5+2 CH DC/DC Converters for DV

General Description

This is a 5+2 CH integrated PMIC for DV application. There are 5 DC/DC converters : one synchronous step-up, one selectable synchronous step-up/step-down, two synchronous step-downs, and one WLED driver in either asynchronous step-up or current source mode, selectable by VOUT6 initial voltage. In addition, there are 2 LDO regulators : one RTC LDO and one generic LDO. The generic LDO can choose internal feedback loop for fixed output 2.5 V or external feedback loop for customized output voltage. Both low voltage synchronous step-up converters are with load disconnect function. All power MOSFETs and compensation networks are integrated. There is a power good indicator to monitor FB2, FB3, and FB4 voltage status. CH 1 to CH 5 enabling can be controlled flexibly : enabled independently or in preset sequences.

Ordering Information RT9992口

\llcorner Package Type QW : WQFN-32L 4x4 (W-Type)
Lead Plating System
Z : ECO (Ecological Element with Halogen Free and Pb free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Pin Configuration

(TOP VIEW)

Features

- All Power MOSFETs Integrated
- 5 Channels with Internal Compensation
- Flexible Enabling Control
- Enabled Independently or in Preset Power On/ Off Sequences
- CH2 Synchronous Converter in Step-Up or StepDown Mode Selectable by SEL Pin
- Synchronous Step-Down DC/DC Converter
- Up to 95\% Efficiency
- 100\% (max) Duty Cycle
- Synchronous Step-Up DCIDC Converter
- Adjustable Output Voltage
- Up to 95\% Efficiency
- Asynchronous Step-Up Converter to Drive WLED, Selectable Between Step-Up or Current Source
- LED Open Protection (OVP6) in Step-Up Mode
- PWM Dimming Control
- Load Disconnect Function for CH1 and CH2 Synchronous Step-Up Converter
- Fixed 2MHz Switching Frequency for CH1, CH2, CH3, and CH4
- Fixed 1MHz Switching Frequency for CH6
- Generic LDO (CH5)
- Output Voltage : Fixed 2.5V or Set by External Feedback Network, Determined by FB5 Initial Voltage
- RTC LDO : Fixed Output Voltage 3.1V
- Power Good Indicator to Monitor Output Voltage Status of CH2, CH3, and CH4
- 32-Lead Package
- RoHS Compliant and Halogen Free

Applications

- CMOSDV
- Gaming

Marking Information

ES YM

DNN \quad| ES : Product Code |
| :--- |
| YMDNN : Date Code |

Typical Application Circuit

For 2AA:

For above circuit, the power sequence is $\mathrm{CH} 1 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 2$, while CH 5 remains independent.
For other power sequence combinations, refer to the power on/off sequence section in application information.

For Li+ :

For above circuit, all channels are independently enabled/disabled.
For other power sequence combinations, refer to the power on/off sequence section in application information.

Table 1. Recommended Components for the Typical Application Circuit

Channel	CH3					
Calculation	Vout_CH3 = (1 + R5 / R6) $\times \mathbf{0 . 8 V}$					
$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	2.5	1.8	1.5	1.3	1.2	1
$\mathrm{~L} 3(\mu \mathrm{H})$	2.2	2.2	2.2	2.2	2.2	2.2
R5 $(\mathrm{k} \Omega)$	768	470	330	237	187	23.2
R6 $(\mathrm{k} \Omega)$	360	374	374	374	374	93.1
$\mathrm{C} 9(\mu \mathrm{~F})$	10	10	10	10	10	10
$\mathrm{C} 10(\mathrm{pF})$	22	33	47	68	82	47

Channel	CH4					
Calculation	Vout_CH4 $=(1+\mathrm{R} 7$ / R8) $\times 0.8 \mathrm{~V}$					
$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	2.5	1.8	1.5	1.3	1.2	1
L4 ($\mu \mathrm{H}$)	2.2	2.2	2.2	2.2	2.2	2.2
R7 (k $)^{\text {) }}$	768	470	330	237	187	23.2
R8 (k $)^{\text {) }}$	360	374	374	374	374	93.1
C12 ($\mu \mathrm{F}$)	10	10	10	10	10	10
C13 (pF)	22	33	47	68	82	47

Where C9, C12 are Cout,
C10, C13 are feedforward cap between output and FB
R5, R7 are the feedback resistor between output and FB
R6, R8 are the feedback resistor between GND and FB

