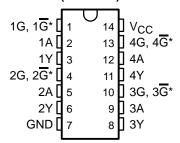
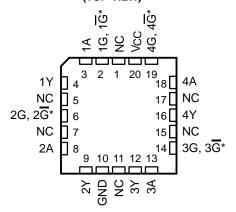
The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS


SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

- Quad Bus Buffers
- 3-State Outputs
- Separate Control for Each Channel

description


These bus buffers feature three-state outputs that, when enabled, have the low impedance characteristics of a TTL output with additional drive capability at high logic levels to permit driving heavily loaded bus lines without external pullup resistors. When disabled, both output transistors are turned off, presenting a high-impedance state to the bus so the output will act neither as a significant load nor as a driver. The '125 and 'LS125A devices' outputs are disabled when \overline{G} is high. The '126 and 'LS126A devices' outputs are disabled when G is low.

SN54125, SN54126, SN54LS125A, SN54LS126A...J OR W PACKAGE SN74125, SN74126...N PACKAGE SN74LS125A, SN74LS126A...D, N, OR NS PACKAGE (TOP VIEW)

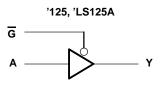
*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices

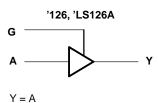
SN54LS125A, SN54LS126A . . . FK PACKAGE (TOP VIEW)

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

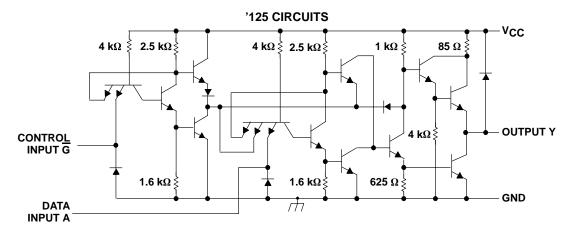
The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

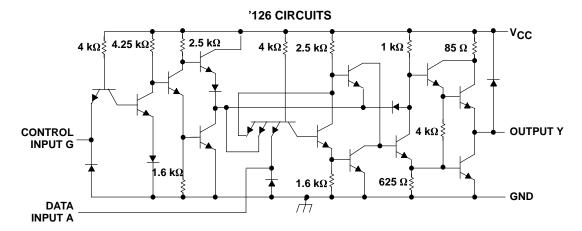

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002


ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74LS125AN	SN74LS125AN
	PDIP - N	Tube	SN74LS126AN	SN74LS126AN
		Tube	SN74LS125AD	LS125A
0°C to 70°C	SOIC – D	Tape and reel	SN74LS125ADR	LSTZSA
0.0 10 70.0	30IC = D	Tube	SN74LS126AD	LS126A
		Tape and reel	SN74LS126ADR	L5120A
	SOP – NS	Tape and reel	SN74LS125ANSR	74LS125A
	30F - N3	Tape and reel	SN74LS126ANSR	74LS126A
	CDIP – J	Tube	SN54LS125AJ	SN54LS125AJ
_55°C to 125°C	CDIP = J	Tube	SNJ54LS125AJ	SNJ54LS125AJ
-55 0 10 125 0	CFP – W	Tube	SNJ54LS125AW	SNJ54LS125AW
	LCCC – FK	Tube	SNJ54LS125AFK	SNJ54LS125AFK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


logic diagram (each gate)

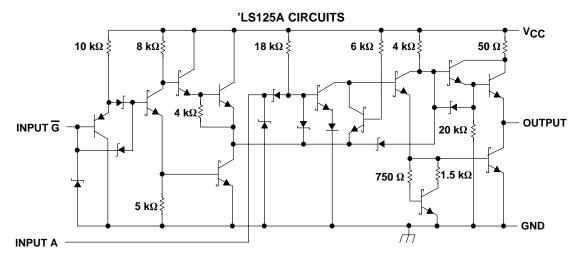


SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

schematics (each gate)

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†] ('125 and '126)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage, V _I	5.5 V
Package thermal impedance, θ _{JA} (see Note 2):N package	80°C/W
Storage temperature range, T _{stq}	–65°C to 150°C


[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

schematics (each gate)

'LS126A CIRCUITS VCC 8 kΩ≶ 18 kΩ≶ 12 kΩ ≥ 18 $k\Omega$ $6 \text{ k}\Omega$ 4 kΩ: 50Ω **INPUT G OUTPUT** 20 k Ω 750 Ω ≶ ∮1.5 kΩ 5 k Ω **GND** Ш **INPUT A**

