

Product Specification

NHD-3.12-25664UCY2

Graphic OLED Display Module

- **NHD -** Newhaven Display
- **3.12 -** 3.12" Diagonal
- 25664 256x64 Pixel Resolution
- UC Model
- Y Emitting Color: Yellow
- 2 3V Power Supply

Newhaven Display International, Inc. 2661 Galvin Court, Elgin, IL 60124 USA

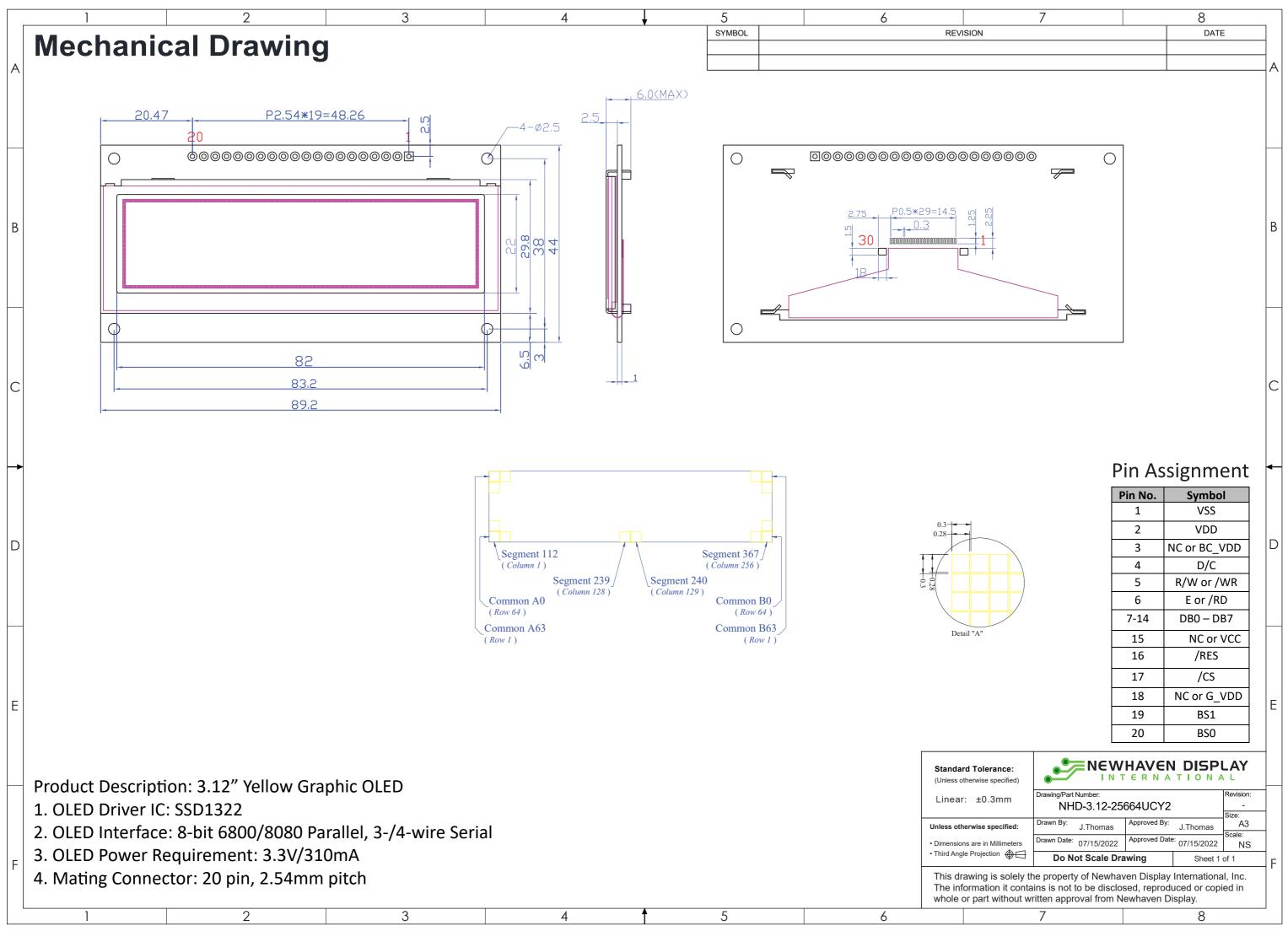
Ph: 847.844.8795 | Fx: 847.844.8796 www.newhavendisplay.com