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	FB1	Feedback input pin of CH 1. High impedance in shutdown.
2	PGOOD	Power good indicator output pin (Open drain).
3	FB5	Feedback input pin of CH5. High impedance in shutdown.
4	VOUT5	Output pin for CH5. High impedance in shutdown.
5	PVDD5	Power input pin of CH 5.
6	EN5	Enable pin of CH 5.
7	SEQ	SEQ $=\mathrm{H}$ to use preset power on/off sequence. $\mathrm{SEQ}=\mathrm{L}$ to independently enable CH1 to 5. Logic state can't be changed during operation.
8	LX2	Switch node of CH2. High impedance in shutdown.
9	PVDD2	Power input pin of CH 2 in Step-Down or power output pin of CH 2 in step-up.
10	VIN2	Power input node of CH 2 in step-up.
11	EN2	Enable pin of CH2 or enable pin of preset On/Off sequence.
12	FB2	Feedback input pin of CH 2 . High impedance in shutdown.
13	SEL	Select pin to define CH 2 in step-down (SEL = H) or step-up (SEL = L) mode. Logic state can't be changed during operation.
14	PVDD4	Power input pin of CH 4 .
15	LX4	Switch node of CH4. High impedance in shutdown.
16	EN4	Enable pin of CH4 or Select which preset On/Off sequence.
17	FB4	Feedback input pin of CH 4 . High impedance in shutdown.
18	FB3	Feedback input pin of CH3. High impedance in shutdown.
19	EN3	Enable pin of CH3 or select which preset On/Off sequence.
20	LX3	Switch node of CH3. High impedance in shutdown.
21	PVDD3	Power input pin of CH 3 .
22	EN6	Enable pin of CH6 and PWM dimming input signal pin.
23	LX6	Switch node of CH6 in step-up mode. High impedance in shutdown.
24	VOUT6	Sense pin for CH6 output voltage in step-up mode and CH6 mode selection pin.
25	FB6	Feedback input pin of CH6 in step-up mode or current sink pin of CH 6 in current source mode.
26	VDDM	Internal control circuit power pin. That must connect to a bypass capacitor for better noise rejection.
27	PVDD6	Power input pin of CH6 N-MOSFET Driver.
28	RTCPWR	RTC power output pin.
29	BAT	Battery power input pin and CH1 step-up power input node.
30	PVDD1	Power output pin of CH 1.
31	LX1	Switch node of CH1. High impedance in shutdown.
32	EN1	Enable pin of CH 1.
33 (Exposed pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, VDDM -0.3 V to 7 V
- LX1, LX2, LX3, LX4 -0.3 V to 7 V
<20ns -0.3 V to 10 V
- LX6, VOUT6 -0.3 V to 21 V
< 20ns -8 V to 24 V
- Other Pins -0.3 V to 7 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ WQFN-32L 4×4 3.59 W
- Package Thermal Resistance (Note 2) WQFN-32L $4 \times 4, \theta_{J A}$ $27.8^{\circ} \mathrm{C} / \mathrm{W}$
WQFN-32L $4 \times 4, \theta_{\text {Jc }}$ $7^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Mode) 2kV
Recommended Operating Conditions (Note 4)
- Supply Input Voltage VDDM 2.7 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(V_{D D M}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply Voltage						
VDDM Startup Voltage	V ${ }_{\text {ST }}$	For Bootstrap, First Rising	1.5	--	--	V
Supply Current						
Shutdown Supply Current into BAT (including RTC LDO quiescent current)		$\mathrm{V}_{\mathrm{BAT}}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {PVDD6 }}=3 \mathrm{~V}$	--	7	12	$\mu \mathrm{A}$
Shutdown Supply Current into PVDD6		$\mathrm{V}_{\mathrm{BAT}}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {PVDD }}<\mathrm{V}_{\text {BAT }}$	--	--	1	$\mu \mathrm{A}$
Shutdown Supply Current into VDDM	IofF	$E N x=0, V \mathrm{SEQ}=0 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V}$	--	1	10	$\mu \mathrm{A}$
CH1 (Synchronous Step-Up) Supply Current into VDDM	lQ1	$\begin{aligned} & \text { Non Switching, } \mathrm{V}_{\mathrm{EN} 1}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{FB} 1}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SEQ}}=0 \mathrm{~V} \end{aligned}$	--	--	800	$\mu \mathrm{A}$
CH2 (Synchronous Step-Up or Step-Down) Supply Current into VDDM	l Q2	Non Switching, $\mathrm{V}_{\mathrm{EN} 2}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{FB} 2}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SEQ}}=0 \mathrm{~V}$	--	--	800	$\mu \mathrm{A}$
CH3 (Synchronous Step-Down) Supply Current into VDDM	lQ3	Non Switching, $\mathrm{V}_{\mathrm{EN} 3}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{FB} 3}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SEQ}}=0 \mathrm{~V}$	--	--	800	$\mu \mathrm{A}$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
CH4 (Synchronous Step-Down) Supply Current into VDDM	IQ4	Non Switching, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{FB} 4}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SEQ}}=0 \mathrm{~V}$	--	--	800	$\mu \mathrm{A}$
CH6 (WLED) in Current Source Mode Supply Current into VDDM	IQ6c	$\mathrm{V}_{\text {EN6 }}=3.3 \mathrm{~V}$, $\mathrm{V}_{\text {OUt6 }}=0 \mathrm{~V}$	--	--	600	$\mu \mathrm{A}$
CH6 (WLED) in Asynchronous Step-Up Mode Supply Current into VDDM	IQ6b	Non switching, $\mathrm{V}_{\mathrm{EN} 6}=3.3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{FB} 6}=0.35 \mathrm{~V}, \mathrm{VOUT} 6=1 \mathrm{~V}$	--	--	800	$\mu \mathrm{A}$
Oscillator						
CH1, 2, 3, 4 Operation Frequency	fosc		1800	2000	2200	kHz
CH6 Operation Frequency	fosc6		900	1000	1100	kHz
CH1 Maximum Duty Cycle (Step-Up)		$\mathrm{V}_{\mathrm{FB} 1}=0.7 \mathrm{~V}$	80	83.5	87	\%
CH2 Maximum Duty Cycle (Step-Up)		$\mathrm{V}_{\mathrm{FB} 2}=0.7 \mathrm{~V}$	80	83.5	87	\%
CH2 Maximum Duty Cycle (Step-Down)		$\mathrm{V}_{\mathrm{FB} 2}=0.7 \mathrm{~V}$	--	--	100	\%
CH3 Maximum Duty Cycle (Step-Down)		$\mathrm{V}_{\mathrm{FB} 3}=0.7 \mathrm{~V}$	--	--	100	\%
CH4 Maximum Duty Cycle (Step-Down)		$\mathrm{V}_{\mathrm{FB} 4}=0.7 \mathrm{~V}$	--	--	100	\%
CH6 Maximum Duty Cycle (Step-Up)		$\mathrm{V}_{\mathrm{FB6}}=0.15 \mathrm{~V}, \mathrm{~V}_{\text {OUT6 }}=1 \mathrm{~V}$	91	93	97	\%
Feedback and output Regulation Voltage						
Feedback Regulation Voltage @ FB1, FB2, FB3, and FB4			0.788	0.8	0.812	V
Sink Current into FB6 (CS mode)		Vout6 $=0 \mathrm{~V}$, Current Source	28.5	30	31.5	mA
Dropout Voltage @ FB6 (CS mode)		$V_{\text {OUT6 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DDM }}=3.3 \mathrm{~V}$, Current Source	--	--	0.6	V
Feedback Regulation Voltage @ FB6	VFB6	Vout6 = 1V. Step-Up	0.237	0.25	0.263	V
Power Switch						
CH1 On Resistance of MOSFET	RDS(ON)	P-MOSFET, VPVDD1 $=3.3 \mathrm{~V}$	--	200	300	$\mathrm{m} \Omega$
		N-MOSFET, VPVDD1 $=3.3 \mathrm{~V}$	--	130	250	
CH1 Current Limitation (Step-Up)	ILIM1		2.2	3	4	A
CH2 On Resistance of MOSFET	RDS(ON)	P-MOSFET, $\mathrm{V}_{\text {PVDD2 }}=3.3 \mathrm{~V}$	--	400	550	$\mathrm{m} \Omega$
		N-MOSFET, VPVDD2 $=3.3 \mathrm{~V}$	--	260	400	
CH2 Current Limitation (Step-Down)	ILIM2_D		1	1.5	2	A
CH2 Current Limitation (Step-Up)	ILIM2_U		1.5	2.1	3	A
CH3 On Resistance of MOSFET	RDS(ON)	P-MOSFET, $\mathrm{V}_{\text {PVDD3 }}=3.3 \mathrm{~V}$	--	370	500	$\mathrm{m} \Omega$
		N-MOSFET, VPVDD3 $=3.3 \mathrm{~V}$	--	300	400	
CH3 Current Limitation (Step-Down)	ILIM3		1	1.5	2	A
CH4 On Resistance of MOSFET	RDS(ON)	P-MOSFET, VPVDD4 $=3.3 \mathrm{~V}$	--	240	400	$\mathrm{m} \Omega$
		N-MOSFET, VPVDD4 $=3.3 \mathrm{~V}$	--	140	250	
CH4 Current Limitation (Step-Down)	ILIM4		1.5	2	2.4	A
CH6 On Resistance of MOSFET	RDS(ON)	N-MOSFET	--	0.75	1.1	Ω
CH6 Current Limitation	ILIM6	N-MOSFET	0.6	0.8	1	A

