

TS5A21366

Reference

Design

SCDS285B - MARCH 2009 - REVISED AUGUST 2016

TS5A21366 0.75-Ω 2-channel SPST Analog Switch With 1.8-V Compatible Input Logic

Technical

Documents

Sample &

Buy

1 Features

- 2-Channel Single-Pole Single-Throw (SPST) Switch
- 1.65-V to 5.5-V Power Supply (V_{CC})
- Isolation in Power-Down Mode, V_{CC} = 0
- Low ON-State Resistance (0.75 Ω Typical)
- Excellent ON-State Resistance Matching
- Low Charge Injection
- Low Total Harmonic Distortion (THD+N)
- High Bandwidth (260 MHz)
- 1.8-V Compatible Control Input Threshold Independent of V_{CC}
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Portable Media Players
- Communication Circuits
- Computer Peripherals

3 Description

Tools &

Software

The TS5A21366 is a bidirectional, 2-channel, singlepole single-throw (SPST) analog switch that is designed to operate from 1.65-V to 5.5-V supply voltages. The device offers a low ON-state resistance and an excellent channel-to-channel ON-state resistance matching. The device has excellent total harmonic distortion (THD+N) performance and consumes very low power.

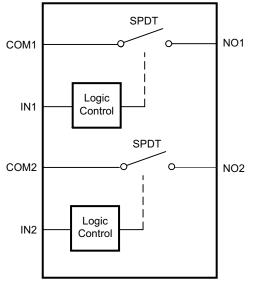
Support &

Community

ло

The control pin can be connected to a low voltage GPIO allowing it to be controlled by 1.8-V signals.

These features make this device ideal for portable audio applications.


The TS5A21366 is available in a small, space-saving 8-pin DCU or RSE package, and is characterized for operation over the free-air temperature range of -40° C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
T05404066	VSSOP (8)	2.30 mm × 2.00 mm
TS5A21366	UQFN (8)	1.50 mm × 1.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics for 5-V Supply 5
	6.6	Electrical Characteristics for 3.3-V Supply7
	6.7	Electrical Characteristics for 2.5-V Supply
	6.8	Electrical Characteristics for 1.8-V Supply 11
	6.9	Typical Characteristics 13
7	Para	ameter Measurement Information 16
8	Deta	ailed Description 21
	8.1	Overview

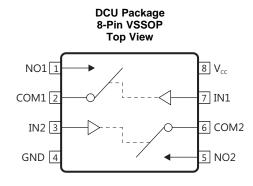
8.2	Functional Block Diagram	21
8.3	Feature Description	21
8.4	Device Functional Modes	21
Appl	ication and Implementation	22
9.1	Application Information	22
9.2	Typical Application	22
Pow	er Supply Recommendations	24
	-	
Devi	ice and Documentation Support	25
12.1	Receiving Notification of Documentation Updates	25
12.2	Community Resource	25
12.3	Trademarks	25
12.4	Electrostatic Discharge Caution	25
12.5	Glossary	25
Mec	hanical, Packaging, and Orderable	
Infor	mation	25
	8.3 8.4 Appl 9.1 9.2 Pow Layo 11.1 11.2 Devi 12.1 12.2 12.3 12.4 12.5 Mec	 8.4 Device Functional Modes

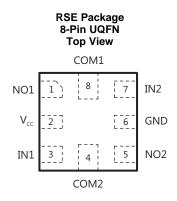
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (October 2009) to Revision B

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section	1
•	Changed V_{+} to V_{CC} in the pinout drawings	3
•	Deleted V _{CC} , V _{NO} row from <i>Electrical Characteristics for 5-V Supply</i>	5
•	Deleted V _{CC} , V _{NO} row from <i>Electrical Characteristics for 3.3-V Supply</i>	7
•	Deleted V _{CC} , V _{NO} row from <i>Electrical Characteristics for 2.5-V Supply</i>	9
•	Deleted V _{CC} , V _{NO} row from <i>Electrical Characteristics for 1.8-V Supply</i>	11




www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions

PIN			DESCRIPTION	
NAME	VSSOP	UQFN	DESCRIPTION	
NO1	1	1	Switch 1, normally open	
COM1	2	8	Switch 1, common	
			Switch 2, digital control pin to connect COM to NO	
IN2	3	7	LOW = High impedance signal path from NO pin to COM pin	
			HIGH = NO pin connected to COM pin	
GND	4	6	Digital ground	
NO2	5	5	Switch 2, normally open	
COM2	6	4	Switch 2, common	
			Switch 1, digital control pin to connect COM to NO	
IN1	7	3	LOW = High impedance signal path from NO pin to COM pin	
			HIGH = NO pin connected to COM pin	
V _{CC}	8	2	Power supply	

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.5	6.5	V
V _{NO} V _{COM}	Analog voltage ⁽³⁾⁽⁴⁾⁽⁵⁾		-0.5	V _{CC} + 0.5	V
I _K	Analog port diode current	$V_{NO}, V_{COM} < 0$	-50		mA
I _{NO}	ON-state switch current		-200	200	0
ICOM	ON-state peak switch current ⁽⁶⁾	$V_{NO,} V_{COM} = 0$ to V_{CC}	-400	400	mA
VI	Digital input voltage ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I _{CC}	Continuous current through V_{CC}			100	mA
I _{GND}	Continuous current through GND		-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration <10% duty cycle

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Power supply voltage ⁽¹⁾	1.65	5.5	V
V _{NO} V _{COM}	Analog signal voltage	0	V _{CC}	V
V _{IN}	Control input voltage	0	5.5	V
T _A	Ambient temperature	-40	85	°C

(1) V_{CC} needs to be supplied prior to the control input, see 1.8-V Compatible Control Input Threshold Independent of V_{CC} .

