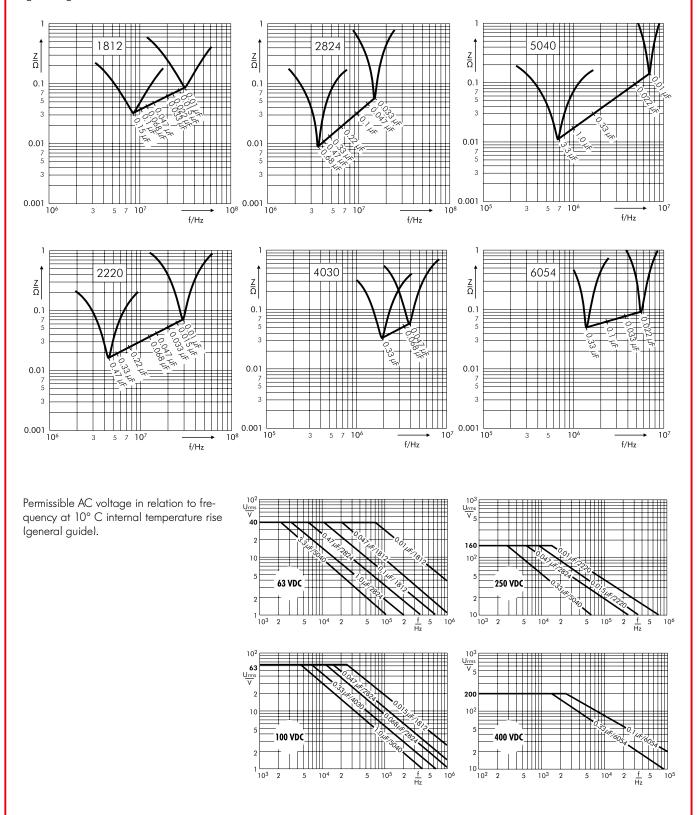



General Data

	400 VDC/200 VAC*					0 VDC/300 VAC*	1000 VDC/400 VAC*					
Capacitance	Size code	Н ± 0.3	Part number	Size code	H ± 0.3	Part number	Size code	H ± 0.3	Part number			
0.01 µF				5040	6.0	SMDIJ02100XA00	5040	6.0	SMDIO12100XA00			
0.015 "				5040	6.0	SMDIJ02150XA00	5040	6.0	SMDIO12150XA00			
0.022 "	4030 5040		SMDIG02220VA00 SMDIG02220XA00	5040		SMDIJ02220XA00	6054	7.0	SMDIO12220YA00			
0.033 "	4030 5040	6.0	SMDIG02330VA00 SMDIG02330XA00	5040		SMDIJ02330XA00	6054	7.0	SMDIO12330YA00			
0.047 "	4030 5040	6.0	SMDIG02470VA00 SMDIG02470XA00	5040		SMDIJ02470XA00						
0.068 "	4030 5040		SMDIG02680VA00 SMDIG02680XA00	6054	7.0	SMDIJ02680YA00						
0.1 µF	4030 5040 6054	6.0 7.0	SMDIG03100VA00 SMDIG03100XA00 SMDIG03100YA00									
0.15 "	5040 6054	7.0	SMDIG03150XA00 SMDIG03150YA00									
0.22 "	6054	7.0	SMDIG03220YA00									
0.33 "	6054	7.0	SMDIG03330YA00									

* AC voltages: f \leq 400 Hz; 1.4 x U_{rms} + UDC \leq U_r

Dims. in mm.

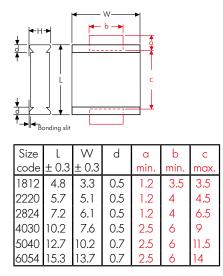

Size code	L ±0.3	₩ ±0.3	d	a min.	b min.	c max.
1812	4.8	3.3	0.5	1.2	3.5	3.5
2220	5.7	5.1	0.5	1.2	4	4.5
2824	7.2	6.1	0.5	1.2	4	6.5
4030	10.2	7.6	0.5	2.5	6	9
5040	12.7	10.2	0.7	2.5	6	11.5
6054	15.3	13.7	0.7	2.5	6	14

Part number completion: Tolerance: 20 % = M 10 % = K 5 % = JPacking: bulk = S Pin length: none = 00 Taped version see page 160.