Table of Contents

2
3
4
5
6
7
8
9
.0

Additional Resources

- Support Forum: <u>https://support.newhavendisplay.com/hc/en-us/community/topics</u>
- GitHub: <u>https://github.com/newhavendisplay</u>
- Example Code: <u>https://support.newhavendisplay.com/hc/en-us/categories/4409527834135-Example-Code/</u>
- > Knowledge Center: <u>https://www.newhavendisplay.com/knowledge_center.html</u>
- Quality Center: <u>https://www.newhavendisplay.com/quality_center.html</u>
- Precautions for using LCDs/LCMs: <u>https://www.newhavendisplay.com/specs/precautions.pdf</u>
- Warranty / Terms & Conditions: <u>https://www.newhavendisplay.com/terms.html</u>


1

Document Revision History

Revision	Date	Description	Changed By
0	05/01/2011	Initial Product Release	-
1	02/22/2013	Electrical characteristics and mechanical drawing updated	JN
2	05/02/2016	Supply Current Updated	SB
3	04/02/2020	Mechanical Characteristics Updated	SB
4	08/04/2020	Reformatted 2D Mechanical Drawings	AS
5	07/15/2022	PCB Redesign offering multiple driving methods. Updated Electrical characteristics, Mechanical Drawing.	TL

2

		2	3	4	5	6	
--	--	---	---	---	---	---	--

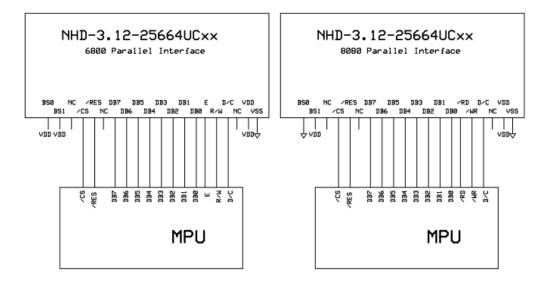
Pin Description

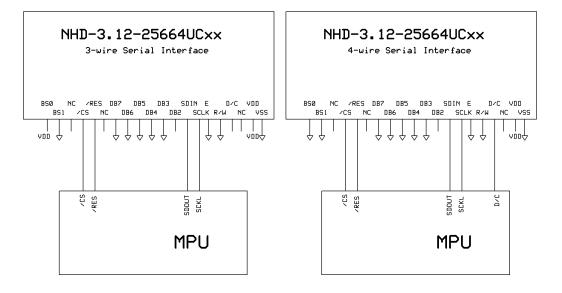
Parallel Interface:

Pin No.	Symbol	External Connection	Function Description					
1	Vss	Power Supply	Ground					
2	V _{DD}	Power Supply	Supply Voltage for OLED and logic.					
3	NC or BC_VDD	-	Default: No Connect					
			Supply Voltage for Boost Converter: See Jumper Option #1					
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data					
5	R/W or /WR	MPU	6800-interface:					
			Read/Write select signal, R/W=1: Read, R/W=0: Write					
			8080-interface:					
			Active LOW Write signal.					
6	E or /RD	MPU	6800-interface:					
			Operation enable signal. Falling edge triggered.					
			8080-interface:					
			Active LOW Read signal.					
7-14	DB0 – DB7	MPU	8-bit Bi-directional data bus lines.					
15	NC or VCC	-	Default: No Connect					
			Supply Voltage for OLED Panel: See Jumper Option #2					
16	/RES	MPU	Active LOW Reset signal.					
17	/CS	MPU	Active LOW Chip Select signal.					
18	NC or G_VDD	-	Default: No Connect					
			Supply Voltage for Internal Regulator: See Jumper Option #3					
19	BS1	MPU	MPU Interface Select signal.					
20	BSO	MPU	MPU Interface Select signal.					

Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V _{DD}	Power Supply	Supply Voltage for OLED and logic.
3	NC or BC_VDD	-	Default: No Connect
			Supply Voltage for Boost Converter: See Jumper Option #1
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
			Tie LOW for 3-wire Serial Interface.
5-6	VSS	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal.
8	SDIN	MPU	Serial Data Input signal.
9	NC	-	No Connect
10-14	VSS	Power Supply	Ground
15	NC or VCC	-	Default: No Connect
			Supply Voltage for OLED Panel: See Jumper Option #2
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC or G_VDD	-	Default: No Connect
			Supply Voltage for Internal Regulator: See Jumper Option #3
19	BS1	MPU	MPU Interface Select signal.
20	BSO	MPU	MPU Interface Select signal.

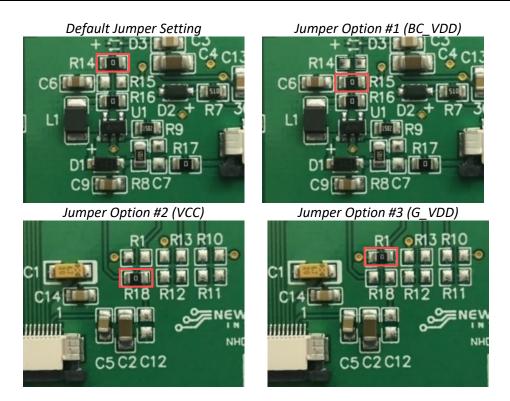

MPU Interface Pin Selections


Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	3-wire Serial Interface	4-wire Serial Interface	
BS1	1	1	0	0	
BS0	1	0	1	0	

MPU Interface Pin Assignment Summary

Bus			D	ata/C	omm	and Interfa		Control Signals					
Interface	D7 D6 D5 D4 D3 D2 D1 D0						Е	R/W	/CS	D/C	/RES		
8-bit 6800		D[7:0]							Е	R/W	/CS	D/C	/RES
8-bit 8080		D[7:0]								/WR	/CS	D/C	/RES
3-wire SPI	Tie LOW			NC	SDIN	SCLK	Tie	LOW	/CS	Tie LOW	/RES		
4-wire SPI	Tie LOW				NC	SDIN	SCLK	Tie	LOW	/CS	D/C	/RES	

Wiring Diagrams



On-Board Jumper Options

Default Jumper Setting

R14	R15	R18	R1	Description				
Close	Open	Open	Open	(default) OLED Logic Circuit + Boost converter + OLED panel are powered from VDD (pin #2). This allows the full module to be powered by a single low-voltage supply.				
Jumpe	Jumper Option #1 - Independent Supply Voltage for Boost Converter (BC_VDD)							
R14	R15	R18	R1	Description				
Open	Close	Open	Open	Boost converter + OLED panel are powered from BC_VDD (pin #3). OLED Logic Circuit is powered from VDD (pin #2). This allows for increased efficiency through the boost converter, by allowing a supply voltage up to +12V at its input, BC_VDD (pin #3).				
Jumpe	Jumper Option #2 – External Supply Voltage for OLED Panel (VCC)							
R14	R15	R18	R1	Description				
Open	Open	Close	Open	OLED panel is powered from VCC (pin #15) – boost converter is not used. OLED Logic Circuit is powered from VDD (pin #2). This allows for maximum module efficiency, and drastically reduced total current consumption.				
Jumpe	r Option #3	– External	Supply Vol	tage for Internal Regulator (G_VDD)				
R14	R15	R18	R1	Description				
See Description Close			Close	OLED Internal Regulator + Logic Circuit are powered from G_VDD (pin #18) – boost converter is powered from VDD (pin #2). Disabling the internal regulator reduces power consumption. Booster circuit must be driven by alternative method.				

For detailed electrical information on each jumper option, please see the Electrical Characteristics table below.

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit				
Operating Temperature Range	T _{op}	Absolute Max	-40	-	+85	°C				
Storage Temperature Range	T _{st}	Absolute Max	-40	-	+90	°C				
Default Jumper Setting										
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	v				
Supply Current for Module	IDD	VDD=3.3V, 100% ON	-	310	340	mA				
		Jumper Option #1								
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V				
Supply Current for Module	IDD	V _{DD} =3.3V	-	170	200	μΑ				
Supply Voltage for Boost Converter	BC_VDD	-	2.8	-	12	V				
Sumply Comment for Depart Convertor		BC_VDD=5.0V, 100% ON	-	150	170	mA				
Supply Current for Boost Converter	BC_IDD	BC_VDD=12.0V, 100% ON	-	55	70	mA				
Jumper Option #2										
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V				
Supply Current for Module	IDD	V _{DD} =3.3V	-	170	200	μΑ				
Supply Voltage for OLED Panel	VCC	-	11.5	12	12.5	V				
Supply Current for OLED Panel	ICC	VCC=12V, 100% ON	-	45	55	mA				
		Jumper Option #3								
Supply Voltage for Logic	G_VDD	-	2.4	2.5	2.6	V				
Supply Current for Module	G_IDD	VDD=3.3V	-	100	120	μΑ				
Sleep Mode Current	IDDSLEEP	-	-	25	120	μΑ				
"H" Level input	Vih	-	0.8*VDD	-	VDD	V				
"L" Level input	Vil	-	VSS	-	0.2*VDD	V				
"H" Level output	Voh	-	0.9*VDD	-	VDD	V				
"L" Level output	Vol	-	VSS	-	0.1*VDD	V				

Note: The electrical characteristics shown above for Jumper Option #1 and Jumper Option #2 apply only when the on-board jumpers are configured accordingly. By default, only Default Jumper Setting supply voltage and current (in bold) need to be considered. For details, see On-Board Jumper Options section on previous page.

Optical Characteristics

Item			Symbol	Condition	Min.	Тур.	Max.	Unit
Orational	Тор	Top Bottom			-	80	-	0
Optimal	Bot				-	80	-	0
Viewing Angles	Left		θХ-	-	-	80	-	0
	Right	θX+		-	80	-	0	
Contrast Rat	Contrast Ratio		CR	-	2000:1	-	-	-
Despense T	Rise		T _R	-	-	10	-	us
Response T	ime	Fall	T _F	-	-	10	-	us
Brightness		Lv	T _{OP} = 25°C	60	80	-	cd/m ²	
Lifetime			-	50% Checkerboard	40,000	60,000	-	Hrs.

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. The Display OFF command can be used to extend the lifetime of the display. Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

Controller Information

Built in SSD1322 Controller For detailed information please download datasheet: https://support.newhavendisplay.com/hc/en-us/articles/4414477846679-SSD1322

MPU Interface

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	Е	R/W	/CS	D/C
Write Command	\rightarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\rightarrow	0	0	1
Read Data	\rightarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/CS	D/C
Write Command	1	\uparrow	0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	\uparrow	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/CS	D/C
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	\uparrow	1

Serial Interface (4-wire)

The 4-wire serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS. D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	\uparrow
Write Data	Tie LOW	Tie LOW	0	1	\uparrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock. *Note: Read is not available in serial mode*

Serial Interface (3-wire)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN, and /CS. D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3[~]D7, E, R/W, and D/C should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	\uparrow
Write Data	Tie LOW	Tie LOW	0	Tie LOW	\uparrow

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0). *Note: Read is not available in serial mode*

Example Initialization Sequence

Set_Command_Lock(0x12); Set_Display_On_Off(0x00); Set_Column_Address(0x1C,0x5B); Set_Row_Address(0x00,0x3F);	// Unlock Basic Commands (0x12/0x16) // Display Off (0x00/0x01)
Set_Display_Clock(0x91);	// Set Clock as 80 Frames/Sec
Set_Multiplex_Ratio(0x3F);	// 1/64 Duty (0x0F~0x3F)
Set_Display_Offset(0x00);	// Shift Mapping RAM Counter (0x00~0x3F)
Set_Start_Line(0x00);	// Set Mapping RAM Display Start Line (0x00~0x7F)
Set_Remap_Format(0x14);	// Set Horizontal Address Increment
	// Column Address 0 Mapped to SEG0
	<pre>// Disable Nibble Remap // Scan from COM[N-1] to COM0</pre>
	// Disable COM Split Odd Even
	// Enable Dual COM Line Mode
Set_GPIO(0x00);	// Disable GPIO Pins Input
Set Function Selection(0x01);	// Enable Internal VDD Regulator
Set_Display_Enhancement_A(0xA0,0xI	FD); // Enable External VSL
<pre>Set_Contrast_Current(0x9F);</pre>	<pre>// Set Segment Output Current</pre>
Set_Master_Current(0x0F);	<pre>// Set Scale Factor of Segment Output Current Control</pre>
//Set_Gray_Scale_Table();	<pre>// Set Pulse Width for Gray Scale Table</pre>
Set_Linear_Gray_Scale_Table();	//set default linear gray scale table
Set_Phase_Length(0xE2);	// Set Phase 1 as 5 Clocks & Phase 2 as 14 Clocks
Set_Display_Enhancement_B(0x20);	// Enhance Driving Scheme Capability (0x00/0x20)
Set_Precharge_Voltage(0x1F);	// Set Pre-Charge Voltage Level as 0.60*VCC
Set_Precharge_Period(0x08);	// Set Second Pre-Charge Period as 8 Clocks
Set_VCOMH(0x07);	// Set Common Pins Deselect Voltage Level as 0.86*VCC
Set_Display_Mode(0x02); Set_Partial_Display(0x01,0x00,0x00);	// Normal Display Mode (0x00/0x01/0x02/0x03) // Disable Partial Display
Set Display On Off(0x01);	

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high	+90°C, 240hrs	2
	storage temperature.		
Low Temperature storage	Test the endurance of the display at low	-40°C, 240hrs	1,2
	storage temperature.		
High Temperature	Test the endurance of the display by	+85°C, 240hrs	2
Operation	applying electric stress (voltage & current)		
	at high temperature.		
Low Temperature	Test the endurance of the display by	-40°C, 240hrs	1,2
Operation	applying electric stress (voltage & current)		
	at low temperature.		
High Temperature /	Test the endurance of the display by	+60°C, 90% RH, 240hrs	1,2
Humidity Operation	applying electric stress (voltage & current)		
	at high temperature with high humidity.		
Thermal Shock resistance	Test the endurance of the display by	-40°C,30min -> 25°C,5min ->	
	applying electric stress (voltage & current)	85°C,30min = 1 cycle	
	during a cycle of low and high	100 cycles	
	temperatures.		
Vibration test	Test the endurance of the display by	10-22Hz, 1.5mm amplitude.	3
	applying vibration to simulate	22-500Hz, 1.5G	
	transportation and use.	30min in each of 3 directions	
		X, Y, Z	
Atmospheric Pressure test	Test the endurance of the display by	115mbar, 40hrs	3
	applying atmospheric pressure to simulate		
	transportation by air.		
Static electricity test	Test the endurance of the display by	VS=800V, RS=1.5kΩ, CS=100pF	
	applying electric static discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

1: Display is fully functional during operational tests and after all tests, at room temperature.

2: No observable defects.

- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value