SPECIFICATIONS

	Customer								
	Product Name		Wire Wound SMD Power Inductors						
	Volume Part N	umber		VE	7850 Sei	ries			
	Customer Part N	umber							
	⊠New Released,	Revised]			SPEC	No:	VE7850-101N	1	
	This SPEC is total 8 pag	es.]			PART	NO:	FIA07850-2	6	
	ROHS Compliant Parts	1							
	A	Approved By	Che	cked By	Issue	d By	7		
							1		
	L								
	ShenZhe	en Volume S	ourc	e Electr	onics (Co.,	Ltd.		
Ad	dress: 16th Floor	c, Building T	5-N4,	Tian'an D	igital C	ity,	Fenggang, Don	gguar	
_									
Те	1: 0769-89891993	Fax: 0769-8	398919	93-806					
	For Customer approval	Only]		Date:					
Qu	alification Status:	□Full □Re	stricted	□Reject	ed				
Ī							Charled Dy		
ŀ	Approved By	Verified E	ΣУ	ke-cne	cked By		Checked By		

Comments:_

[Version change history]

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	1	New released	I	Luyong Han

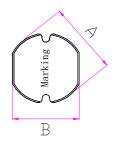
Applications:

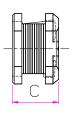
- Power supply for VTRs. LCD televisions.
- Notebook PCs, Portable communication equipment.
- ●DC/DC converters, etc.

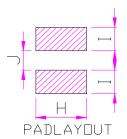
Features:

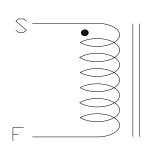
- Silver Plated Type, Low cost designed.
- Available on tape and reel for auto surface mounting.

1. Product physical map





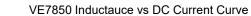

3. Schematic

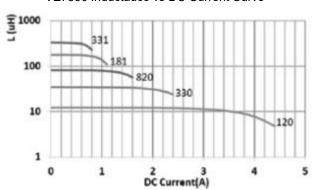

2. Dimensions in (mm)

A	В	С	Н	I	J
7.8 \pm 0.3	7.0 \pm 0.3	5.0 ± 0.3	7. 5	3.0	2.0

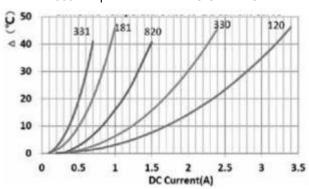
Characteristics:

- Saturation Current(Isat): The current when the inductance Becomes 20% lower than is initial value. (Ta=20 $^{\circ}$ C).
- Temperature Rise Current(Irms): The current when the temperature of coil increases up to max. Δ T=40°C. (Ta=20°C)
- Operating temperature : $-30^{\circ}\text{C} \sim +105^{\circ}\text{C}$.
- Storage temperature range (packaging conditions): -5℃~+30℃ and RH 70% (Max.)


Test equipments:


- L&Q: HP 4285A or HP 4284A, VR116/VR7210.
- ●DCR: Milli-ohm meter, VR131.
- Electrical specifications at 25° C.

D1 1	Characteristics
HI COLTRI COL	(horootoriation
HIDOTTICAL	T NA MARTAMICTICS


Part No.	L(uH)	Test	DCR	(Ω)	I sa	t (A)	I rm:	s (A)	Marking
Tare no.	E(un)	Frequency	Max.	Тур.	Max.	Тур.	Max.	Тур.	marking
VE7850-100K	10±10%	1KHz/0.25V	70m	33m	2. 88	3.60	3. 20	3.80	100
VE7850-120K	12±10%	1KHz/0.25V	80m	46m	2. 56	3. 20	2.60	3. 20	120
VE7850-150K	15±10%	1KHz/0.25V	90m	53m	2. 25	2.80	2. 55	3. 10	150
VE7850-180K	18±10%	1KHz/0.25V	100m	59m	2. 08	2.60	2. 25	2.80	180
VE7850-220K	22±10%	1KHz/0.25V	110m	70m	1. 95	2.40	2. 10	2.60	220
VE7850-270K	27±10%	1KHz/0.25V	120m	87m	1. 75	2.20	1.98	2.40	270
VE7850-330K	$33 \pm 10\%$	1KHz/0.25V	0. 13	0. 10	1. 52	1.90	1.82	2. 25	330
VE7850-390K	39±10%	1KHz/0.25V	0. 16	0. 12	1. 44	1.80	1.62	2.00	390
VE7850-470K	47±10%	1KHz/0.25V	0. 18	0. 14	1. 28	1.60	1.50	1.90	470
VE7850-560K	56±10%	1KHz/0.25V	0. 24	0. 17	1. 20	1.50	1. 43	1.80	560
VE7850-680K	68±10%	1KHz/0.25V	0. 28	0. 20	1. 12	1.40	1.30	1.60	680
VE7850-820K	82±10%	1KHz/0.25V	0. 37	0. 23	1.04	1.30	1. 23	1.50	820
VE7850-101K	100±10%	1KHz/0.25V	0. 39	0.31	0. 92	1. 15	1.08	1.32	101
VE7850-121K	120±10%	1KHz/0.25V	0. 47	0. 35	0.80	1.00	0.99	1.20	121
VE7850-151K	150±10%	1KHz/0.25V	0. 64	0.40	0. 72	0.90	0.90	1.10	151
VE7850-181K	180±10%	1KHz/0.25V	0.71	0. 53	0. 68	0.85	0.76	0.94	181
VE7850-221K	220±10%	1KHz/0.25V	0.96	0.61	0. 64	0.80	0.70	0.85	221
VE7850-271K	270±10%	1KHz/0.25V	1. 11	0. 72	0. 56	0.70	0.65	0.80	271
VE7850-331K	330±10%	1KHz/0.25V	1. 26	0. 95	0. 52	0.65	0.58	0.70	331
VE7850-391K	390±10%	1KHz/0.25V	1. 77	1. 28	0. 44	0.55	0.49	0.60	391
VE7850-471K	470±10%	1KHz/0.25V	1. 96	1.46	0.40	0.50	0.47	0.58	471
VE7850-102K	1000±10%	1KHz/0.25V	4. 55	3. 65	0. 24	0.30	0. 27	0.32	102

Typical Performance curves:

VE7850 Temperature rise vs DC Current Curve

Packing method

1. Packing quantity of each reel: 1000PCS/R (18-30PCS not packed at the beginning and end), affixed with the correct label, and then placed into a plastic bag (plastic bag size: 360x460mm), with a package of desiccant, sealing, reel and carrying tape dimensions. Fig. 1-1

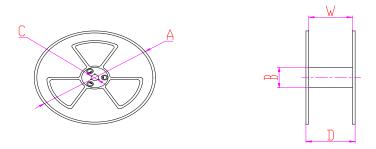
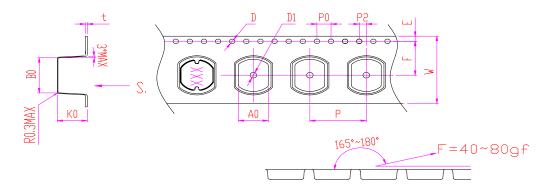



Fig .1-1 $\label{eq:reconstruction} \mbox{Reel dimensions , general tolerance } (\pm 0.5 \mbox{mm})$


	, 0		`	
A	В	С	W	D
Ф 330	Ф100	Ф13.5	16. 5	22. 5

The general tolerance, of carrier size is $\pm \langle 0.2 \text{mm}.$

W	AO	В0	КО	Р	F	Е	D	D1	Р0	P2	t
16.00	7. 35	8. 20	5.40	12.00	7.5	1.75	1.50	1.50	4.00	2.00	0.35

- 2. 3000PCS(3volumes) per beer carton. (Beer carton size:338x338x78mm)
- 3. Each case is packed with 9000PCS(3boxes), sealed, labeled, and the shape and size of cartons. Fig. 2-1

Reliability Test: Items Requirements Test Methods and Remarks 1 Solder the inductor to the testing jig (glass epoxy board No removal or split of the termination or other defects shall 1.Terminal shown in Fig.1-1) using eutectic solder. Then apply a occur. Y direct Strength force in the direction of the arrow. X direct 2 10N force. Keep time: 5s Fig.1-1 (1) Solder the chip to the test jig (glass epoxy board)using 2.Resistance to No visible mechanical damage. Flexure eutectic solder. Then apply a force in the direction shown as Fig.2-1. 2 Flexure: 2mm luxure 2mm Pressurizing Speed: 0.5mm/sec 3 Keep time: 30±1s (5) Test board size: 100X40X1.0 Land dimension: Fig.2-1 Please see 1 No visible mechanical damage. 1 Solder the chip to the testing jig (glass epoxy board 3. Vibration 2 Inductance change: Within ±10% shown as the following figure) using eutectic solder. The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). Temperature: -30°C~+105°C 1 4.Temperature Inductance change: Within ±20% 2 With a reference value of +20°C, change rate shall be coefficient calculated 1 The test samples shall be dipped in flux, and then 5.Solderability 90% or more of electrode area shall be coated by new immersed in molten solder. (2) Solder temperature: 245±5°C solder. 3 Duration: 5±1 sec. 4 Solder: Sn/3.0Ag/0.5Cu (5) Flux: 25% resin and 75% ethanol in weight 6 Immersion depth: all sides of mounting terminal shall be immersed 1 Re-flowing Profile: Please refer to Fig. 3-1. 6.Resistance to ① No visible mechanical damage. (2) Test board thickness: 1.0mm Soldering Heat 2 Inductance change: Within ±10% 3 Test board material: glass epoxy resin 4 The chip shall be stabilized at normal condition for 1~2 hours before measuring Peak 260°C max 260°C 60 90sec 200°C 150°C 25°C Time 25°C to Peak =8 min max Fig. 3-1

7.Thermal Shock	No visible mechanical damage. Inductance change: Within ±10% 105°C Ambient Temperature 30 min. 30 min. 30 min. Fig.4-1	 ① Temperature and time: -30±3°C for 30±3 min→105°C for 30±3min, please refer to Fig. 4-1. ② Transforming interval: Max. 20 sec ③ Tested cycle: 100 cycles The chip shall be stabilized at normal condition for 1~2 hours before measuring
8.Resistance to Low Temperature	No visible mechanical damage Inductance change: Within ±10%	 Temperature: -30±3°C Duration: 1000±24 hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
9.Resistance to High Temperature	No mechanical damage. Inductance change: Within ±10%	 Temperature: 105±2°C Duration: 1000±24 hours The chip shall be stabilized at normal condition for 1~2 hours before measuring.
10.Damp Heat	 No mechanical damage. Inductance change: Within ±10% 	 Temperature: 60±2℃ Humidity: 90% to 95%RH Duration: 1000±24 hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
11.Loading Under Damp Heat	 No mechanical damage. Inductance change: Within ±10% 	 Temperature: 60±2℃ Humidity: 90% to 95% RH Applied current: Rated current Duration:1000±24 hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
12.Loading at High Temperature	No mechanical damage. Inductance change: Within ±10%	 Temperature: 85±2℃ Applied current: Rated current Duration: 1000±24 hours The chip shall be stabilized at normal condition for 1~2 hours before measuring

Recommended Soldering Technologies:

1. Re-flowing Profile:

 \triangle Preheat condition: 150 ~200°C/60~120sec.

 \triangle Allowed time above 217°C: 60°90sec.

△ Max temp: 260°C

△ Max time at max temp: 5sec. Solder paste: Sn/3.0Ag/0.5Cu

△ Allowed Reflow time: 2x max Please refer to **Fig. 1-1**.

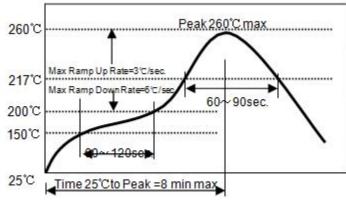


Fig. 1-1

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

2. Iron Soldering Profile:

△ Iron soldering power: Max. 30W

△ Pre-heating: 150°C/60sec.

 \triangle Soldering Tip temperature: 350°C Max.

△ Soldering time: 3sec. Max.
 △ Solder paste: Sn/3.0Ag/0.5Cu
 △ Max.1 times for iron soldering Please refer to Fig. 2-1.

[Note: Take care not to apply the tip of

the soldering iron to the terminal electrodes.]

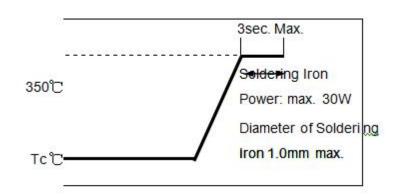


Fig. 2-1

Supplier Information

Supplier:

Shenzhen Volume Source Electronics Co., Ltd.

Manufacturer:

ShenzhenVolume Source Electronics Co., Ltd.

Manufacturing Address:

Address: 16th Floor, Building T5-N4, Tian'an Digital City, Fenggang, Dongguan

Tel: 0769-89891993 Fax: 0769-89891993-806

M. P:13316585579 Wr. Yu