Rights reserved to amend design data without prior notification.

Continuation

Impedance change with frequency (general guide).

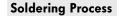

Recommendation for Processing and Application of SMD Capacitors

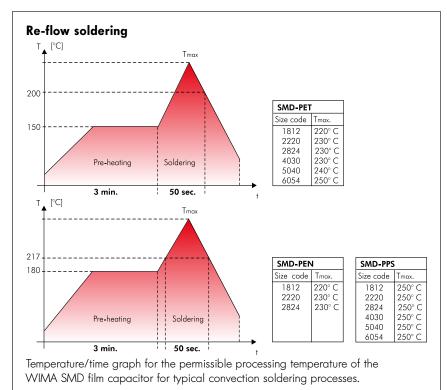
Layout Form

The components can generally be positioned on the carrier material as desired. In order to prevent soldering shadows or ensure regular temperature distribution, extreme concentration of the components should be avoided. In practice, it has proven best to keep a minimum distance of the soldering surfaces between two WIMA SMDs of twice the height of the components.

Solder Pad Recommendation

The solder pad size recommendations given for each individual series are to be understood as minimum dimensions which can at any time be adjusted to the layout form.


Processing


The processing of SMD components

- assembling

- soldering
- electrical final inspection/calibrating

must be regarded as a complete process. The soldering of the printed circuit board, for example, can constitute considerable stress on all the electronic components. The manufacturer's instructions on the processing of the components are mandatory.

Due to versatile procedures exact processing parameters for re-flow soldering processes cannot be specified. The graph depicted is to be understood as a recommendation to help establishing a suitable soldering profile fulfilling the requirements in practice at the user. During processing a max. temperature of $T=210^{\circ}$ C inside the component should not be exceeded. Due to the differing heat absorption the length of the soldering process should be kept as short as possible for smaller size codes.

SMD Handsoldering

WIMA SMD capacitors with plastic film dielectric are generally suitable for hand-soldering, e.g. for lab purposes, with a soldering iron where, however, similar to automated soldering processes, a certain duration and temperature should not be exceeded. These parameters are dependent on the physical size of the components and the relevant heat absorption involved. The below data are to be regarded as guideline values and should serve to avoid damage to the dielectric caused by excessive heat during the soldering process. The soldering quality depends on the tool used and on the skill and experience of the person with the soldering iron in hand.

Size code	Temperature °C / °F	Time duration
1812	250 / 482	2 sec plate 1 / 5 sec off / 2 sec plate 2
2220	250 / 482	3 sec plate 1 / 5 sec off / 3 sec plate 2
2824	260 / 500	3 sec plate 1 / 5 sec off / 3 sec plate 2
4030	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2
5040	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2
6054	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2

Recommendation for Processing and Application of SMD Capacitors (Continuation)

Solder Paste

To achieve reliable soldering results one of the following solder alloys have from case to case proven being workable:

Lead free solder paste

Sn - Bi Sn - Zn (Bi) Sn - Ag - Cu (suitable for SMD-PET 5040/ 6054, SMD-PEN and SMD-PPS)

Solder paste with lead

Sn - Pb - Ag (Sn60-Pb40-A, Sn63-Pb37-A)

Washing

WIMA SMD components with plastic encapsulation - like all other components of similar construction irrespective of the make - cannot be regarded as hermetically sealed. Due to today's common washing substances, e.g. on aqueous basis instead of the formerly used halogenated hydrocarbons, with enhanced washing efficiency it became obvious that assembled SMD capacitors may show an impermissibly high deviation of the electrical parameters after a corresponding washing process. Hence it is recommended to refrain from applying industrial washing processes for WIMA SMD capacitors in order to avoid possible damages.