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
Protection							
Over Voltage Protection PVDD1,PVDD2 (CH2 in Step-Up)				5.9	6.15	6.4	V
Over Voltage Protection @ VOUT6		Vovp6	Step-Up	18	19.5	21	V
Under Voltage Protection @ FB1,FB2, FB3, FB4 FB2, FB3, FB4		Vuvp1234		--	0.4	--	V
Under Voltage Protection @ FB5		VUVP5		--	0.3	--	V
VDDM Over Voltage Protection				5.9	6.15	6.4	V
VDDM UVLO Threshold			VDDM Rising		2.4	2.7	V
			VDDM Falling	1.7	2.1	2.4	
BAT UVLO Threshold			BAT Rising	1.3	1.4	1.5	V
			BAT Falling	1.2	1.3	1.4	
Protection Fault Delay			Except OVP1/2	--	100	--	ms
Control							
EN1 to 6, SEL, SEQ Threshold Voltage	Logic-High	VIH		1.3	--	--	V
	Logic-Low	VIL		--	--	0.4	
EN1 to 5, SEL, SEQ Sink Current				--	1	6	$\mu \mathrm{A}$
EN6 Sink Current				--	4	20	$\mu \mathrm{A}$
EN6 Low Time for Shutdown		tSHDN		--	32.7	--	ms
EN6 High Time for CH6 Enable				--	1.2	5	$\mu \mathrm{s}$
Thermal Protection							
Thermal Shutdown		TsD		125	160	--	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis		$\Delta T_{\text {SD }}$		--	20	--	${ }^{\circ} \mathrm{C}$
CH5 LDO (Cout $=\mathbf{1} \mu \mathrm{F}$ for Better Stability)							
Input Voltage Range (PVDD5)		VPVDD5		2.7	--	5.5	V
Output Voltage Range		Vout5	By external feedback	0.6	--	4.5	V
Feedback Regulation Voltage @FB5 FB5		$\mathrm{V}_{\text {FB5 }}$	Using external feedback loop	0.493	0.5	0.507	V
Regulated Output Voltage @ VOUT5		VReg5	Using internal feedback loop	2.45	2.5	2.55	V
FB5 Threshold to Select Internal Feedback Network			(Note : before enabled, $\mathrm{V}_{\mathrm{FB} 5}>$ 0.8 V . Then CH5 uses internal feedback)	0.8	--	--	V
Max Current Limit		ILIM5	$\mathrm{V}_{\text {PVDD } 5}=3.3 \mathrm{~V}$	300	380	500	mA
Dropout Voltage			lout $=100 \mathrm{~mA}$	60	100	120	mV
Soft-Start Time		tss5	$\mathrm{V}_{\text {FB5 }}=0$ to 0.5 V	--	2.4	--	ms
PSRR+			$\begin{aligned} & \text { IOUT }=10 \mathrm{~mA}, \mathrm{~V}_{\text {PVDD5 }}=3.3 \mathrm{~V}, \\ & \text { VOUT }=2.5 \mathrm{~V}, 1 \mathrm{kHz} \\ & \hline \end{aligned}$	--	-55	--	db

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
RTC LDO for RTCPWR (Keep On Once Bat Connect)						
Input Voltage Range	VDDI	Max of BAT and PVDD6	--	--	5.5	V
Quiescent Current	l_{Q}	$\mathrm{V}_{\text {DDI }}=4.2 \mathrm{~V}$	--	5	8	$\mu \mathrm{A}$
Regulated Output Voltage @ RTCPWR		l OUT $=0 \mathrm{~mA}$	3.0	3.1	3.2	V
Max Output Current (Current Limit)		$\mathrm{V}_{\mathrm{DDI}}=4.2 \mathrm{~V}$	60	105	200	mA
Dropout Voltage	VDROP	IOUT $=50 \mathrm{~mA}$	--	740	1000	mV
		$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$	--	110	200	
		IOUT $=3 \mathrm{~mA}$	--	60	100	
Power Good Indicator						
FB2 Regulation Threshold		For PGOOD Go Low	0.6	0.66	0.74	V
FB2 Hysteresis			--	40	--	mV
FB3 Regulation Threshold		For PGOOD Go Low	0.6	0.66	0.74	V
FB3 Hysteresis			--	40	--	mV
FB4 Regulation Threshold		For PGOOD Go Low	0.6	0.66	0.74	V
FB4 Hysteresis			--	40	--	mV
PGOOD Rising Delay Time			13	14.4	15.9	ms
PGOOD Sink Capability		$\mathrm{V}_{\text {DDM }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {PGOOD }}=0.5 \mathrm{~V}$	4	--	--	mA
Soft-Start Time						
CH1 Soft-Start Time	tss1	$\mathrm{V}_{\mathrm{FB} 1}=0$ to 0.8 V	2.8	3.5	4.2	ms
CH2 Soft-Start Time	tss2	$\mathrm{V}_{\mathrm{FB} 2}=0$ to 0.8 V	2.8	3.5	4.2	ms
CH3 Soft-Start Time	tss3	$\mathrm{V}_{\mathrm{FB} 3}=0$ to 0.8 V	2.8	3.5	4.2	ms
CH4 Soft-Start Time	tss4	$\mathrm{V}_{\mathrm{FB} 4}=0$ to 0.8 V	2.8	3.5	4.2	ms

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

CH3 Step-Down Efficiency vs. Output Current

CH3 Step-Down Output Voltage vs. Output Current

CH2 Step-Dwon Output Voltage vs. Output Current

CH4 Step-Down Output Voltage vs. Output Current

Power On Sequence Independently

Power Off Sequence Independently

Power Off Sequence 1

Power Off Sequence 2

Power On Sequence 1

Power On Sequence 2

Power On Sequence 3

Power Off Sequence 3

Power Off Sequence 4

CH2 Output Voltage Ripple

Power On Sequence 4

CH1 Output Voltage Ripple

Time (500ns/Div)

CH3 Output Voltage Ripple

CH1 Load Transient Response

CH2 Load Transient Response

CH6 Output Voltage Ripple

CH2 Load Transient Response

CH3 Load Transient Response

CH5 Load Transient Response

Application Information

The RT9992 includes the following four DC/DC converter channels, two LDOs, and one WLED driver to build a multiple-output power-supply system.

CH 1 : Step-up synchronous current mode DC/DC converter with internal power MOSFETs and compensation network. The P-MOSFET body can be controlled to disconnect the load.

CH 2 : Selectable step-up or step-down synchronous current mode DC/DC converter with internal power MOSFETs and compensation network. The P-MOSFET body can be controlled to disconnect the load.

CH3 : Step-down synchronous current mode DC/DC converter with internal power MOSFETs and internal compensation network.

CH4 : Step-down synchronous current mode DC/DC converter with internal power MOSFETs and internal compensation network.

CH 5 : Generic LDO that provides either fixed 2.5 V output or adjustable output voltage via external feedback network, depending on initial by FB5 voltage prior to becoming enabled.

CH6 : WLED driver operable in either current source mode or asynchronous step-up mode with internal power MOSFET and compensation network.

CH 1 to CH 4 operate in PWM mode with 2 MHz , while CH6 operates in step-up mode with 1 MHz switching frequency under moderate to heavy loading.

RTC_LDO : 3.1V output LDO with low quiescent current and high output voltage accuracy.

Power Good Indicator: Monitors FB2, FB3, and FB4 status.

CH1 : Synchronous Step-Up DC/DC Converter

CH 1 is a synchronous step-up converter for motor driver power in DSC system. The converter operates at fixed frequency and under PWM Current Mode. The converter integrates internal MOSFETs, compensation network and synchronous rectifier for up to 95\% efficiency. It also disconnects the load when CH 1 is turned off. Connect BAT to the power input node in front of CH 1 inductor.

The output voltage can be set by the following equation :
$\mathrm{V}_{\text {OUT_CH1 }}=(1+\mathrm{R} 1 / \mathrm{R} 2) \times \mathrm{V}_{\mathrm{FB} 1}$
where $\mathrm{V}_{\mathrm{FB} 1}$ is 0.8 V typically.

CH2 : Synchronous Step-Up / Step-Down Selectable DCIDC Converter

CH 2 is a synchronous step-up / step-down selectable converter for system I/O power.

Mode Setting

CH2 of the RT9992 features flexible step-up/step-down topology setting for 2AA / Li-ion battery. If CH2 operates in step-up mode, the SEL pin should be connected to GND. If CH2 operates in step-down mode, the SEL pin should be connected to $\mathrm{V}_{\text {BAT }}$. In addition, please note that the logic state can not be changed during operation.

Table 2. CH2 Mode Setting

CH2 Operating Mode	Connection
Step-Up	Connect the SEL pin to GND.
Step-Down	Connect the SEL pin to VBAT.

Step-Up

The converter operates in fixed frequency PWM Mode, Continuous Current Mode (CCM), and Discontinuous Current Mode (DCM) with internal MOSFETs, compensation network and synchronous rectifier for up to 95\% efficiency. In step-up mode, CH2 also disconnects the load when it is turned off. Connect VIN2 to the power input node in front of CH 2 inductor.

Step-Down

The converter operates in fixed frequency PWM mode and Continuous Current Mode (CCM) with internal MOSFETs, compensation network and synchronous rectifier for up to 95% efficiency. The CH 2 step-down converter can be operated at 100\% maximum duty cycle to extend the input operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode. In step-down mode, connect the VIN2 pin to GND via a $470 \mathrm{k} \Omega$ pull-down resistor.

The output voltage can be set by the following equation :
Vout_CH2 $=(1+\mathrm{R} 3 / \mathrm{R} 4) \times \mathrm{V}_{\mathrm{FB} 2}$
where $\mathrm{V}_{\mathrm{FB} 2}$ is 0.8 V typically

CH3 : Synchronous Step-Down DC/DC Converter

CH3 is suitable for DRAM power in DSC system. The converter operates in fixed frequency PWM mode and CCM with integrated internal MOSFETs and compensation network. The CH3 step-down converter can be operated at 100\% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple.

The output voltage can be set by the following equation :
Vout_CH3 $=(1+\mathrm{R} 5 / R 6) \times \mathrm{V}_{\text {FB3 }}$
where $\mathrm{V}_{\mathrm{FB} 3}$ is 0.8 V typically.

CH4 : Synchronous Step-Down DC/DC Converter

CH 4 is suitable for processor core power in DSC system. The converter operates in fixed frequency PWM mode and CCM with integrated internal MOSFETs and compensation network. The CH4 step-down converter can be operated at 100% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple.

The output voltage can be set by the following equation :
Vout_CH4 $=(1+R 7 / R 8) \times V_{\text {FB4 }}$
Where $\mathrm{V}_{\mathrm{FB} 4}$ is 0.8 V typically.

CH5 : Generic LDO

The RT9992 provides a generic LDO with high output voltage accuracy. The LDO outputs either a fixed 2.5 V voltage or an adjustable voltage with external feedback network, depending on the initial FB5 voltage. The CH5 adjustable output voltage can be set by the following equation :

VOUT_CH5 $=(1+\mathrm{R} 11 / \mathrm{R} 12) \times \mathrm{V}_{\mathrm{FB} 5}$
Where $\mathrm{V}_{\mathrm{FB} 5}$ is 0.5 V typically.

CH6: WLED Driver

CH6 is a WLED driver that can operate in either current source mode or asynchronous step-up mode, depending
on the initial VOUT6 voltage level. In addition, if CH 4 softstart does not finish, CH 6 can not be turned on.

Table 3. CH6 WLED Setting

CH6 Operating Mode	VOUT6
Current Source	$<0.3 \mathrm{~V}$
Asynchronous Step-Up	$>0.7 \mathrm{~V}$

When CH6 works in current source mode, it sinks an accurate LED current modulated by EN6 high duty such that it is easily dimmed from 0 mA to 30 mA . If CH 6 works in asynchronous step-up mode, it integrates asynchronous step-up mode with an internal MOSFET and internal compensation, and requires an external schottky diode to output a voltage up to 19 V . The LED current is set via an external resistor and controlled via the PWM duty on the EN6 pin. Regardless of the mode, holding EN6 low for more than 32.7 ms will turn off CH 6 .

CH6 WLED Current Dimming Control

If CH 6 is in asynchronous step-up mode, the WLED current is set by an external resistor. And the dimming is controlled by the duty of pulse width modulated signal on the EN6 pin.

The average current through WLED can be set by the following equations:
$I_{\text {LED }}(m A)=[250 \mathrm{mV} / R(\Omega)] \times$ Duty (\%)for step-up mode Or ILed $(m A)=30 m A \times$ Duty (\%)....... for current source mode

R : Current sense resistor from FB6 to GND.
Duty: PWM dimming via the EN6 pin. Dimming frequency range is from 1 kHz to 100 kHz but 2 kHz to 20 kHz should be avoided to prevent audio noise distraction.

VDDM Power Path

To support bootstrap function, the RT9992 includes a power selection circuit which selects between BAT and PVDD6 for the higher voltage to be used as the internal node, VDDI, that connects to the external decoupling capacitor at the VDDM pin. VDDM is the main power for the RT9992 control circuit. VDDI is the power input for the RTC LDO. To bootstrap VDDM, PVDD6 must connect to the output of the first enabled low voltage synchronous step-up channel (CH1 or CH2). Furthermore, PVDD6 also
provides power to the N-MOSFET driver in CH 6 . The RT9992 includes UVLO circuits to check VDDM and BAT voltage status.

RTC LDO

The RT9992 provides a 3.1V output LDO for real time clock. The LDO features low quiescent current ($5 \mu \mathrm{~A}$) and high output voltage accuracy. The RTC LDO is always on, even when the system is shut down. For better stability, it is recommended to connect a $0.1 \mu \mathrm{~F}$ capacitor to the RTCPWR pin. The RTC LDO includes pass transistor body
diode control to avoid the RTCPWR node from back charging into the input node VDDI.

Power Good

The RT9992 provides a power good indicator to monitor FB2, FB3, and FB4 voltage status. After CH2, CH3, and CH 4 are turned on, if any one of them becomes lower than 0.66 V (typically), PGOOD will be pulled low. If all are higher than 0.7 V (typically), PGOOD will be released and pulled high after 10 ms .

Power On/Off Sequence

SEQ = 0 : CH 1 to 5 are independently enabled by EN1 to EN5
SEQ = $1: \mathrm{CH} 2$ to 5 , or CH 1 to 4 is enabled in preset on/off sequence. The order is chosen by EN3 and EN4

SEQ	EN2	EN3	EN4	EN5	EN1	Power On Sequence			
0	indept	indept	indept	indept	indept		independent		
1	EN2345	1	0	\times	indept	CH 2	CH 3	CH 4	CH 5
1	EN2345	0	0	0	indept	CH 2	CH 5	CH 3	CH 4
1	EN1234	1	1	indept	x	CH 1	CH 3	CH 4	CH 2
1	EN1234	0	1	indept	x	CH 1	CH 4	CH 3	CH 2

X : don't care but suggested to be LOW (0).

Power On/Off Sequence Example for CH 2 to CH 5

Sequence 1: SEQ is high, EN3 is high, EN4 is low.
EN2 will turn on/off CH 2 to CH 5 in preset sequence. CH 1 will be turned on by EN1 independently.

CH 2 to CH 5 Power On Sequence is :
When EN2 goes high, CH 2 will be turned on .7 ms after CH 2 is turned on, CH 3 will be turned on. 7 ms after CH 3 is turned on, CH 4 will be turned on. 7 ms after CH 4 is turned on, CH 5 will be turned on.

CH 2 to CH 5 Power-Off Sequence is :
When EN2 goes low, CH5 will be turned off and VOUT5 will be internally discharged. When VOUT5 discharging finishes, CH 4 will turn off and internally discharge output via LX4 pin. When FB4 < 0.1V, CH3 will turn off and internally discharge output via LX3 pin. Likewise when FB3 $<0.1 \mathrm{~V}, \mathrm{CH} 2$ will turn off and discharge output via LX2 pin. After FB2 < 0.1V, CH2 to 5 shutdown sequence will be completed.

Sequence 2 : SEQ is high, EN3 is low, EN4 is low, EN5 is low.

EN2 will turn on/off CH 2 to CH 5 in preset sequence. CH 1 will be turned on by EN1 independently.

CH 2 to CH 5 Power On Sequence is :

When EN2 goes high, CH 2 will be turned on .7 ms after CH 2 is turned on, CH 5 will be turned on. About 1 ms after Ch5 is turned on, CH 3 will be turned on. 7 ms after CH 3 is turned on, CH 4 will be turned on.

CH 2 to CH 5 Power-Off Sequence is :
When EN2 goes low, CH4 will turn off first and internally discharge output via LX4 pin. When FB4 < 0.1V, CH3 will turn off and internally discharge output via LX3 pin. Likewise, when FB3 < 0.1V, CH5 will turn off and VOUT5 will be internally discharged. When VOUT5 discharging finishes, CH 2 will turn off and discharge output via LX2 pin. After FB2 $<0.1 \mathrm{~V}, \mathrm{CH} 2$ to 5 shut down sequence will be completed.

Table 4. CH2 to CH5 Power On/Off Sequence

EN3 to EN5 Setting	Power On Sequence
EN3 $=\mathrm{H}, \mathrm{EN} 4=\mathrm{L}, \mathrm{EN} 5=\mathrm{X}$	$\mathrm{CH} 2 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 5$
$\mathrm{EN} 3=\mathrm{L}, \mathrm{EN} 4=\mathrm{L}, \mathrm{EN} 5=\mathrm{L}$	$\mathrm{CH} 2 \rightarrow \mathrm{CH} 5 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4$
EN3 to EN5 Setting	Power Off Sequence
EN3 = H, EN4 = L, EN5 = X	$\mathrm{CH} 5 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 2$
$\mathrm{EN} 3=\mathrm{L}, \mathrm{EN} 4=\mathrm{L}, \mathrm{EN} 5=\mathrm{L}$	$\mathrm{CH} 4 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 5 \rightarrow \mathrm{CH} 2$

Timing Diagram for $\mathbf{C H} 2$ to $\mathbf{C H} 5$

Power On Sequence : CH2 Step-Down 3.3V \rightarrow CH3 Step-Down 1.8V \rightarrow CH4 Step-Down $1.2 \mathrm{~V} \rightarrow \mathrm{CH} 5$ LDO 2.5 V Power Off Sequence: CH5 LDO $2.5 \mathrm{~V} \rightarrow \mathrm{CH} 4$ Step-Down 1.2V $\rightarrow \mathrm{CH} 3$ Step-Down $1.8 \mathrm{~V} \rightarrow \mathrm{CH} 2$ Step-Down 3.3V $S E L=H, S E Q=H, E N 3=H, E N 4=L$

Power On Sequence : CH2 Step-Down 3.3V \rightarrow CH5 LDO $2.5 \mathrm{~V} \rightarrow \mathrm{CH} 3$ Step-Down 1.8V $\rightarrow \mathrm{CH} 4$ Step-Down 1.2V Power Off Sequence : CH4 Step-Down 1.2V \rightarrow CH3 Step-Down 1.8V \rightarrow CH5 LDO 2.5V \rightarrow CH2 Step-Down 3.3V $S E L=H, S E Q=H, E N 3=L, E N 4=L, E N 5=L$

Power on/off sequence for CH 1 to CH 4

Sequence 3 : SEQ is high, EN3 is high, EN4 is high.
EN2 will turn on/off CH 1 to CH 4 in preset sequence. CH 5 will be turned on by EN5 independently.

CH 1 to CH 4 Power On Sequence is :
When EN2 goes high, CH1 will be turned on. 7 ms after CH 1 is turned on, CH 3 will be turned on. 7 ms after CH 3 is turned on, CH 4 will be turned on. 7 ms after CH 4 is turned on, CH 2 will be turned on.

CH 1 to CH 4 Power-Off Sequence is :
When EN2 goes low, CH2 will turn off first and internally discharge output. When FB2 $<0.1 \mathrm{~V}, \mathrm{CH} 4$ will turn off and also internally discharge output via LX4 pin. When FB4 < $0.1 \mathrm{~V}, \mathrm{CH} 3$ will turn off and internally discharge output via LX3 pin. Likewise, when FB3 $<0.1 \mathrm{~V}, \mathrm{CH} 1$ will turn off and discharge output via LX1 pin. After FB1 < 0.1V, CH1 to 4 shutdown sequence will be completed.

Sequence 4 : SEQ is high, EN3 is low, EN4 is high.
EN2 will turn on/off CH 1 to CH 4 in preset sequence. CH 5 will be turned on by EN5 independently.

CH 1 to CH 4 Power On Sequence is :
When EN2 goes high, CH 1 will be turned on first. 7 ms after CH 1 is turned on, CH 4 will be turned on. 7 ms after CH 4 is turned on, CH 3 will be turned on. 7 ms after CH 3 is turned on, CH 2 will be turned on.

CH 1 to CH 4 Power Off Sequence is :
When EN2 goes low, CH2 will turn off first and internally discharge output. When FB2 $<0.1 \mathrm{~V}, \mathrm{CH} 3$ will turn off and internally discharge output via LX3 pin. When FB3 $<0.1 \mathrm{~V}$, CH 4 will turn off and internally discharge output via LX4 pin. Likewise when FB4 $<0.1 \mathrm{~V}, \mathrm{CH} 1$ will turn off and internally discharge output via LX1 pin. After FB1 < 0.1V, Ch1 to 4 shutdown sequence is completed.

Table 5. CH1 to CH4 Power On/Off Sequence

Enable Setting	Power On Sequence
$E N 3=\mathrm{H}, \mathrm{EN} 4=\mathrm{H}, \mathrm{EN} 1=\mathrm{X}$	$\mathrm{CH} 1 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 2$
$\mathrm{EN} 3=\mathrm{L}, \mathrm{EN} 4=\mathrm{H}, \mathrm{EN5}=\mathrm{X}$	$\mathrm{CH} 1 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 2$
Enable Setting	Power Off Sequence
EN3 $=\mathrm{H}$, EN4 $=\mathrm{H}$, EN5 $=\mathrm{X}$	$\mathrm{CH} 2 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 1$
EN3 $=\mathrm{L}$, EN4 $=\mathrm{H}, \mathrm{EN5}=\mathrm{X}$	$\mathrm{CH} 2 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 1$