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) ('LS125A and 'LS126A)

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I	
Package thermal impedance, θ _{JA} (see Note 2): D package	86°C/W
N package	80°C/W
NS package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. The package termal impedance is calculated in accordance with JESD 51-7.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

recommended operating conditions

		_	SN54125 SN54126			SN74125 SN74126		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ІОН	High-level output current			-2			-5.2	mA
loL	Low-level output current			16			16	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]				SN54125 SN54126		9	UNIT		
				MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	
VIK	$V_{CC} = MIN,$	I _I = -12 mA				-1.5			-1.5	V
Vou	$V_{CC} = MIN,$	V _{IH} = 2 V,	$I_{OH} = -2 \text{ mA}$	2.4	3.3					V
VOH	V _{IL} = 0.8 V		$I_{OH} = -5.2 \text{ mA}$				2.4	3.1		V
Vo	$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	V
VOL	$I_{OL} = 16 \text{ mA}$					0.4			0.4	V
	$V_{CC} = MAX$	V _{IH} = 2 V,	V _O = 2.4 V			40			40	^
loz	$V_{IL} = 0.8 V$		$V_0 = 0.4 \text{ V}$			-40			-40	μΑ
Ι _Ι	$V_{CC} = MAX$,	V _I = 6.5 V				1			1	mA
lіН	$V_{CC} = MAX$,	V _I = 2.4 V				40			40	μΑ
I _{IL}	$V_{CC} = MAX$,	V _I = 0.4 V				-1.6			-1.6	mA
I _{OS} §	$V_{CC} = MAX$			-30		-70	-28		-70	mA
loo	V _{CC} = MAX		'125		32	54		32	54	mA
Icc	(see Note 3)		'126		36	62		36	62	IIIA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: Data inputs = 0 V; output control = 4.5 V for '125 and 0 V for '126.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	TEST CON	IDITIONS	_	N54125 N74125		SN54126 SN74126			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
^t PLH	$R_1 = 400 \Omega$	C _L = 50 pF		8	13		8	13	ns
^t PHL	11 = 400 22,	υ _L = 00 βι		12	18		12	18	113
^t PZH	$R_1 = 400 \Omega$	C _I = 50 pF		11	17		11	18	ns
t _{PZL}	1\[= 400 \(\)22,	OL = 30 pi		16	25		16	25	113
^t PHZ	$R_1 = 400 \Omega$	C _L = 5 pF		5	8		10	16	ns
tPLZ	1\L = 400 \(\frac{1}{2} \),	OL = 3 PF		7	12		12	18	110

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

recommended operating conditions

			54LS125 54LS126		_	74LS125 74LS126		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
٧ _{IL}	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-1			-2.6	mA
loL	Low-level output current			12			24	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