Initial Operation/Calibration

Due to the stress which the components are subjected to during processing, reversible parameter changes occur in almost all electronic components. The capacitance recovery accuracy to be expected with careful processing is within a scope of

|∆C/C**|**≤ 5 %.

For the initial operation of the device a minimum storage time of

 $t \ge 24$ hours

is to be taken into account. With calibrated devices or when the application is largely dependent on capacitance it is advisable to prolong the storage time to

t ≥ 10 days

In this way ageing effects of the capacitor structure can be anticipated. Parameter changes due to processing are not to be expected after this period of time

Humidity Protection Bags

Taped WIMA SMD capacitors are shipped in humidity protection bags according to JEDEC standard (ESD/EMI-shield/watervapour proof).

Under controlled conditions the components can be stored two years and more in the originally sealed bag. Opened packing units should immediately be used up for processing. If storage is necessary the opened packing units should be stored air-tight in the original plastic bag.

Reliability

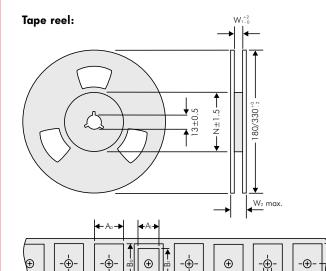
Taking account of the manufacturer's guidelines and compatible processing, the WIMA SMD stand out for the same high quality and reliability as the analogous through-hole WIMA series. The technology of metallized film capacitors used e.g. in WIMA SMD-PET achieves the best values for all fields of application. The expected value is about:

$\lambda_0 \leqslant 2$ fit

Furthermore the production of all WIMA components is subject to the regulations laid down by ISO 9001:2015 as well as the guidelines for component specifications set out by IEC quality assessment system (IECQ) for electronic components.

Electrical Characteristics and Fields of Application

Basically the WIMA SMD series have the same electrical characteristics as the analogous through-hole WIMA capacitors. Compared to ceramic or tantalum dielectrics WIMA SMD capacitors have a number of other outstanding qualities:


- favourable pulse rise time
- Iow ESR
- Iow dielectric absorption
- available in high voltage series
- Iarge capacitance spectrum
- stand up to high mechanical stress
- good long-term stability

As regards technical performance as well as quality and reliability, the WIMA SMD series offer the possibility to cover nearly all applications of conventionally through-hole film capacitors with SMD components. Furthermore, the WIMA SMD series can now be used for all the demanding capacitor applications for which, in the past, the use of through-hole components was mandatory:

- measuring techniques
- oscillator circuits
- differentiating and integrating circuits
- A/D or D/A transformers
- sample and hold circuits
- automotive electronics

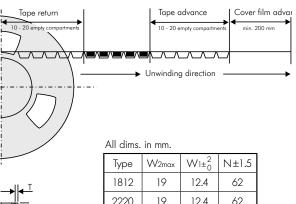
With the WIMA SMD programme available today, the major part of all plastic film capacitors can be replaced by WIMA SMD components. The field of application ranges from standard coupling capacitors to use in switch-mode power supplies as filter or charging capacitors with high voltage and capacitance values, as well as in telecommunications e.g. the well-known telephone capacitor $1 \mu F/250VDC$.

Blister Tape Packaging and Packing Units of the WIMA SMD Capacitors

 \oplus

-⊕-

P


⊕ -⊕-

Ð

-⊕- ⊕ ⊕

-⊕́-

Tape advance and return:

Туре	W2max	$Wl_{1\pm0}^2$	N±1.5
1812	19	12.4	62
2220	19	12.4	62
2824	19	12.4	62
4030	22.4	16.4	60
5040	30.4	24.4	90
6054	30.4	24.4	90