Timing Diagram for CH1 to CH4

Power On Sequence : CH1 Step-Up 5V $\rightarrow \mathrm{CH} 3$ Step-Down $1.8 \mathrm{~V} \rightarrow \mathrm{CH} 4$ Step-Down $1.2 \mathrm{~V} \rightarrow \mathrm{CH} 2$ Step-Up 3.3V
Power Off Sequence : CH 2 Step-Up 3.3V $\rightarrow \mathrm{CH} 4$ Step-Down $1.2 \mathrm{~V} \rightarrow \mathrm{CH} 3$ Step-Down $1.8 \mathrm{~V} \rightarrow \mathrm{CH} 1$ Step-Up 5V $S E L=L, S E Q=H, E N 3=H, E N 4=H$

Power On Sequence: CH1 Step-Up 5V \rightarrow CH4 Step-Down 1.2V \rightarrow CH3 Step-Down 1.8V \rightarrow CH2 Step-Up 3.3V
Power Off Sequence : CH2 Step-Up 3.3V \rightarrow CH3 Step-Down 1.8V \rightarrow CH4 Step-Down 1.2V \rightarrow CH1 Step-Up 5V
$S E L=L, S E Q=H, E N 3=L, E N 4=H$

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications of the RT9992, the maximum junction temperature is $125^{\circ} \mathrm{C}$ and T_{A} is the ambient temperature. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For WQFN$32 \mathrm{~L} 4 \times 4$ packages, the thermal resistance, θ_{JA}, is $27.8^{\circ} \mathrm{C} /$ W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$P_{D(\operatorname{MAX})}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(27.8^{\circ} \mathrm{C} / \mathrm{W}\right)=3.59 \mathrm{~W}$ for WQFN-32L 4×4 package

The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance, θ_{JA}. For the RT9992 package, the derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 1. Derating Curve for the RT9992 Package

Layout Considerations

For the best performance of the RT9992, the following PCB layout guidelines must be strictly followed.

- Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering.
- Keep the main power traces as wide and short as possible.
- The switching node area connected to LX and inductor should be minimized for lower EMI.
- Place the feedback components as close as possible to the FB pin and keep these components away from the noisy devices.
- Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection.
- Directly connect the output capacitors to the feedback network of each channel to avoid bouncing caused by parasitic resistance and inductance from the PCB trace.

Figure 2. PCB Layout Guide

Table 6. Protection Action

	Protection Type	Threshold(typical) Refer to Electrical spec	Delay Time	Protection Methods
VDDM	UVLO	VDDM < 2.1V	No delay	Disable all channels
	OVP	VDDM $>6.15 \mathrm{~V}$	100ms	IC shutdown
BAT	UVLO	$\mathrm{V}_{\text {BAT }}<1.3 \mathrm{~V}$	No delay	Disable all channels
CH1: Boost	Current Limit	N-MOSFET current > 3A	100ms	IC shutdown
	PVDD1 UVP	$\begin{aligned} & \mathrm{V}_{\mathrm{FB} 1}<0.4 \mathrm{~V} \text {, or } \\ & \mathrm{V}_{\text {PVDD1 }}<\mathrm{V}_{\text {BAT }}-0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {PVDD } 1}<1.3 \mathrm{~V} \end{aligned}$	100ms	IC shutdown
	PVDD1 OVP	$\mathrm{V}_{\text {PVDD1 }}>6.15 \mathrm{~V}$	No delay	IC shutdown
CH2 : Boost	Current Limit	N-MOSFET current > 2.1A	100ms	IC shutdown
	PVDD2 UVP	$\begin{aligned} & \mathrm{V}_{\mathrm{FB2} 2}<0.4 \mathrm{~V} \text {, or } \\ & \mathrm{V}_{\text {PVDD2 }}<\mathrm{V}_{\text {IN2 }}-0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {PVDD2 }}<1.3 \mathrm{~V} \\ & \hline \end{aligned}$	100ms	IC shutdown
	PVDD2 OVP	$V_{\text {PVDD2 }}>6.15 \mathrm{~V}$	No delay	IC shutdown
CH2 : Buck	OCP	P-MOSFET current > 1.5A	100ms	IC shutdown
	UVP	$\mathrm{V}_{\mathrm{FB} 2}<0.4 \mathrm{~V}$	100ms	IC shutdown
CH3 : Buck	OCP	P-MOSFET current > 1.5A	100ms	IC shutdown
	UVP	$\mathrm{V}_{\mathrm{FB} 3}<0.4 \mathrm{~V}$	100ms	IC shutdown
CH4 : Buck	OCP	P-MOSFET current $>2 \mathrm{~A}$	100ms	IC shutdown
	UVP	$\mathrm{V}_{\mathrm{FB} 4}<0.4 \mathrm{~V}$	100ms	IC shutdown
CH5	Current Limit	P-MOSFET current $>0.38 \mathrm{~A}$	100ms	IC shutdown
	UVP	$\mathrm{V}_{\text {FB5 }}<0.3 \mathrm{~V}$	100ms	IC shutdown
CH6 Asyn Boost	Current Limit	N-MOSFET current > 0.8A	Reset each cycle	
	OVP	VOUT6 > 19.5V	No delay	Shut down CH6 only
Thermal	Thermal shutdown	Temperature > $160^{\circ} \mathrm{C}$	No delay	All channels stop switching

Outline Dimension

W-Type 32L QPN 4x4 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1 ${ }^{\text {st }}$ Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