6.4 Thermal Information

		TS5A		
	THERMAL METRIC ⁽¹⁾	DCU (VSSOP)	RSE (UQFN)	UNIT
		8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	211.3	168	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	83.8	71.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	90.1	80.3	°C/W
ΨJT	Junction-to-top characterization parameter	9.2	9	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Thermal Information (continued)

		TS5A	TS5A21366		
	THERMAL METRIC ⁽¹⁾	DCU (VSSOP)	RSE (UQFN)	UNIT	
		8 PINS	8 PINS		
ΨJB	Junction-to-board characterization parameter	89.6	80.3	°C/W	

6.5 Electrical Characteristics for 5-V Supply

 V_{CC} = 4.5 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

PA	RAMETER	TEST CONDI	TIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SW	ITCH			•					
r _{ON}	ON-state resistance	V _{NO} = 2.5 V,	Switch ON,	25°C	4.5 V		0.75	1	Ω
VON		$I_{COM} = -100 \text{ mA},$	See Figure 15	Full	4.0 V			1.4	
4	ON-state resistance	V _{NO} = 2.5 V,	Switch ON,	25°C	4 5 1		0.04	0.1	0
Δr_{on}	match between channels	$I_{COM} = -100 \text{ mA},$	See Figure 15	Full	4.5 V			0.1	Ω
	ON-state resistance	V _{NO} = 1 V, 1.5 V, 2.5 V,	Switch ON,	25°C	4 5 1		0.15	0.25	0
r _{on(flat)}	flatness	$I_{COM} = -100 \text{ mA},$	See Figure 15	Full	4.5 V —			0.25	Ω
		$V_{NO} = 1 V,$				-10	1.4	10	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 4.5 \text{ V},$ or $V_{NO} = 4.5 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, See Figure 16	25°C	5.5 V	-235		235	nA
		$V_{NO} = 0$ to 5.5 V,		Full	0 V -	-5	0.06	5	
I _{NO(PWROFF)}		$V_{COM} = 5.5 V \text{ to } 0,$		Full	0 0	-10		10	μA
		$V_{COM} = 1 V,$		25°C		-10	1.4	10	
I _{COM(OFF)}	COM OFF leakage current	$V_{NO} = 4.5 V,$ or $V_{COM} = 4.5 V,$ $V_{NO} = 1 V,$	Switch OFF, See Figure 16	Full	5.5 V	-235		235	nA
	-	V _{NO} = 0 to 5.5 V,		25°C	0.1/	-5	0.06	5	μΑ
COM(PWROFF)		$V_{COM} = 5.5 V \text{ to } 0,$		Full	0 V —	-10		10	
	1	$V_{NO} = 1 V,$		25°C		-5	1.33	5	
I _{NO(ON)}	NO ON leakage current	V_{COM} = Open, or V_{NO} = 4.5 V, V_{COM} = Open,	Switch ON, See Figure 17	Full	5.5 V	-50		50	nA
		$V_{COM} = 1 V,$		25°C		-5	1.33	5	
I _{COM(ON)}	COM ON leakage current	V_{NO}^{NO} = Open, or V_{COM} = 4.5 V, V_{NO} = Open,	Switch ON, See Figure 17	Full	5.5 V	-50		50	nA
DIGITAL COM	NTROL INPUTS (IN1, I	N2) ⁽²⁾							
V _{IH}	Input logic high			Full	5.5 V	1.05		5.5	V
V _{IL}	Input logic low			Full	5.5 V	0		0.6	V
I _{IH} , I _{IL}	Input leakage current	$V_{I} = 1.95 V \text{ or GND}$		Full	5.5 V	-0.6		0.6	μA
r _{IN}	Input resistance	V _I = 1.95 V		Full	5.5 V		6		MΩ
DYNAMIC									
				25°C	5 V	39	49	72	
t _{ON}	Turnon time	$V_{COM} = V_{CC}, \\ R_{L} = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	4.5 V to 5.5 V	28		97	ns

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, (SCBA004).

Electrical Characteristics for 5-V Supply (continued)

$V_{CC} = 4.5 \text{ V}$ to 5.5 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)	$V_{CC} = 4.5 \text{ V}$ to 5.5 V, T	$_{\Delta} = -40^{\circ}$ C to 85° C ((unless otherwise	noted)(1)
---	--------------------------------------	---	-------------------	-----------

P.	ARAMETER	TEST COND	ITIONS	TA	v_{cc}	MIN	TYP	MAX	UNIT
		$\mathcal{M} = \mathcal{M}$	$C_1 = 35 pF_1$	25°C	5 V	168	243	318	
t _{OFF}	Turnoff time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	$C_L = 35 \text{ pr},$ See Figure 19	Full	4.5 V 5.5 V	178		323	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	5 V		1.3		рС
$C_{\text{NO(OFF)}}$	NO OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	5 V		19		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	5 V		17		pF
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	5 V		33		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	5 V		33		pF
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND,	See Figure 18	25°C	5 V		2.5		pF
PSRR	Power supply rejection ratio		C _L = 15 pF, See Figure 25	25°C	5 V		84		dB
BW	Bandwidth	$R_{L} = 50 \Omega$, Switch ON,	See Figure 20	25°C	5 V		260		MHz
O _{ISO}	OFF isolation	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch OFF, See Figure 21	25°C	5 V		-62		dB
X _{TALK}	Crosstalk	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch ON, See Figure 22	25°C	5 V		-98		dB
THD+N	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 15 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 24	25°C	5 V	0.	002%		
SUPPLY			· ·	•					
I _{CC}	Positive supply current	V _I = 1.95 V or GND	Switch ON or OFF	25°C Full	5.5 V		7.6	9 10	μA

6.6 Electrical Characteristics for 3.3-V Supply

 V_{CC} = 3 V to 3.6 V, T_A = –40°C to 85°C (unless otherwise noted) $^{(1)}$

PAR	AMETER	TEST CON	IDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SWIT	ГСН								
r _{on}	ON-state resistance	V _{NO} = 2 V, I _{COM} = -100 mA,	Switch ON, See Figure 15	25°C Full	3 V		1.1	1.5 1.8	Ω
	ON-state		3 1 1	25°C			0.045	0.1	
∆r _{on}	resistance match between channels	$V_{NO} = 2 V, 0.8 V$ $I_{COM} = -100 mA,$	Switch ON, See Figure 15	Full	3 V		0.043	0.1	Ω
	ON-state	V _{NO} = 2 V, 0.8 V,	Switch ON,	25°C			0.15	0.25	
r _{on(flat)}	resistance flatness	$I_{\rm COM} = -100 \text{ mA},$	See Figure 15	Full	3 V			0.25	Ω
		$V_{\rm NO} = 1 V$,				-5	0.9	5	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 3 V, 1 V,$ or $V_{NO} = 3 V,$ $V_{COM} = 1 V,$	Switch OFF, See Figure 16	25°C	3.6 V	-160		160	nA
		V _{NO} = 0 to 3.6 V,		Full	0 V	-5	0.03	5	μA
NO(PWROFF)		$V_{COM} = 3.6 V \text{ to } 0,$		Fui	0 0	-10		10	μΑ
		$V_{NO} = 3 V,$		25°C		-5	0.9	5	
I _{COM(OFF)}	COM OFF leakage current	$V_{COM} = 1 V,$ or $V_{NO} = 1 V,$ $V_{COM} = 3 V,$	Switch OFF, See Figure 16	Full	3.6 V	-160		160	nA
		$V_{NO} = 0$ to 3.6 V,		25°C	0.14	-5	0.03	5	
COM(PWROFF)		$V_{COM} = 3.6 V \text{ to } 0,$		Full	0 V	-10		10	μA
	$V_{NO} = 1 V,$	25°C		-2	1	2			
I _{NO(ON)}	NO ON leakage current	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 17	Full	3.6 V	-20		20	nA
		$V_{COM} = 1 V,$		25°C		-2	1	2	
I _{COM(ON)}	COM ON leakage current	$V_{NO} = Open,$ or $V_{COM} = 3 V,$ $V_{NO} = Open,$	See Figure 17	Full	3.6 V	-20		20	nA
DIGITAL CONT	ROL INPUTS (IN1,	IN2) ⁽²⁾							
V _{IH}	Input logic high			Full	3.6 V	1.05		5.5	V
VIL	Input logic low			Full	3.6 V	0		0.6	V
I _{IH} , I _{IL}	Input leakage current	V _I = 1.95 V or GND		Full	3.6 V	-0.6		0.6	μA
r _{IN}	Input resistance	V _I = 1.95 V		Full	3.6 V		6		MΩ
DYNAMIC					-				
			0 25 -5	25°C	3.3 V	66	83	133	
t _{ON}	Turnon time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF, See Figure 19	Full	3 V to 3.6 V	43		178	ns
			0 05 5	25°C	3.3 V	138	247	306	
t _{OFF}	Turnoff time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF, See Figure 19	Full	3 V to 3.6 V	204		329	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	3.3 V		1.3		рС
C _{NO(OFF)}	NO OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	3.3 V		19		pF

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, (SCBA004).

TEXAS INSTRUMENTS

www.ti.com

Electrical Characteristics for 3.3-V Supply (continued)

$V_{CC} = 3 V$ to 3.6 V, $I_A = -40^{\circ}$ C to 85°C (unless otherwise noted) ⁽¹⁾	/ to 3.6 V, $T_A = -40^{\circ}$ C to 85°C (unless other	rwise noted) ⁽¹⁾
--	---	-----------------------------

PA	RAMETER	TEST CONI	DITIONS	TA	V _{cc}	MIN T	ΥP	MAX	UNIT
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	3.3 V		17		pF
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	3.3 V		30		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	3.3 V		30		pF
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND,	See Figure 18	25°C	3.3 V		2.5		pF
PSRR	Power supply rejection ratio	$ f = 10 \text{ kHz}, \\ V_{COM} = 1 \text{ Vrms}, \\ R_L = 50 \Omega, $	C _L = 15 pF, See Figure 25	25°C	3.3 V	-	-84		dB
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	3.3 V	2	260		MHz
O _{ISO}	OFF isolation	$R_{L} = 50 \ \Omega,$ f = 1 MHz,	Switch OFF, See Figure 21	25°C	3.3 V	-	-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 22	25°C	3.3 V	-	-99		dB
THD+N	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 15 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	3.3 V	0.00	4%		
SUPPLY									
1	Positive supply	V ₁ = 1.95 V or GND	Switch ON or	25°C	3.6 V		6.8	9	
I _{CC}	current	$v_{\rm I} = 1.95$ v OI GIND	OFF	Full	5.0 V			10	μA

6.7 Electrical Characteristics for 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_A = –40°C to 85°C (unless otherwise noted) $^{(1)}$

PA	RAMETER	TEST CON	DITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SW	ІТСН								
r _{on}	ON-state resistance	$V_{NO} = 1.8 V,$ $I_{COM} = -8 mA,$	Switch ON, See Figure 15	25°C Full	2.3 V –		1.2	2.1 2.7	Ω
Δ r _{on}	ON-state resistance match between	V _{NO} = 1.8 V, 0.8 V, I _{COM} = -8 mA,	Switch ON, See Figure 15	25°C Full	2.3 V		0.045	0.15 0.15	Ω
	channels						0.4		
r _{on(flat)}	ON-state resistance flatness	V _{NO} = 1.8 V, 0.8 V, I _{COM} = -8 mA,	Switch ON, See Figure 15	25°C Full	2.3 V		0.4	0.6 0.6	Ω
		$V_{NO} = 0.5 V,$		T UII		-8	0.7	8	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 2.3 V,$ or $V_{NO} = 2.3 V,$ $V_{COM} = 0.5 V,$	Switch OFF, See Figure 16	25°C	2.7 V	-136		136	nA
	-	$V_{NO} = 0$ to 2.7 V,		E. II	0.14	-5	0.02	5	۵
NO(PWROFF)		$V_{COM} = 2.7 V \text{ to } 0,$		Full	0 V -	-10		10	μA
		$V_{NO} = 2.3 V,$		25°C		-8	0.7	8	
I _{COM(OFF)}	COM OFF leakage current	$V_{COM} = 0.5 V,$ or $V_{NO} = 0.5 V,$ $V_{COM} = 2.3 V,$	Switch OFF, See Figure 16	Full	2.7 V	-136		136	nA
1		V _{NO} = 0 to 2.7 V,		25°C	0 V	-5	0.02	5	uА
COM(PWROFF)		$V_{COM} = 2.7 V \text{ to } 0,$		Full	0 0	-10		10	
		$V_{NO} = 0.5 V,$		25°C		-2	0.3	2	
I _{NO(ON)}	NO ON leakage current	$V_{COM} = Open,$ or $V_{NO} = 2.3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 17	Full	2.7 V	-15		15	nA
		V _{COM} = 0.5 V,		25°C		-2	0.3	2	
I _{COM(ON)}	COM ON leakage current	V_{NO} = Open, or V_{COM} = 2.3 V, V_{NO} = Open,	Switch ON, See Figure 17	Full	2.7 V	-15		15	nA
	ITROL INPUTS (IN1, I	N2) ⁽²⁾		1				T	
VIH	Input logic high			Full	2.7 V	1.05		5.5	V
V _{IL}	Input logic low			Full	2.7 V	0		0.6	V
I _{IH} , I _{IL}	Input leakage current	$V_I = 1.95 V \text{ or GND}$		Full	2.7 V	-0.6		0.6	μΑ
r _{IN}	Input resistance	V _I = 1.95 V		Full	2.7 V		6		MΩ
DYNAMIC									
				25°C	2.5 V	101	137	222	
t _{ON}	Turnon time	$V_{COM} = V_{CC}, \\ R_{L} = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	2.3 V to 2.7 V	68		288	ns
				25°C	2.5 V	148	264	333	
toff	Turnoff time	$\label{eq:com} \begin{split} V_{\text{COM}} &= V_{\text{CC}}, \\ R_{\text{L}} &= 50 \; \Omega, \end{split}$	C _L = 35 pF, See Figure 19	Full	2.3 V to 2.7 V	197		367	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	2.5 V		1.3		рС
$C_{NO(OFF)}$	NO OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	2.5 V		19		pF

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, (SCBA004).

Texas Instruments

www.ti.com

Electrical Characteristics for 2.5-V Supply (continued)

V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise
--

Р	ARAMETER	TEST COND	ITIONS	TA	v_{cc}	MIN TYP	MAX	UNIT
C _{COM(OFF)}	COM OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	2.5 V	17		pF
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	2.5 V	27.5		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	2.5 V	27.5		pF
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND,	See Figure 18	25°C	2.5 V	2.5		pF
PSRR	Power supply rejection ratio	$ \begin{array}{l} f = 10 \text{ kHz}, \\ V_{COM} = 1 \text{ Vrms}, \\ R_L = 50 \ \Omega, \end{array} $	C _L = 15 pF, See Figure 25	25°C	2.5 V	-84		dB
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	2.5 V	260		MHz
O _{ISO}	OFF isolation	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch OFF, See Figure 21	25°C	2.5 V	-61		dB
X _{TALK}	Crosstalk	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch ON, See Figure 22	25°C	2.5 V	-99		dB
THD+N	Total harmonic distortion	$R_{L} = 600 \ \Omega,$ $C_{L} = 15 \ pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	2.5 V	0.011%		
SUPPLY								
1	Positive supply	V = 1.05 V or CND	Switch ON or	25°C	271	6.6	9	
I _{CC}	current	V _I = 1.95 V or GND	OFF	Full	2.7 V		10	μA

6.8 Electrical Characteristics for 1.8-V Supply

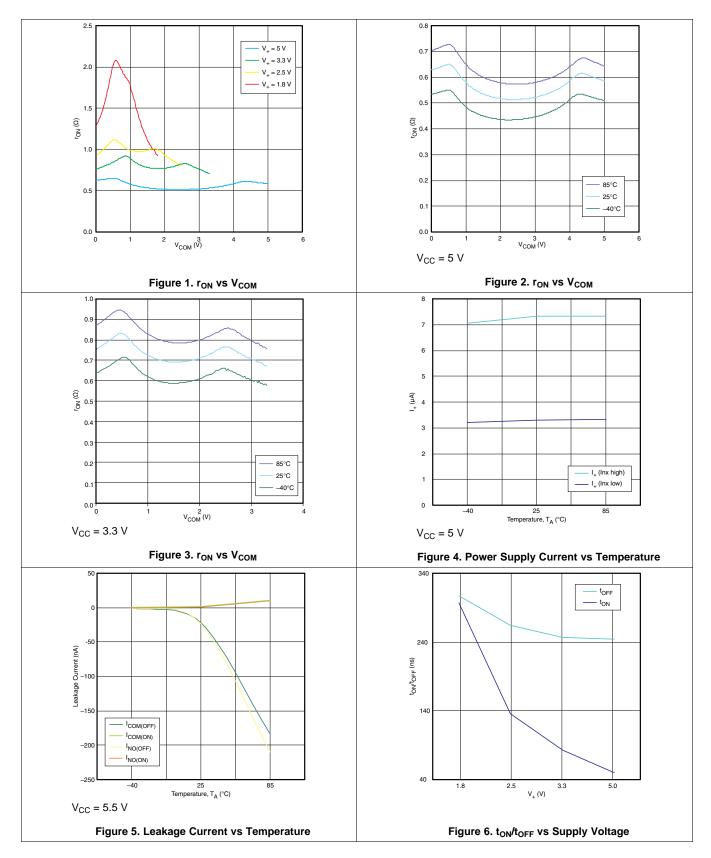
 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PAF	RAMETER	TEST CO	NDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SWI	тсн			-					
	ON-state	V _{NO} = 0.6 V, 1.5 V,	Switch ON,	25°C	4.05.14		1.6	4	0
r _{on}	resistance	$I_{COM} = -2 \text{ mA},$	See Figure 15	Full	- 1.65 V			5	Ω
	ON-state			25°C			0.045	0.2	
Δr_{on}	resistance match between channels	$V_{NO} = 1.5 V,$ $I_{COM} = -2 mA,$	Switch ON, See Figure 15	Full	1.65 V			0.2	Ω
	ON-state	V _{NO} = 0.6 V, 1.5 V,	Switch ON,	25°C			1.7	2.8	_
r _{on(flat)}	resistance flatness	$I_{COM} = -2 \text{ mA},$	See Figure 15	Full	1.65 V			3	Ω
		V _{NO} = 0.3 V,				-10	0.5	10	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 1.65 \text{ V}, \\ \text{or} \\ V_{NO} = 1.65 \text{ V}, \\ V_{COM} = 0.3 \text{ V}, \\ \end{array}$	Switch OFF, See Figure 16	25°C	1.95 V	-30		30	nA
		V _{NO} = 0 to 1.95 V,		E.J.II	0 V	-5 0.02		5	
NO(PWROFF)		$V_{COM} = 1.95 V \text{ to } 0,$		Full	0 V	-10		10	μA
		V _{NO} = 1.65 V,		25°C		-10	0.5	10	
I _{COM(OFF)}	COM OFF leakage current	$V_{COM} = 0.3 V,$ or $V_{NO} = 0.3 V,$ $V_{COM} = 1.65 V,$	Switch OFF, See Figure 16	Full	1.95 V	-30		30	nA
		$V_{\rm NO} = 0$ to 1.95 V,		25°C		-5	0.02	5	
COM(PWROFF)		$V_{COM} = 1.95 V \text{ to } 0,$		Full	0 V	-10		10	μA
	- L	V _{NO} = 0.3 V,		25°C		-2	0.2	2	
I _{NO(ON)}	NO ON leakage current	$\label{eq:com} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} = 1.65 \ V, \\ V_{COM} = Open, \end{array}$	Switch ON, See Figure 17	Full	1.95 V	-15		15	nA
		V _{COM} = 0.3 V,		25°C		-2	0.2	2	
I _{COM(ON)}	COM ON leakage current	V_{NO} = Open, or V_{COM} = 1.65 V, V_{NO} = Open,	Switch ON, See Figure 17	Full	1.95 V	-15		15	nA
DIGITAL CON	TROL INPUTS (IN1,	IN2) ⁽²⁾		4	-1 - L				
V _{IH}	Input logic high			Full	1.95 V	1.05		5.5	V
V _{IL}	Input logic low			Full	1.95 V	0		0.6	V
I _{IH} , I _{IL}	Input leakage current	$V_{I} = 1.95 V \text{ or GND}$		Full	1.95 V	-0.6		0.6	μA
r _{IN}	Input resistance	V _I = 1.95 V		Full	1.95 V		6		MΩ
DYNAMIC			1	1					
				25°C	1.8 V	198	297	448	
t _{ON}	Turnon time	$V_{\rm COM} = V_{\rm CC}, \\ R_{\rm L} = 50 \ \Omega,$	C _L = 35 pF, See Figure 19	Full	1.65 V to 1.95 V	136		620	ns
				25°C	1.8 V	225	308	430	
t _{off}	Turnoff time	$\label{eq:V_COM} \begin{split} V_{\text{COM}} &= V_{\text{CC}}, \\ \textbf{R}_{\text{L}} &= 50 \ \Omega, \end{split}$	C _L = 35 pF, See Figure 19	Full	1.65 V to 1.95 V	204		514	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	1.8 V		1.4		рС
C _{NO(OFF)}	NO OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	1.8 V	_	19		pF

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, (SCBA004).

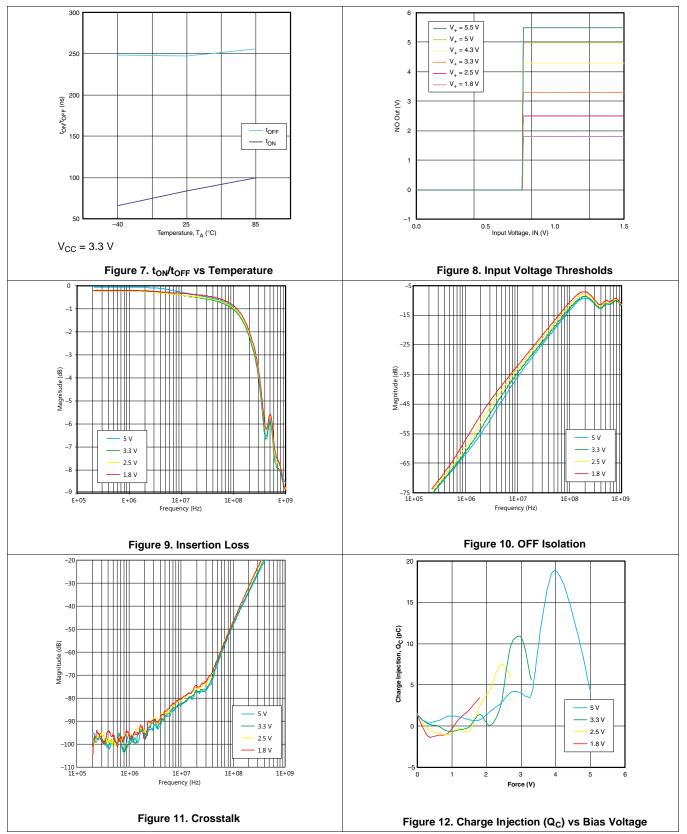
Texas Instruments

www.ti.com

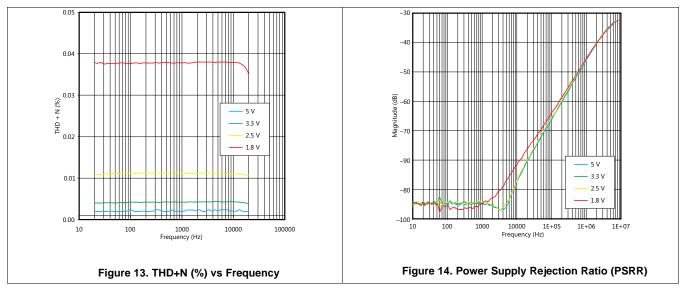

Electrical Characteristics for 1.8-V Supply (continued)

$V_{cc} = 1.65 \text{ V to } 1.95 \text{ V}$	$T_{A} = -40^{\circ}C$ to $85^{\circ}C$	(unless otherwise noted) ⁽¹⁾

PA	RAMETER	TEST CO	NDITIONS	TA	V _{cc}	MIN TYP	MAX	UNIT
C _{COM(OFF)}	COM OFF capacitance	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 18	25°C	1.8 V	17		pF
C _{NC(ON)} , C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	1.8 V	27.5		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 18	25°C	1.8 V	27.5		pF
Cl	Digital input capacitance	$V_I = V_{CC}$ or GND,	See Figure 18	25°C	1.8 V	2.5		pF
PSRR	Power supply rejection ratio	$ f = 10 \text{ kHz}, \\ V_{COM} = 1 \text{ Vrms}, \\ R_L = 50 \ \Omega, $	C _L = 15 pF, See Figure 25	25°C	1.8 V	-78		dB
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	1.8 V	260		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω, f = 1 MHz,	Switch OFF, See Figure 21	25°C	1.8 V	-59		dB
X _{TALK}	Crosstalk	R _L = 50 Ω, f = 1 MHz,	Switch ON, See Figure 22	25°C	1.8 V	-101		dB
THD+N	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 15 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 24	25°C	1.8 V	0.001%		
SUPPLY								
1	Positive supply	V ₁ = 1.95 V or GND	Switch ON or OFF	25°C	1.95 V	3.6	9	
I _{CC}	current		Switch ON OF OFF	Full	1.90 V		10	μA



6.9 Typical Characteristics



Typical Characteristics (continued)

Typical Characteristics (continued)

7 Parameter Measurement Information

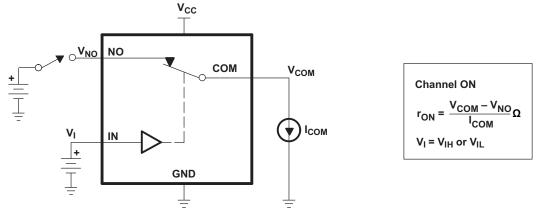


Figure 15. ON-State Resistance (ron)

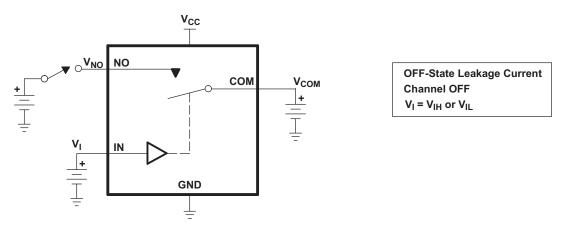
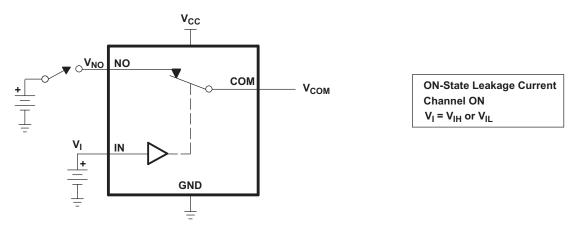
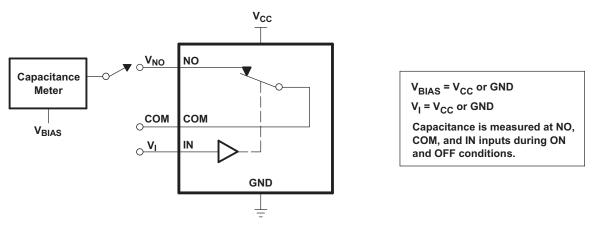
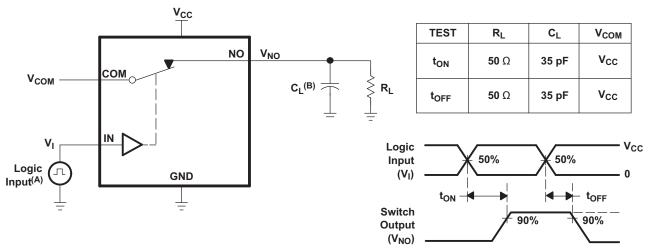
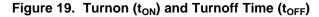
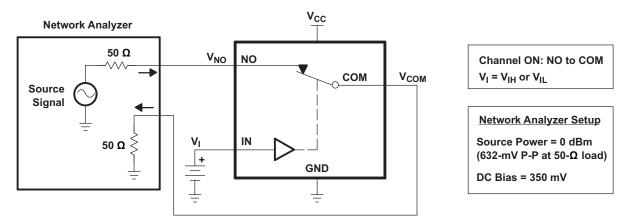


Figure 16. OFF-State Leakage Current (I_{COM(OFF)}, I_{NO(OFF)}, I_{COM(PWROFF)}, I_{NOC(PWR(FF)})


Figure 17. ON-State Leakage Current (I_{COM(ON)}, I_{NO(ON)})





- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 5 ns, t_f \leq 5 ns.
- B. C_L includes probe and jig capacitance.

TEXAS INSTRUMENTS

www.ti.com

Parameter Measurement Information (continued)

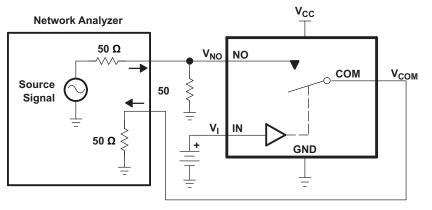
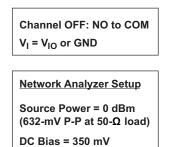
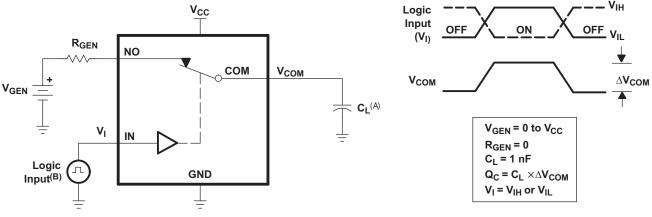
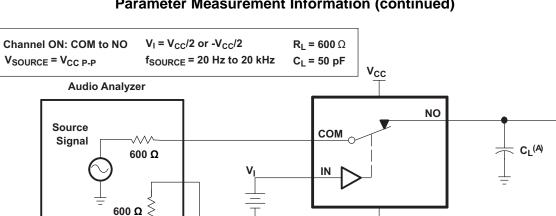




Figure 21. OFF Isolation (O_{ISO})

V_{cc} **Network Analyzer** 50 Ω V_{NO1} NO1 Channel ON: NO to COM COM1 Source V_{NO2} NO2 Signal Network Analyzer Setup 50 Ω COM2 Ŧ Source Power = 0 dBm IN 50 Ω 3 (632 mV P-P at 50 Ω load) DC Bias = 350 mV GND Ŧ

Figure 22. Crosstalk (X_{TALK})



A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 5 ns, t_f \leq 5 ns.

Parameter Measurement Information (continued)

Α. C_L includes probe and jig capacitance.

 $-V_{CC}2$

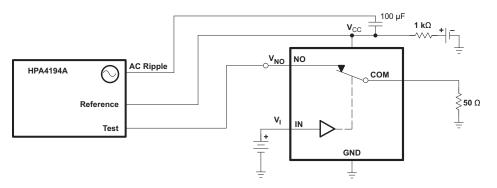


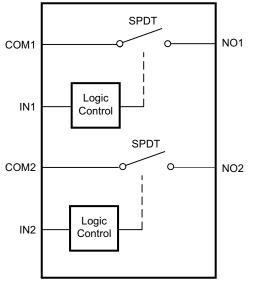
Figure 25. Power Supply Rejection Ratio (PSRR)

NSTRUMENTS

Texas

Parameter Measurement Information (continued) Table 1. Parameter Description

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
VI	Voltage at the control input (IN)
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
Cl	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NO1 to NO2). This is measured in a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD+N	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I _{CC}	Static power-supply current with the control (IN) pin at V _{CC} or GND
ΔI_{CC}	This is the increase in I _{CC} for each control (IN) input that is at the specified voltage, rather than at V _{CC} or GND.



8 Detailed Description

8.1 Overview

The TS5A21366 is a bidirectional, 2-channel, single-pole single-throw (SPST) analog switch that is designed to operate from 1.65-V to 5.5-V supply voltages. This device has 1.8-V compatible input control logic thresholds that are independent of the supply voltage.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 1.8-V Compatible Control Input Threshold Independent of V_{CC}

TS5A21366 integrates special control inputs with low threshold allowing the device to be controlled by 1.8-V signals. The thresholds are fixed and independent of the supply value (V_{CC}). The low threshold (V_{IH} , V_{IL}) of the control inputs (IN1, IN2) is achieved by use of an internal bias circuit. To avoid an increased quiescent current (I_{CC}) condition, proper power sequencing must be followed to ensure that the bias circuitry is powered up prior to applying voltage on the I/Os. The proper sequence is for the V_{CC} pin to be brought up to V_{CC} before the control inputs (IN1, IN2) are allowed to go to a high level.

8.3.2 Isolation in Power-Down Mode, V_{CC} = 0

The TS5A21366 signal paths are high impedance (Hi-Z) when $V_{CC} = 0$. This feature ensures the signal path is isolated when not in use to avoid interfering with other signals in the system.

8.4 Device Functional Modes

The TS5A21366 device has two functional modes. In one mode, the NO pin is connected to COM pin and a signal passes through the switch. The other mode the NO and COM pins placed in a high impedance state (Hi-Z) and a signal does not pass through the switch.

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

Table 2. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

2-channel SPST analog switches are used to provide bus isolation in the system by turning on and off a signal path. The TS5A21366 is selected for applications needing to isolate analog signals where signal integrity is most important because of the switches' low on-state resistance and low on-state leakage performance. An example of this type of application is an analog signal from a sensor into an ADC.

9.2 Typical Application

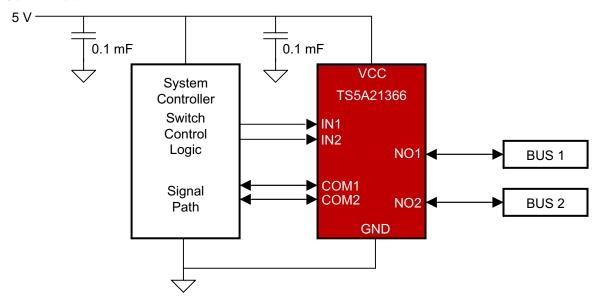


Figure 26. Typical Application Schematic

9.2.1 Design Requirements

- The TS5A23166 can be properly operated without any external components.
- Unused pins COM or NO may be left floating.
- Digital control pins IN must be pulled up to V_{CC} or down to GND to avoid undesired switch positions that could result from the floating pin.

9.2.2 Detailed Design Procedure

Submit Documentation Feedback

22

Ensure that all of the signals passing through the switch are within the specified ranges in the *Recommended Operating Conditions* to ensure proper performance.

To avoid an increased quiescent current (I_{CC}) condition, proper power sequencing must be followed to ensure that the bias circuitry is powered up prior to applying voltage on the I/Os. The proper sequence is for the V_{CC} pin to be brought up to V_{CC} before the control inputs (IN1, IN2) are allowed to go to a high level.

Typical Application (continued)

9.2.3 Application Curve

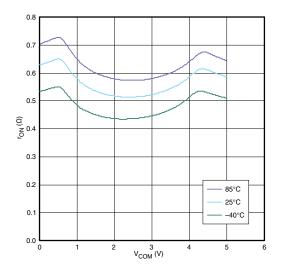


Figure 27. r_{ON} vs V_{COM}

10 Power Supply Recommendations

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the VCC supply to other components. A $0.1-\mu$ F capacitor, connected from VCC to GND, is adequate for most applications

To avoid an increased quiescent current (I_{CC}) condition, proper power sequencing must be followed to ensure that the bias circuitry is powered up prior to applying voltage on the I/Os. The proper sequence is for the V_{CC} pin to be brought up to V_{CC} before the control inputs (IN1, IN2) are allowed to go to a high level.

11 Layout

11.1 Layout Guidelines

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

11.2 Layout Example

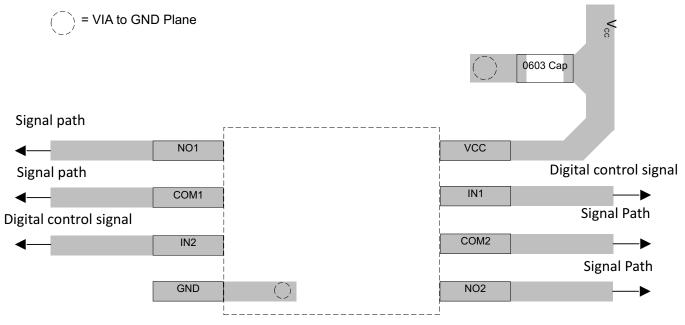


Figure 28. TS5A21366 Layout Example

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A21366DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(BS, JBSR) JZ	Samples
TS5A21366RSER	ACTIVE	UQFN	RSE	8	3000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	4F	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

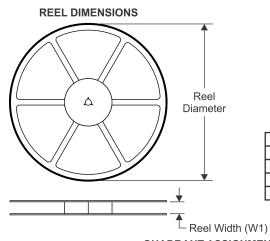
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

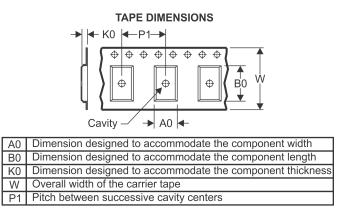
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


10-Dec-2020

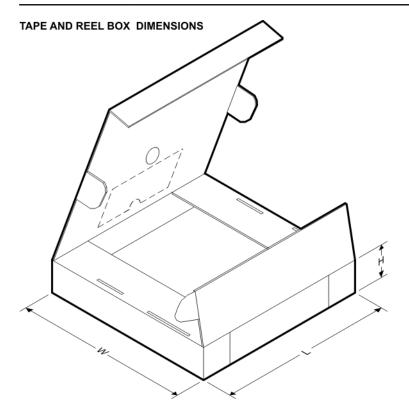

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A21366DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.25	3.4	1.0	4.0	8.0	Q3
TS5A21366DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A21366RSER	UQFN	RSE	8	3000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2

TEXAS INSTRUMENTS

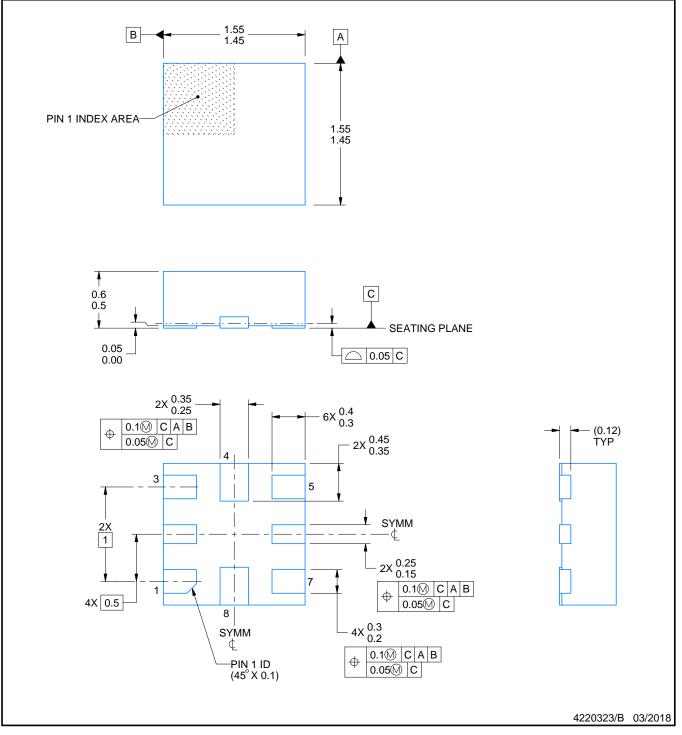
www.ti.com

PACKAGE MATERIALS INFORMATION

25-Jul-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A21366DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
TS5A21366DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
TS5A21366RSER	UQFN	RSE	8	3000	202.0	201.0	28.0


RSE0008A

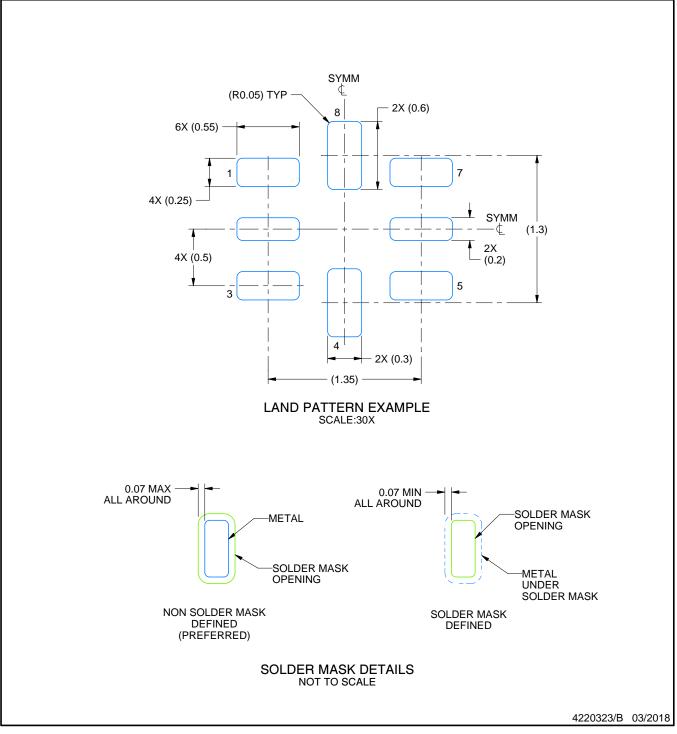
PACKAGE OUTLINE

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



RSE0008A

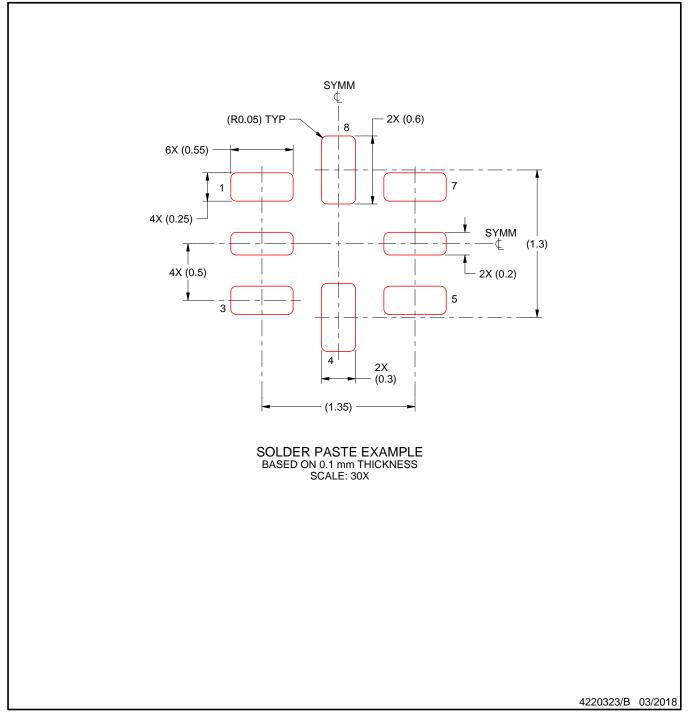
EXAMPLE BOARD LAYOUT

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

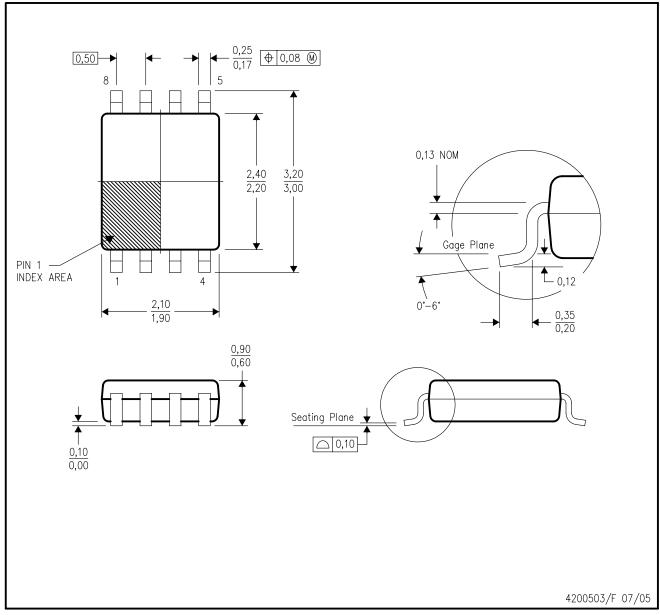


RSE0008A

EXAMPLE STENCIL DESIGN

UQFN - 0.6 mm max height

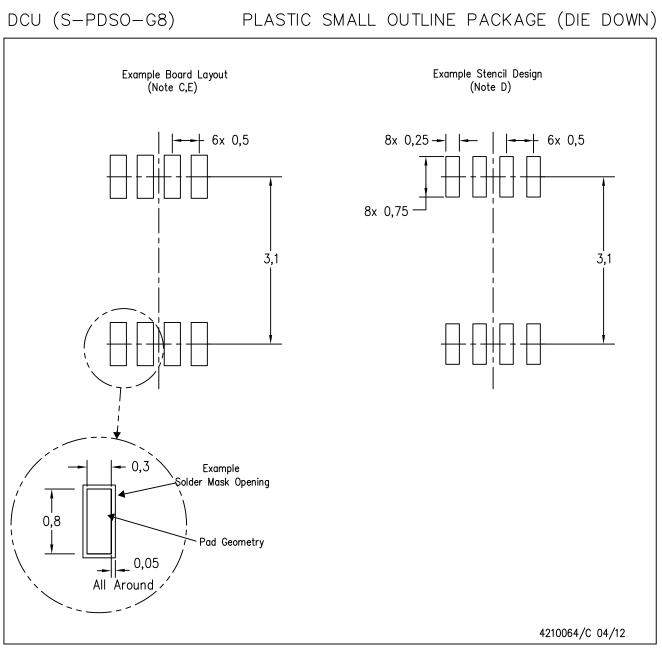
PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.

- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated