

ISSUE: March 10, 2020

TO;

	SPECIF	ICATION	S
	Product Name	PHOTOCOUPLER	
	Model No.	PC817	
		name : PC817X**IPW】 NA products)	
	This specification sheets and att After confirmation of the conter Specifications with approving si	pages including the cover and a ached sheets shall be both side cats, please be sure to send backgnature on each. se contact us before issuing purc	opy. copy of the
Accepted by:		Sharp Corporation	
Ву:		Ву:	
Name:		Name: T. Kamiyoshi	
Title:		Title: Senior Manager	- I Davis - A Dia
Date:			and Devices Account Div.
By:		Date: Mar, 11, 2020	
Name:	-	Sharp Fukuyama Semiconduc	etor Co., Ltd.
Title:			
Date:		By:	
		Name: T. Hiramatsu	
		Title: Division Manager	
		Sensor Development Di	
		Semiconductor Busine	ess Unit
		Date: Mar 11, 2000	D
		Reviewed by:	Prepared by:
		By: K. Iwamoto	By: J J Name: H. Tanaka
		Title: Senior Manager	Title: Supervisor
		Date: har, 10, 2020	Date: Mar. 10, 2020
		- 10, 2000	INI. I' I do do

SHARP

- 1. These specification sheets include materials protected under copyright of Sharp Corporation ("Sharp"). Please handle with great cares and do not reproduce or cause anyone to reproduce them without Sharp's consent.
- 2. When using this Sharp product, please observe the absolute maximum ratings, other conditions and instructions for use described in the specification sheets, as well as the precautions mentioned below.
 Sharp assumes no responsibility for any damages resulting from use of the product which does not comply with absolute maximum ratings, other conditions and instructions for use included in the specification sheets, and the precautions mentioned below.

(Precautions)

- (1) In making catalogue or instruction manual based on the specification sheets, please verify the validity of the catalogue or instruction manuals after assembling Sharp products in customer's products at the responsibility of customer.
- (2) This Sharp product is designed for use in the following application areas;
 - Computers OA equipment Telecommunication equipment (Terminal) Measuring equipment
 - Tooling machines Audio visual equipment Home appliances

If the use of the Sharp product in the above application areas is for equipment listed in paragraphs (3) or (4), please be sure to observe the precautions given in those respective paragraphs.

- (3) Appropriate measures, such as fail-safe design and redundant design considering the safety design of the overall system and equipment, should be taken to ensure reliability and safety when Sharp product is used for equipment in responsibility of customer which demands high reliability and safety in function and precision, such as;
 - Transportation control and safety equipment (aircraft, train, automobile etc.)
 - Traffic signals Gas leakage sensor breakers Rescue and security equipment
 - Other safety equipment
- (4) Sharp product is designed for consumer goods and controlled as consumer goods in production and quality. Please do not use this product for equipment which require extremely high reliability and safety in function and precision, such as:
 - Space equipment Telecommunication equipment (for trunk lines)
 - Nuclear power control equipment Medical equipment
- (5) Please contact and consult with a Sharp sales representative if there are any question regarding interpretation of the above four paragraphs.
- 3. Disclaimer

The warranty period for Sharp product is one (1) year after shipment.

During the period, if there are any products problem, Sharp will repair (if applicable), replace or refund. Except the above, both parties will discuss to cope with the problems.

The failed Sharp product after the above one (1) year period will be coped with by Sharp, provided that both parties shall discuss and determine on sharing responsibility based on the analysis results thereof subject to the above scope of warranty.

The warranty described herein is only for Sharp product itself which are purchased by or delivered to customer. Damages arising from Sharp product malfunction or failure shall be excepted.

Sharp will not be responsible for the Sharp product due to the malfunction or failures thereof which are caused by:

- (1) storage keep trouble during the inventory in the marketing channel.
- (2) intentional act, negligence or wrong/poor handling.
- (3) equipment which Sharp products are connected to or mounted in.
- (4) disassembling, reforming or changing Sharp products.
- (5) installation problem.
- (6) act of God or other disaster (natural disaster, fire, flood, etc.)
- (7) external factors (abnormal voltage, abnormal electromagnetic wave, fire, etc.)
- (8) special environment (factory, coastal areas, hot spring area, etc.)
- (9) phenomenon which cannot be foreseen based on the practical technologies at the time of shipment.
- (10) the factors not included in the product specification sheet.
- 4. Please contact and consult with a Sharp sales representative for any questions about Sharp product.