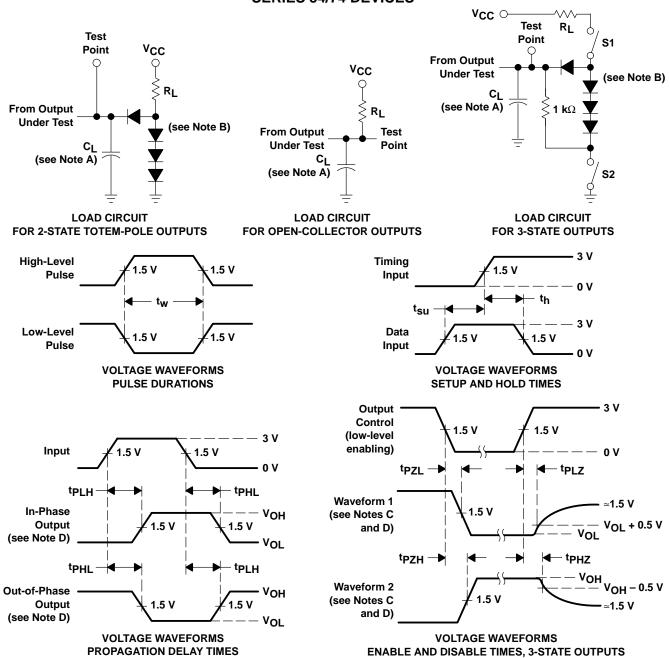
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIO	NS [†]		54LS12		SN SN	UNIT		
							MIN	TYP [‡]	MAX	
VIK	$V_{CC} = MIN,$	$I_{I} = -18 \text{ mA}$				-1.5			-1.5	V
Vo	$V_{CC} = MIN,$	V _{IL} = 0.7 V,	I _{OH} = -1 mA	2.4						V
VOH	V _{IH} = 2 V	V _{IL} = 0.8 V	$I_{OH} = -2.6 \text{ mA}$				2.4			V
		V _{IL} = 0.7 V,	I _{OL} = 12 mA		0.25	0.4				
VOL	$V_{CC} = MIN,$ $V_{IH} = 2 V$	V _{IL} = 0.8 V,	I _{OL} = 12 mA					0.25	0.4	V
	11H - 2 V	V _{IL} = 0.8 V,	I _{OL} = 24 mA					0.35	0.5	
		\/ 0.7.\/	V _O = 2.4 V			20				
	$V_{CC} = MAX$,	V _{IL} = 0.7 V	$V_0 = 0.4 \text{ V}$			-20				
loz	V _{IH} = 2 V,	.,	V _O = 2.4 V						20	μΑ
		V _{IL} = 0.8 V	V _O = 0.4 V						-20	
lį	$V_{CC} = MAX$,	V _I = 7 V				0.1			0.1	mA
lіН	$V_{CC} = MAX$,	$V_{I} = 2.7 \text{ V}$				20			20	μΑ
1	$V_{CC} = MAX$,	'LS125A-G inpu	its			-0.2			-0.2	mA
IIL	V _I = 0.4 V	'LS125A-A inpu	ts; 'LS126A All inputs			-0.4			-0.4	mA
I _{OS} §	V _{CC} = MAX	·		-40		-225	-40		-225	mA
laa	Vcc = MAX		'LS125A		11	20		11	20	mA
Icc	(see Note 4)		'LS126A		12	22		12	22	IIIA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	TEST CON	NDITIONS	SN54LS125A SN74LS125A				SN54LS126A SN74LS126A		
			MIN	TYP	MAX	MIN	TYP	MAX	
^t PLH	R _L = 667 Ω,	C _I = 45 pF		9	15		9	15	ns
^t PHL	11 = 007 32,	ο[– 40 βι		7	18		8	18	110
^t PZH	$R_L = 667 \Omega$,	C _L = 45 pF		12	20		16	25	ns
^t PZL	11 = 007 52,	OL = 43 PI		15	25		21	35	115
^t PHZ	$R_L = 667 \Omega$,	C ₁ = 5 pF			20			25	ns
^t PLZ	11 - 307 32,	- υ μι			20			25	113


[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 4: Data inputs = 0 V; output control = 4.5 V for 'LS125A and 0 V for 'LS126A.

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 DEVICES

NOTES: A. C_I includes probe and jig capacitance.

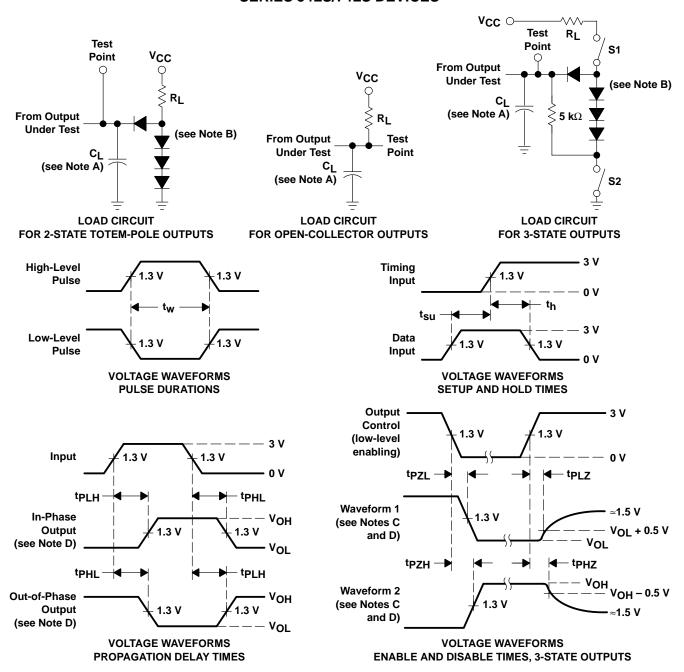

- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
- E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$; t_r and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \leq$ 2.5 ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION **SERIES 54LS/74LS DEVICES**