Size Code	1812	A0 ±0,1	Aı	Bo ±0,1	B۱	Do +0,1	D1 +0,1	P ±0.1	Po* ±0.1	P2 ±0.05	E ±0.1	F ±0.05	G	W ±0,3	W0 ±0,2	K ±0,1	T ±0.1
Box size	Code	10.1		10.1		-0	-0	10.1	10.1	10.00	10.1	10.00		10.0	10.2	10.1	10.1
4.8×3.3×3	КА	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	3.4	0.3
4.8×3.3×4	KB	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	4.4	0.3
	_			_						-							
Size Code	2220	A0	Aı	Bo	Bı	Do	D1	P	Po*	P2	E	F	G	W	W0	K	T
Size Code Box size	2220 Code	A0 ±0.1	Aı	Bo ±0.1	Bı	Do +0.1 -0	D1 +0.1 -0	P ±0.1	Po* ±0.1	P2 ±0.05	E ±0.1	F ±0.05	G	W ±0.3	W0 ±0.2	K ±0.1	T ±0.1
	Code		A1 5.7		В1 5.1	+0.1 -0	+0.1			. –	E ±0.1		G 1.95			K ±0.1 3.7	T ±0.1

C

ŧ

▲

⊕ -⊕-

Size Code	2824	A0 ±0,1	A١	Bo ±0,1	Bı	Do +0.1	D1 +0.1	P +0.1	Po* ±0.1	P ₂	E +01	F ±0.05	G		W0 ±0,2		T +0.1
Box size	Code	10.1		10.1		-0	-0	± 0.1	10.1	10.00	±0.1	10.00		10.0	± 0.2	±0.1	10.1
7.2×6.1×3	TA	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	3.4	0.3
7.2×6.1×5	TB	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	5.4	0.4

	Code	A0 ±0.1		Bo ±0.1						P2 ±0.05		F ±0.05	G	W ±0.3	W0 ±0.2	K ±0.1	T ±0.1
Size Code 4030	VA	10.7	10.2	8.1	9.1	Ø1.5	Ø1.5	16	4	2	1.75	7.5	1.9	16	13.3	5.5	0.3
Size Code 5040	XA	13.5	12.7	11	11.5	Ø1.5	Ø1.5	16	4	2	1.75	11.5	4.7	24	21.3	6.5	0.3
Size Code 6054	YA	17.0	16.5	15.6	15.0	Ø1.5	Ø1.5	20	4	2	1.75	11.5	2.95	24	21.3	7.5	0.3

* cumulative after 10 steps \pm 0.2 mm max.

⊕ ⊕ ⊕ ⊕

Samples and pre-production needs on request or 1 Reel minimum.

Packing units

taped Reel	taped Reel	bulk
	330 mm Ø	Standard
700	2500	3000
500	2000	3000

taped Reel	taped Reel	bulk					
	330 mm Ø	Standard					
500	1800	3000					
400	1500	3000					

taped Reel 330 mm Ø	bulk Standard
1500	2000
750	2000
·	

	taped Reel	bulk						
	330 mm Ø	Standard						
	775	2000						
Γ	600	1000						
	450	500						

Part number codes for SMD packing

Ø in mm Code	W (Blister)					
180 P	12					
330 Q	12					
330 R	16					
330 T	24					
d S	Bulk Standard					

-WIMA Part Number System

A WIMA part number consists of 18 digits and is composed as follows:

- Field 1 4: Type description
- Field 5 6: Rated voltage
- Field 7 10: Capacitance
- Field 11 12: Size and PCM
- Field 13 14: Version code (e.g. Snubber versions)
- Field 15: Capacitance tolerance
- Field 16: Packing Field 17 18: Pin length (untaped)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Μ	К	S	2	с	0	2	1	0	0	1	A	0	0	M	S	S	D
MKS 2		63 \	63 VDC 0.01 µF		1μF	2.5×6.5×7.2			-	20% bulk 6-2			-2				
																_	
MD-PI MD-PI MD-PI (P 02 (KS 02 (F 2 (S 3 (F 3 (KP 2 (KP 4 (KP 4 (KP 4 (KP 4 (KP 4 (KP 4 (KP 4 (KP 4 (KP-Y2)) (KP-Y2) (KP 4 (KP-Y2) (KP 4 (KP 4)) (KP 4 (KP 4)) (KP 4 (KP 4)) (KP 4) (KP 4)	EN PS 2 2 0 2 1 R 2 5 (1 (2 (1 (2 -Y2 F F MKP er FKP	= SK $= SK$ $= SK$ $= FKI$	10102000000000000000000000000000000000	Rated v 50 VDC 63 VDC 250 VDC 400 VDC 400 VDC 400 VDC 400 VDC 630 VDC 630 VDC 630 VDC 800 VDC 800 VDC 800 VDC 1000 VE 1000 VE 1200 VE 1300 VE 1300 VE 1400 VE 1000	= B(C) = C = C = C = C = C = C = C = C = C =) 22) 47) 10) 15) 22) 33 2 47) 68 10 15) 22 0 333) 47 1 68) 0.2 0 0.1) 0.2 0 0.1) 0.2 0 0.4 0 0.2 0 1.1 0 2.2 0 1.1 0 2.2 0 1.1 0 2.2 0 1.0 0 2.2 0 1.0 0 2.2 0 1.0 0 2.2 0 1.0 0 2.2 0 1.0 0 2.2 V 10	pF 0 pF 0 pF 0 pF 0 pF 0 pF 00 pF 01 µF 122 µF 147 µF 148 149 149 141 141 141 142 141 141 142 143 144 144 145 145 146 147 147 148 149 141 141 142 143 1445 1447	$\begin{array}{l} \text{Ince:} \\ = 0022 \\ = 0047 \\ = 0100 \\ = 0150 \\ = 0220 \\ = 0330 \\ = 0470 \\ = 0680 \\ = 1100 \\ = 1150 \\ = 1220 \\ = 1330 \\ = 1470 \\ = 1470 \\ = 2100 \\ = 2200 \\ = 2470 \\ = 2470 \\ = 3220 \\ = 3470 \\ = 3220 \\ = 3470 \\ = 3220 \\ = 3470 \\ = 3220 \\ = 3470 \\ = 5100 \\ = 3220 \\ = 5470 \\ = 5100 \\ = 5220 \\ = 5470 \\ = 5100 \\ = 5220 \\ = 5470 \\ = 5100 \\ = 7150 \end{array}$	4.8x 5.7x 5.7x 7.2x 7.2x 10.2: 12.7s 15.3s 2.5x 3x7. 2.5x 3x7. 2.5x 3x8. 3x9: 4x9: 5x11 6x12 5x14 6x15 9x19 11x2 9x19 11x2 19x3 25x4 	3.3 x 3 3 3.3 x 4 3 5.1 x 3.4 5.1 x 3.4 5.1 x 4.5 5.1 x 4.6 6.1 x 5 3 x 7.6 x 5 x 7.6 x 5 x 10.2 x 6 5 x 4.6 F 6.5 x 7.2 5 x 7.2 F 7 x 10 P 5 x 10 P x 13 PC x 31.5 x 31.5 x 31.5 x 4.6 H x 31.5 x 31.5 x 4.6 H x 31.5 x 31.5 x 4.6 H x 31.5 x 31.5 x 4.6 H x 31.5 x 4.6 H x 31.5 x 4.6 H x 31.5 x 4.6 H x 31.5 x 4.6 H x 31.5 x 4.15 x 56 H x 31.5 x 4.15 x 56 H x 31.5 x 4.15 x 56 H x 31.5 x 4.15 x 56 H x 31.5 x 57 H x 56 H x 57 H x 56 H x 57 H x 56 H x 57 H x 57 H	CM7.5 CM7.5 M 10 M 10 CM 15 PCM 15 PCM 22 PCM 22 PCM 27 PCM 27 PCM 37 PCM 37 PCM 38 PCM 48 PCM 52	2 = K G = G G =		Toleran ±20% ±10% ±2.5% ±1% Packing AMMO AMO A	= M = K = J = H = E H16.5 3 H16.5 4 H18.5 3 H18.5 4 6.5 360 6.5 500 8.5 500 6.5 8.5 W12 18 W12 33 W16 33 W16 33 W16 33 W16 33 W16 33 Standa	90 x 37 40 x 34 90 x 37 30 30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{l} 0 = B \\ 0 = C \end{array}$

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.