1. Application

This specification applies to the outline and characteristics of photocoupler Model No. PC817 series.

Outline Refer to page 4. 2.

Ratings and characteristics Refer to page 5 and 6.

Reliability Refer to page 7.

Refer to page 8. Outgoing inspection

- Supplement
 - 6.1 Isolation voltage shall be measured in the following method.
 - (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
 - (2) The dielectric withstanding tester with zero-cross circuit shall be used.
 - (3) The wave form of applied voltage shall be a sine wave.
 - 6.2 Package specifications Refer to page 9 and 10.
 - ("O" mark indicates business dealing name of ordered product) Business dealing name

Ordered product	Business dealing name	Rank mark	I_{C} (mA)	Remark
	PC817XNNIPW	with or without	2.5 to 30	
	PC817X1NIPW	A	4.0 to 8.0	
	PC817X2NIPW	В	6.5 to 13	
	PC817X3NIPW	C	10 to 20	
	PC817XNYIPW	with or without	2.5 to 30	
	PC817X1YIPW	A	4.0 to 8.0	Applied to product as an option
	PC817X2YIPW	В	6.5 to 13	(Attachment-2-1 to 2-3.)
	PC817X3YIPW	С	10 to 20	

Test conditions
I _F =5mA V _{CE} =5V Ta=25°C

This Model is approved by UL. (Under preparation)

Approved Model No.: PC817

UL file No.: E64380

This Model is approved by CSA. (Under preparation) 6.5

Approved Model No.: PC817

"shall be indicated on minimum unit package.

- 6.6 About radiation resistant design
 - (1) This product is not designed against irradiation.
 - (2) This product is assembled with electrical input and output.
 - This product incorporates non-coherent light emitting diode.
- 6.7 ODS materials
 - (1) This product shall not contain the following materials.
 - (2) Also, the following materials shall not be used in the production process for this product. Materials for ODS: CFC_S, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methyl chloroform)

- 6.8 Specified brominated flame retardants
 Specified brominated flame retardants (PBB and PBDE) are not used in this device at all.
- 6.9 Compliance with each regulation
 - (1) This product complies with EU RoHS Directive (2011/65/EU) and Commission Delegated Directive (EU)2015/863.
 - (2) Content of six substances specified in Management Methods for Control of Pollution Caused by Electronic Information Products Regulation (Chinese: 电子信息产品污染控制管理办法).

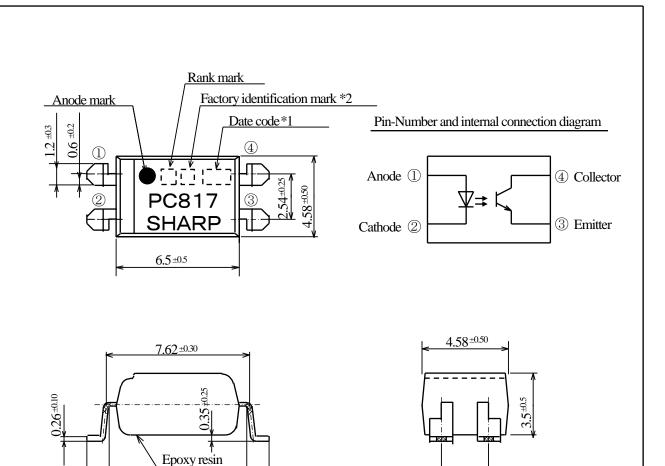
Marking Styles for the Names and Contents of the Hazardous Substances

	Hazardous Substances							
Catagory	Lead	Mercury	Cadmium	Hexavalent	Polybrominated	Polybrominated		
Category	(Pb)	(Hg)	(Cd)	chromium	biphenyls	diphenyl ethers		
	(10)	(Hg)		(Cr^{6+})	(PBB)	(PBDE)		
Photocoupler	0	0	0	0	0	0		

This table is prepared in accordance with the provisions of SJ/T 11364.

○ : Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.

7. Notes


Precautions for photocouplers: Attachment-1

(Notice)

The contents described herein are subject to change without notice for improvement since this product is under development.

2. Outline

*1 Date code: 3 digit indication according to production year, month and day

 $1.0^{+0.4}_{-0}$

*2 Factory identification mark is as follows.

 $10.0^{\,+0}_{\,-0.5}$

H: YONGYAO ENSEI ELECTRONICS (SHANGQIU) CO., LTD. (CHINA products)

Pin material: Copper Alloy

 $1.0^{+0.4}_{-0}$

Pin finish : Palladium (Au flash plating)

Mark : Laser marking

A lead tip area and a part of a lead side area

(area) are no-plating.

Product mass: Approx. 0.22g

UNIT: mm

PC817 Outline Dimensions

2.54±0.25

(Business dealing name: PC817X*NIPW)

3. Ratings and characteristics

3.1 Absolute maximum ratings

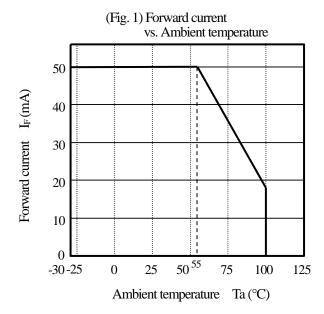
Ta=25°C

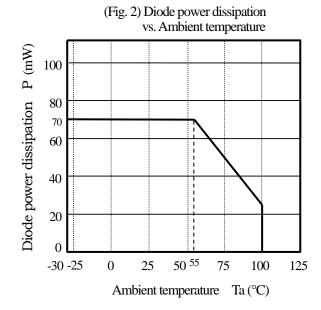
	Parameter		Symbol	Rating	Unit
	*1	Forward current	I_{F}	50	mA
Input	*2	Peak forward current	I_{FM}	1	A
Input		Reverse voltage	V_R	6	V
	*1	Power dissipation	P	70	mW
		Collector-emitter voltage	V _{CEO}	80	V
Oratomat		Emitter-collector voltage	V_{ECO}	6	V
Output		Collector current	I_{C}	50	mA
	*1	Collector power dissipation	P_{C}	150	mW
	*1	Total power dissipation	P _{tot}	200	mW
		Operating temperature	T_{opr}	-30 to +100	$^{\circ}\! \mathbb{C}$
		Storage temperature	T _{stg}	-55 to +125	$^{\circ}\! \mathbb{C}$
	*3	Isolation voltage	V _{iso(rms)}	5	kV
	*4	Soldering temperature	T _{sol}	270	$^{\circ}\! \mathbb{C}$

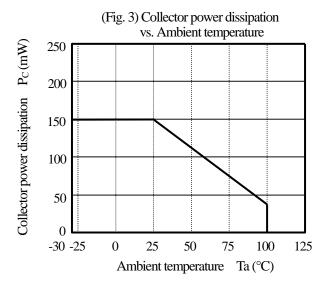
^{*1} The derating factors of absolute maximum ratings due to ambient temperature are shown in Fig. 1 to 4.

3.2 Electro-optical characteristics

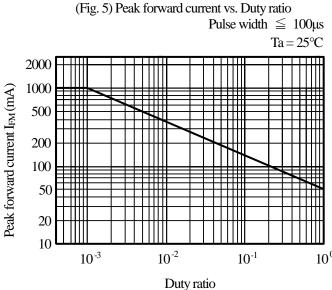
Ta=25°C


	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	Forward voltage	$V_{\rm F}$	I _F =20mA	-	1.2	1.4	V
Input	Peak forward voltage	V_{FM}	I _{FM} =0.5A	-	-	3.0	V
	Reverse current	I_R	V _R =4V	-	-	10	μΑ
	Terminal capacitance C _t		V=0, f=1kHz	-	30	250	pF
	Dark current	I _{CEO}	V _{CE} =50V, I _F =0	-	-	100	nA
Output	Collector-emitter breakdown voltage	BV _{CEO}	I _C =0.1mA, I _F =0	80	-	-	V
	Emitter-collector breakdown voltage	BV _{ECO}	I _E =10μA, I _F =0	6	-	-	V
	Collector current	Ic	I _F =5mA, V _{CE} =5V	2.5	-	30	mA
	Collector-emitter saturation voltage	mitter saturation voltage V _{CE(sat)}		-	0.1	0.2	V
	Isolation resistance	R _{ISO}	DC500V, 40 to 60%RH	5×10 ¹⁰	1011	-	Ω
Transfer charac-	Floating capacitance	C_{f}	V=0, f=1MHz	-	0.6	1.0	pF
teristics	Cut-off frequency	f_{C}	V _{CE} =5V, I _C =2mA R _L =100Ω, -3dB	-	80	-	kHz
	Rise time	t _r	V _{CE} =2V, I _C =2mA	-	4	18	μs
			$R_L=100\Omega$	-	3	18	μs

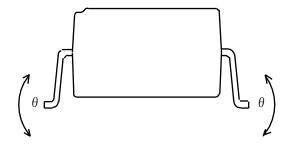

^{*2} Pulse width \leq 100 μ s, Duty ratio : 0.001 (Refer to Fig. 5)


^{*3} AC for 1 min, 40 to 60%RH

^{*4} For 10 s


PC817X**IPW

4. Reliability


The reliability of products shall satisfy items listed below.

Confidence level: 90% LTPD: 10 or 20

		LIID	: 10 or 20
Test Items	Condition *1	Failure Judgment Criteria	Samples (n) Defective (C)
Solderability	245±3°C, 5s	*2	n=11, C=0
Coldoring boot	(Flow soldering) 270°C, 10s		n=11, C=0
Soldering heat	(Soldering by hand) 400°C, 3s		II=11, C=0
Terminal strength (Tension)	Weight: 5N, 5s/each terminal	V_F >U×1.2 I_R >U×2	n=11, C=0
Terminal strength (Bending) *3	Weight: 2.5N, 2 times/each terminal	I _{CEO} >U×2 I _C <l×0.7 V_{CE(sat)} >U×1.2</l×0.7 	n=11, C=0
Mechanical shock	15km/s^2 , 0.5ms $3 \text{ times/} \pm X$, $\pm Y$, $\pm Z$ direction		n=11, C=0
Variable frequency vibration	100 to 2000 to 100Hz/4 min, 200m/s ² 4 times/X, Y, Z direction	U: Upper specification limit L: Lower specification limit	n=11, C=0
Temperature cycling	1 cycle −55°C to +125 °C (30 min) (30 min) 20 cycles test		n=22, C=0
High temp. and high humidity storage	+85°C, 85%RH, 1000h		n=22, C=0
High temp. storage	+125℃, 1000h		n=22, C=0
Low temp. storage	−55°C, 1000h		n=22, C=0
Operation life	I _F =50mA, P _{tot} =200mW, Ta=25°C, 1000h		n=22, C=0

^{*1} Test method, conforms to EIAJ ED 4701.

^{*3} Terminal bending direction is shown below.

* These test results are sampling examples from a specific lot for reference purpose only, and do not constitute any warranty or assurance in connection with the products.

^{*2} The product whose not-soldered area is more than 5% for all of the dipped area, and/or whose pinholes or voids are concentrated on one place shall be judged defect.

5. Outgoing inspection

- 5.1 Inspection items
- $\begin{array}{ccc} \text{(1)} & \text{Electrical characteristics} \\ & V_F, I_R, I_{CEO}, V_{CE(sat)}, I_C, R_{ISO}, V_{iso} \end{array}$
- (2) Appearance

5.2 Sampling method and Inspection level

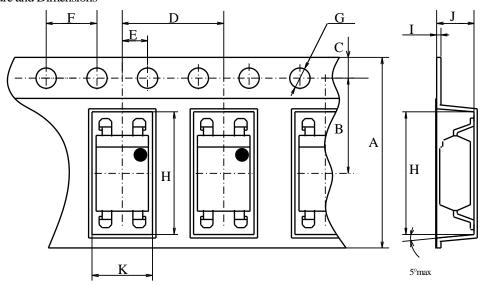
A single sampling plan, normal inspection level II based on ISO 2859 is applied.

The AQL according to the items are shown below.

Defect	Defect Inspection item	
Major defect Electrical characteristics Unreadable marking		0.065
Minor defect	Appearance defect except the above mentioned.	0.25

6.2 Package specifications

- 6.2.1 Taping conditions
 - (1) Tape structure and Dimensions (Refer to below.)
 - The carrier tape has the heat pressed structure of PS material carries tape and three layers cover tape (PET material base).
 - (2) Reel structure and Dimensions (Refer to page 10.)
 - The taping reel shall be of plastic (PS material).
 - (3) Direction of product insertion (Refer to page 10.)
 - (4) Joint of tape

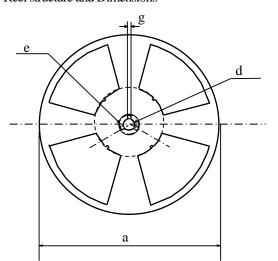

The cover tape and carrier tape in one reel shall be joint less.

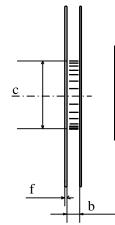
- (5) To repair failure-taped devices, cutting a bottom of carrier tape with a cutter.
 - After replacing the cut portion shall be sealed with adhesive tape.
- 6.2.2 Adhesiveness of cover tape
 - The exfoliation force between carrier tape and cover tape shall be 0.2N to 0.7N for the angle 160° to 180°.
- 6.2.3 Rolling method and quantity
 - Wind the tape back on the reel so that the cover tape will be outside the tape.
 - Attach more than 20cm of blank tape to the trailer and the leader of the and fix the both ends with adhesive tape. One reel basically shall contain 2000pcs.
- 6.2.4 Outer packing appearance (Refer to page 10.)
- 6.2.5 Marking

The label with following information shall be pasted at appointed place of the outer packing case.

- * Model No. *(Business dealing name) * Lot No. * Quantity
- *Country of origin *Company name *Inspection date specified
- 6.2.6 Storage condition
 - Taped products shall be stored at the temperature 5 to 30°C and the humidity 70%RH or less away from direct sunlight.
- 6.2.7 Safety protection during shipping
 - There shall be no deformation of component or degradation of electrical characteristics due to shipping.

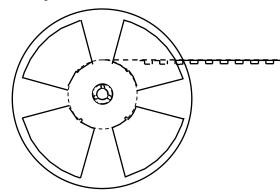
Carrier tape structure and Dimensions

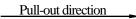


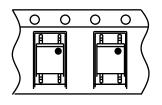

Dimensions list (Unit: mm)

A	A	В	С	D	Е	F	G	Н	I	J	K
16	±0.3	±0.1 7.5	±0.10 1.75	±0.1 8.0	±0.1 2.0	±0.1 4.0	+0.1 -0.0 φ1.5	±0.1 10.4	±0.05 0.40	±0.1 4.2	±0.1 5.1

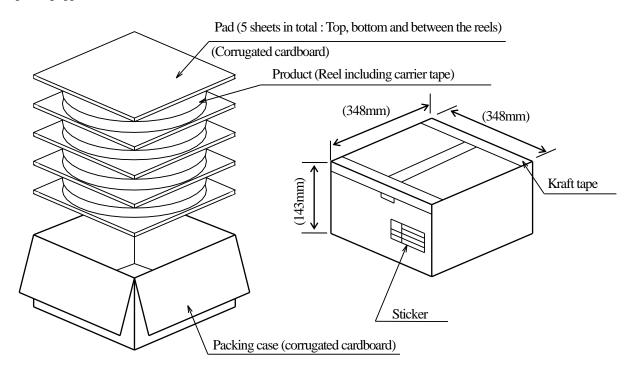
Reel structure and Dimensions






Dimensions list (Unit:mm)

a	b	С	d
(330)	17.5±1.5	φ100.0±1.0	φ13.0±0.5
e	f	g	
φ23.0±1.0	2.0±0.5	2.0±0.5	


Direction of product insertion

Outer packing appearance

Regular packing mass: Approx. 4.1kg

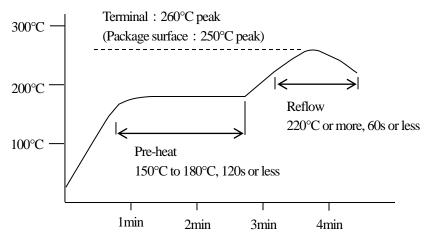
Precautions for Photocouplers

1. Cleaning

(1) Solvent cleaning: Solvent temperature 45°C or less Immersion for 3 min or less