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \ \Omega$, $t_f \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
 - G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

www.ti.com 10-Jun-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/32301B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32301B2A	Samples
JM38510/32301BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32301BCA	Samples
JM38510/32301BDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32301BDA	Samples
M38510/32301B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32301B2A	Samples
M38510/32301BCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32301BCA	Samples
M38510/32301BDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 32301BDA	Samples
SN54LS125AJ	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS125AJ	Samples
SN74LS125AD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS125A	Samples
SN74LS125ADBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS125A	Samples
SN74LS125ADR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS125A	Samples
SN74LS125ADRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS125A	Samples
SN74LS125AN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS125AN	Samples
SN74LS125ANSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS125A	Samples
SN74LS126AD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS126A	Samples
SN74LS126ADR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS126A	Samples
SN74LS126AN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS126AN	Samples
SN74LS126ANSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS126A	Samples
SNJ54LS125AJ	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS125AJ	Samples

www.ti.com 10-Jun-2022

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54LS125AW	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS125AW	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL. Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS125A, SN74LS125A:

PACKAGE OPTION ADDENDUM

www.ti.com 10-Jun-2022

• Military : SN54LS125A

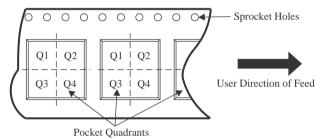
NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

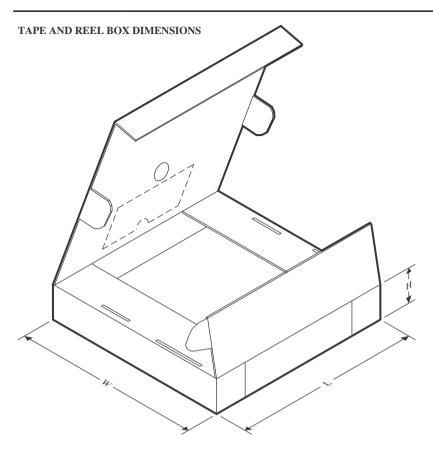

TAPE AND REEL INFORMATION

REEL DIMENSIONS Reel Diameter Reel Width (W1)

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

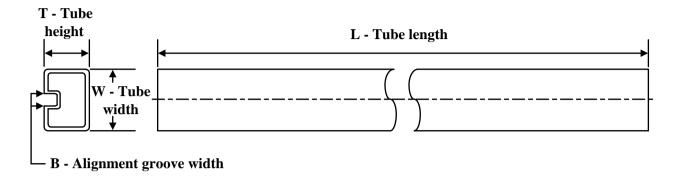
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS125ADBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LS125ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS125ANSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS126ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS126ANSR	so	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

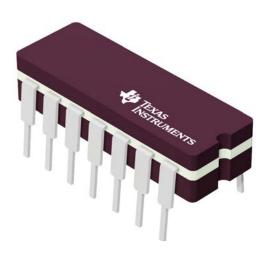
www.ti.com 9-Aug-2022



*All dimensions are nominal

7 til dilitionorio di o mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS125ADBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN74LS125ADR	SOIC	D	14	2500	356.0	356.0	35.0
SN74LS125ANSR	so	NS	14	2000	356.0	356.0	35.0
SN74LS126ADR	SOIC	D	14	2500	356.0	356.0	35.0
SN74LS126ANSR	so	NS	14	2000	356.0	356.0	35.0

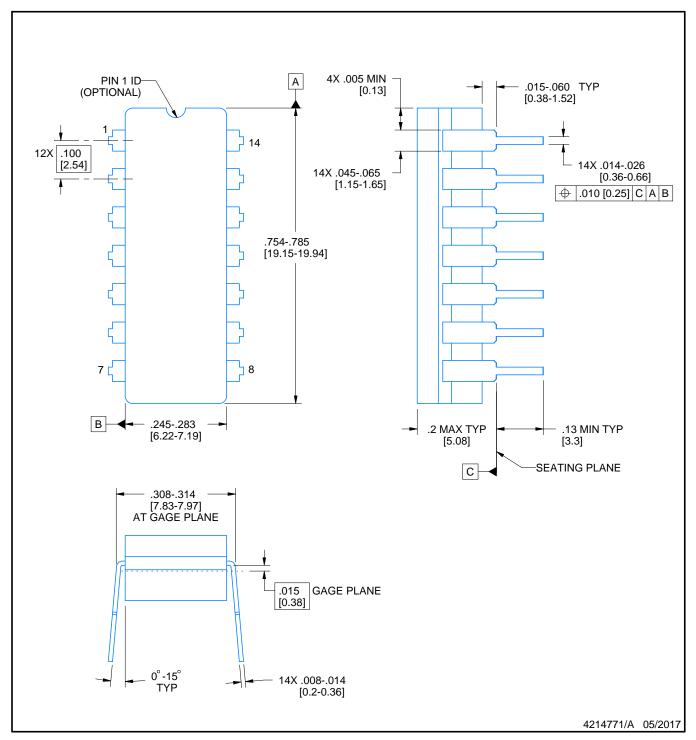
www.ti.com 9-Aug-2022


TUBE

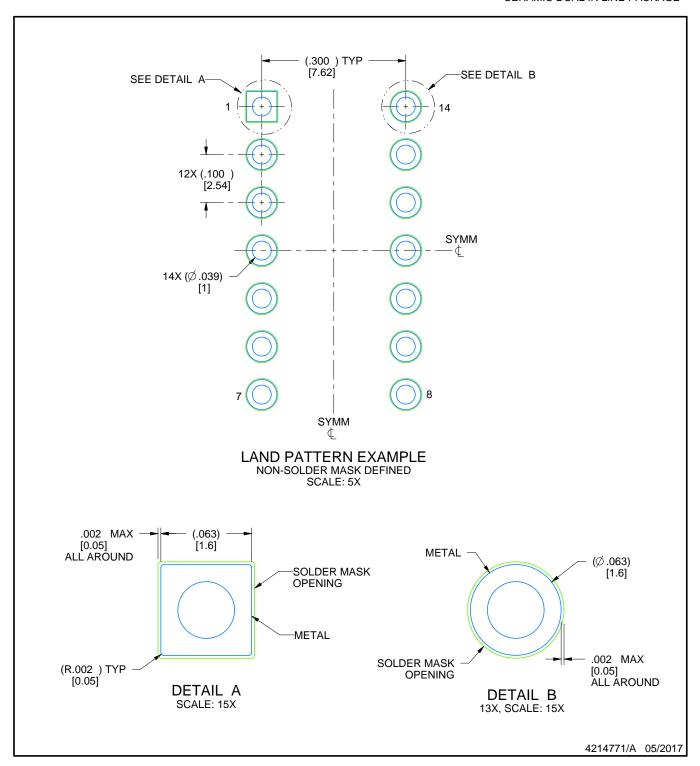
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
JM38510/32301B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
JM38510/32301BDA	W	CFP	14	1	506.98	26.16	6220	NA
M38510/32301B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
M38510/32301BDA	W	CFP	14	1	506.98	26.16	6220	NA
SN74LS125AD	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS125AN	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS125AN	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS126AD	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS126AN	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS126AN	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54LS125AW	W	CFP	14	1	506.98	26.16	6220	NA

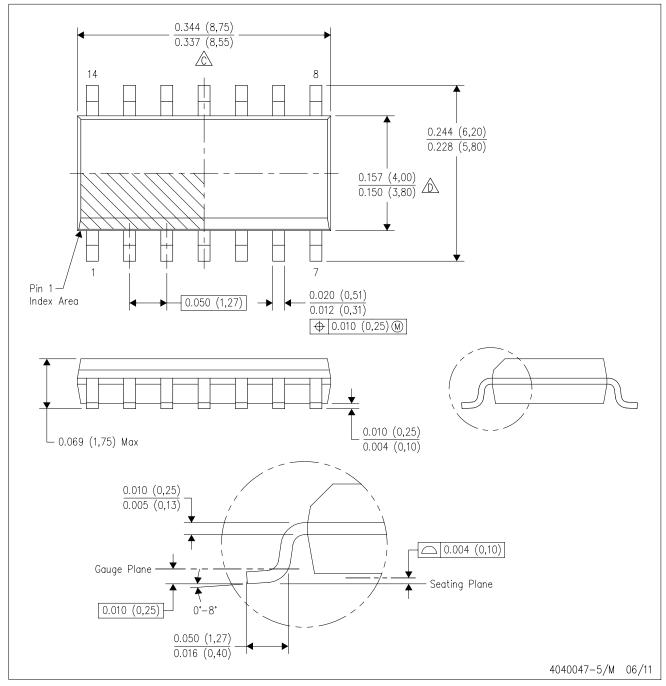
CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G