- (2) Ultrasonic cleaning: The effect to device by ultrasonic cleaning differs by cleaning bath size, ultrasonic power output, cleaning time, PCB size or device mounting condition etc. Please test it in actual using condition and confirm that any defect doesn't occur before starting the ultrasonic cleaning.
- (3) Applicable solvent: Ethyl alcohol, Methyl alcohol, Isopropyl alcohol When the other solvent is used, there are cases that the packaging resin is eroded. Please use the other solvent after thorough confirmation is performed in actual using condition.

2. Circuit design

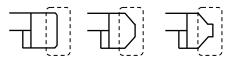

- (1) The LED used in the Photocoupler generally decreases the light emission power by operation. In case of long operation time, please design the circuit in consideration of the degradation of the light emission power of the LED. (50%/5years)
- (2) There are cases that the deviation of the CTR and the degradation of the relative light emission power of the LED increase when the setting value of I_F is less than 1.0mA. Please design the circuit in consideration of this point.

3. Precautions for Soldering

- (1) In the case of flow soldering (Whole device dipping .)

 It is recommended that flow soldering should be at 270°C or less for 10 s or less (Pre-heating : 100 to 150°C, 30 to 80s). (2 times or less)
- (2) If solder reflow:

It is recommended to be done at the temperature and the time within the temperature profile as shown in the figure below. (2 times or less)


(3) In the case of hand soldering

What is done on the following condition is recommended. (2 times or less)

Soldering iron temperature : 400°C or less Time : 3s or less

(4) The form of a lead tip part

There is production tolerance as shown in the following figure.

(5) Other precautions

Depending on equipment and soldering conditions (temperature, Using solder etc.), the effect to the device and the PCB is different. Please confirm that there is no problem on the actual use conditions in advance.

- 1. This specification shall be applied to photocoupler, Model No. PC817 as an option.
- 2. Applicable Models (Business dealing name)

PC817XNYIPW, PC817X1YIPW, PC817X2YIPW, PC817X3YIPW

3. The relevant models are the models approved by VDE according to DIN EN 60747-5-5. (Under preparation)

Approved Model No. : PC817

VDE approved No. : 40008087 (According to the specification DIN EN60747-5-5)

• Pollution : 2

Clearances distance (Between input and output)
 Creepage distance (Between input and output)
 6.4mm (MIN.)
 Tracking-proof
 CTI 175

· Safety limit values

Current (Isi) : 200mA (Diode side)

Power (Psi) : 300mW (Phototransistor side)

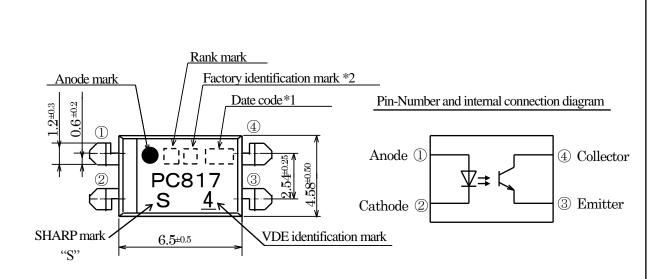
Temperature (Tsi) : 150°C

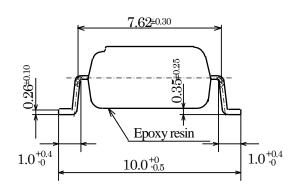
In order to keep safety electric isolation of photocoupler, please set the protective circuit to keep within safety limit values when the actual application equipment troubled.

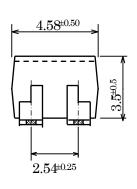
Indication of VDE approval " sprinted on minimum unit package.

4. Outline Refer to the attachment-2-2.

5. Isolation specification according to EN60747-5-5


Parameter	Symbol	Condition	Rating	Unit	Remark	
Class of environmental test	-	-	55/100/21	ı		
Pollution	-	-	2	1		
Maximum operating isolation voltage	V _{IORM} (PEAK)	-	890	V		
Partial discharge test voltage (Between input and output)					Refer to	
Diagram 1	V _m	tp=10s, qc<=5pC	1430	V	the Diagram 1, 2	
Diagram 2	(PEAK)	tp=1s, qc<=5pC	1670	V	(Attachement-2-3)	
Maximum over-voltage	V _{ini,a} (PEAK)	t _{INI} =60s	9000	V		
Safety maximum ratings					- 0	
1) Case temperature	T _{si}	I _F =0, P _C =0	150	°C	Refer to	
2) Input current	I_{si}	P _C =0	200	mA	Fig. 6, 7 (Attachement-2-3)	
3) Electric power (Output or Total power dissipation)	Psi	-	300	mW	(Audenement-2-3)	
T. 1.2		Ta=T _{si}	MIN. 10 ⁹			
Isolation resistance (Test voltage between input and output; DC500V)	R _{ISO}	Ta=100°C	MIN. 10 ¹¹	Ω		
(Test voltage between input and output, DC500V)		Ta=25°C	MIN. 10 ¹²			


- 6. Precautions in performing isolation test
 - 6.1 Partial discharge test methods shall be the ones according to the specifications of EN 60747-5-5
 - 6.2 Please don't carry out isolation test (V_{iso}) over V_{ini,a}.


This product deteriorates isolation characteristics by partial discharge due to applying high voltage. And there is possibility that partial discharge occurs in operating isolation voltage. (V_{IORM}) .

4. Outline

- *1 Date code: 3 digit indication according to production year, month and day
- *2 Factory identification mark is as follows.

H: YONGYAO ENSEI ELECTRONICS (SHANGQIU) CO., LTD. (CHINA products)

Pin material: Copper Alloy

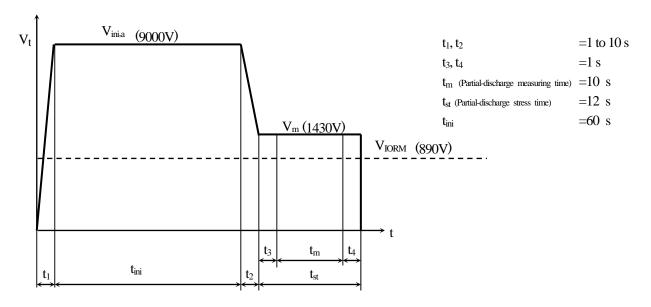
Pin finish : Palladium (Au flash plating)

Mark : Laser marking

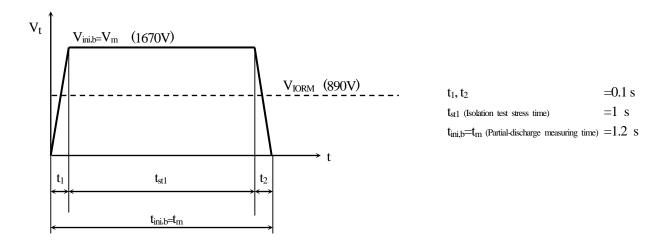
A lead tip area and a part of a lead side area

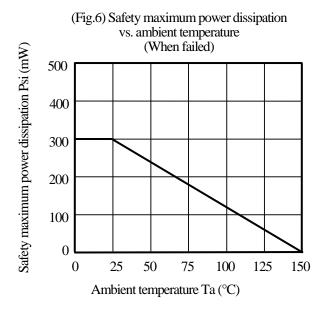
(area) are no-plating.

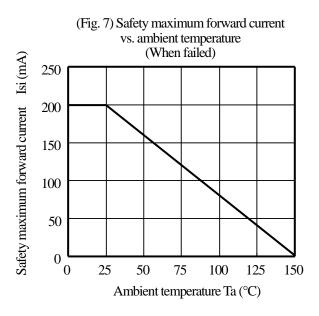
Product mass: Approx. 0.22g


UNIT: mm

Name PC817 Outline Dimensions


(Business dealing name : PC817X*YIPW)




Method of Diagram 1: Breakdown test (Apply to type test and sampling test)

Method of Diagram 2: Non breakdown test (Apply to all device test)