CERAMIC DUAL IN LINE PACKAGE

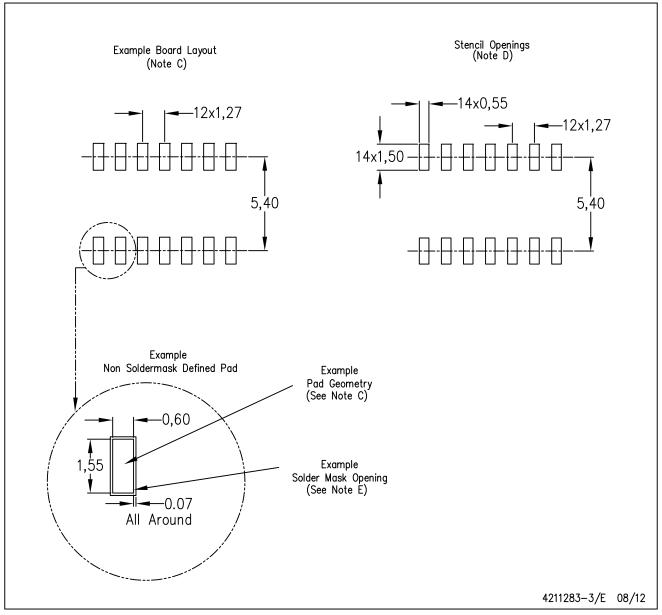
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)

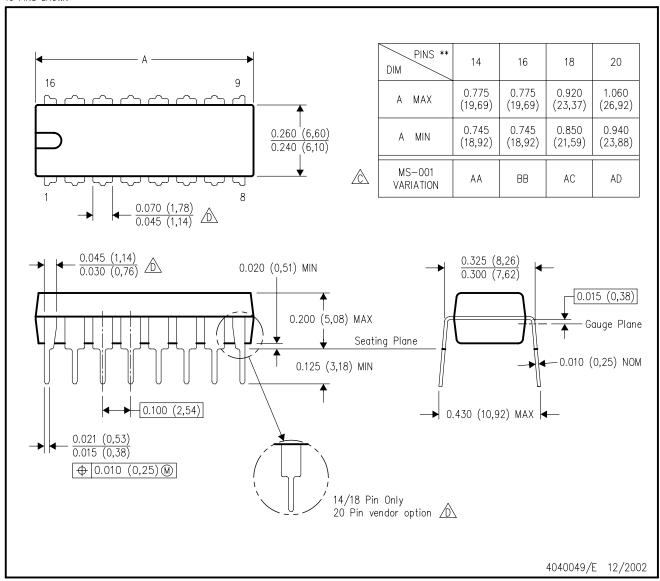
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

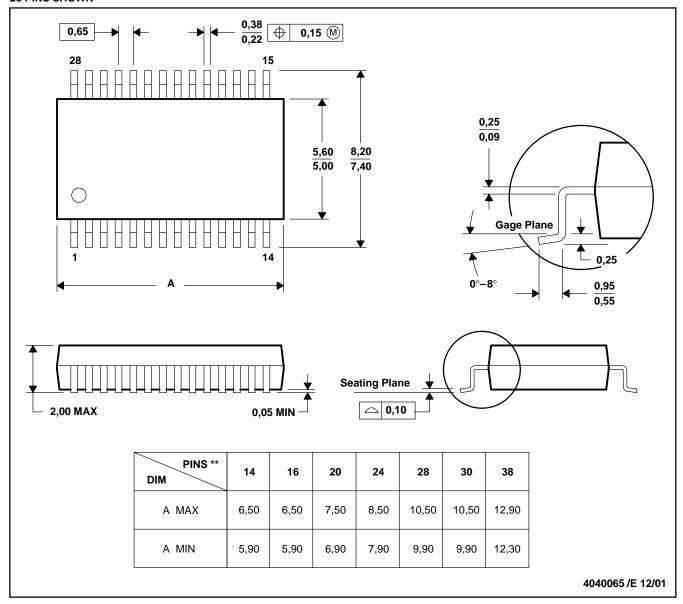
PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

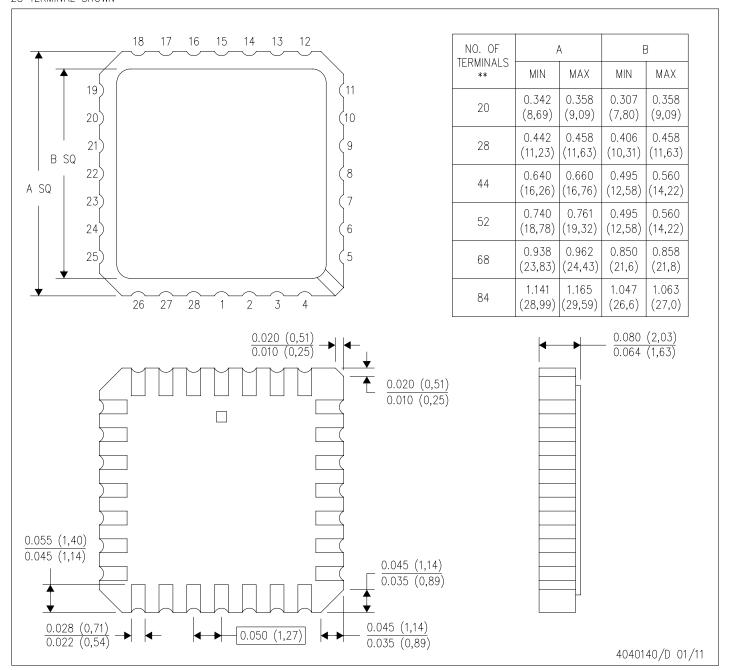
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

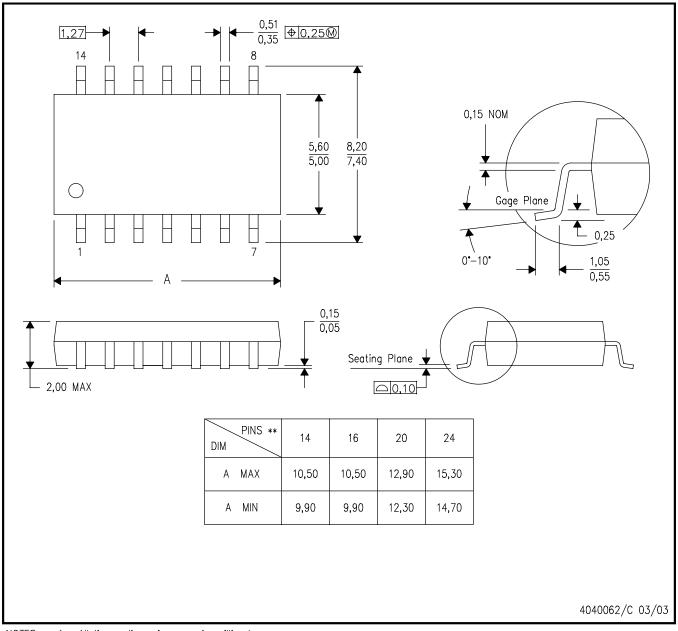
D. Falls within JEDEC MO-150

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

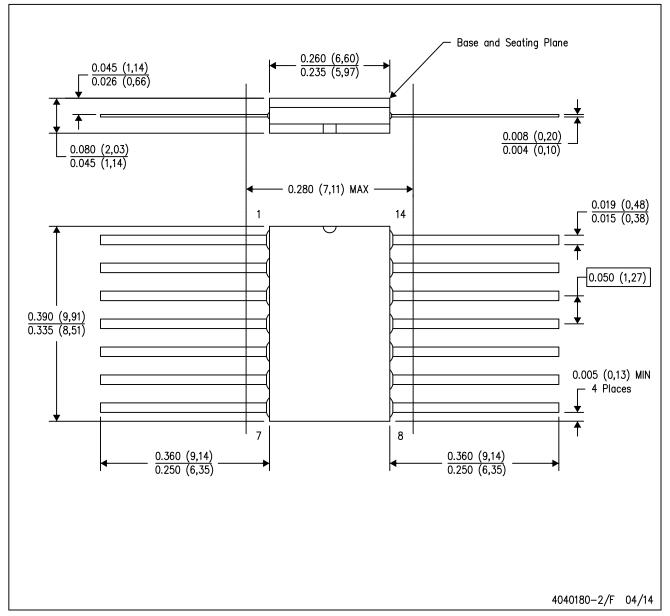


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated