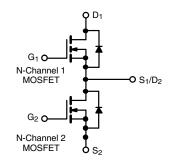
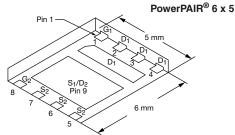
HALOGEN

FREE

Dual N-Channel 30 V (D-S) MOSFETs


PRODU	PRODUCT SUMMARY					
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)		
Channel-1	30	$0.0072 \text{ at V}_{GS} = 10 \text{ V}$	24 ^a	13.5 nC		
Charmer-1	30	0.0092 at $V_{GS} = 4.5 \text{ V}$	24 ^a	13.5110		
Channel-2	20	0.0039 at V _{GS} = 10 V	28 ^a	34 nC		
Griannel-2	30	0.0047 at $V_{GS} = 4.5 \text{ V}$	28 ^a	34 NC		


FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFETs
- 100 % R_q and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Notebook System Power
- POL
- Synchronous Buck Converter

Ordering Information: SiZ900DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

Parameter		Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage		V _{DS}	30		.,	
Gate-Source Voltage		V _{GS}	± 20		V	
	T _C = 25 °C		24 ^a	28 ^a		
Continuous Dusin Comment (T. 150 °C)	T _C = 70 °C		24 ^a	28 ^a	Δ.	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	ID	19 ^{b, c}	28 ^{b, c}		
	T _A = 70 °C	1	15.5 ^{b, c}	22 ^{b, c}		
Pulsed Drain Current		I _{DM}	90	110	Α	
Continuous Source Drain Diode Current	T _C = 25 °C	- I _S	24 ^a	28 ^a		
Continuous Source Drain Diode Current	T _A = 25 °C		3.8 ^{b, c}	4.3 ^{b, c}		
Single Pulse Avalanche Current L = 0.1 mH		I _{AS}	20	35		
Single Pulse Avalanche Energy		E _{AS}	20	61	mJ	
	T _C = 25 °C		48	100		
Maximum Power Dissipation	T _C = 70 °C	D_	31	64	W	
Maximum Fower Dissipation	T _A = 25 °C	P_{D}	4.6 ^{b, c}	5.2 ^{b, c}	VV	
	T _A = 70 °C		3 ^{b, c}	3.3 ^{b, c}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		00	
Soldering Recommendations (Peak Temperature) ^{d, e}			26	60	°C	

THERMAL RESISTANCE RATINGS							
			Char	nel-1	Chan	nel-2	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	22	27	19	24	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	2.1	2.6	1	1.25	J/ VV

Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 62 °C/W for channel-1 and 55 °C/W for channel-2.

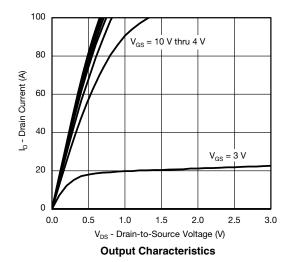
Document Number: 67344 S11-2380-Rev. C, 28-Nov-11

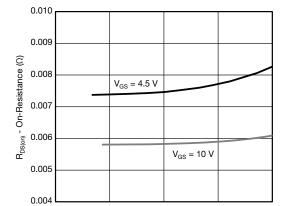
Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit		
Static						I	l		
5 . 6 . 5		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-1	30					
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V		
V Tamanauatuus Caaffiniant		I _D = 250 μA	Ch-1		32				
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		32		mV/°C		
V Tomporative Coefficient	AV /T	I _D = 250 μA	Ch-1		- 6				
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 6.5				
Cata Threshold Voltage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$ Ch-1 1				2.4	\/		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-2	1		2.2	7 V		
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	nΛ		
date double Leakage	GSS		Ch-2			± 100	ША		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1	μΑ		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1			
Zero date voltage Drain Gurrent	.088	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1			5			
		V_{DS} = 30 V, V_{GS} = 0 V, T_J = 55 °C	Ch-2			5			
0 0: 1 D : 0 1h	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$					۸		
On-State Drain Current ^D		$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	25			A		
	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 19.4 \text{ A}$	Ch-1		0.0059	0.0072			
		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0032	0.0039			
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 17.2 \text{ A}$	Ch-1		0.0075	0.0092	V 0 nA μA A 2 9 Ω		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0038	0.0047			
b		V _{DS} = 10 V, I _D = 19.4 A	Ch-1		76		- S		
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 20 A	Ch-2		120				
Dynamic ^a									
Input Canaditanea	C _{iss}		Ch-1		1830				
Input Capacitance	Oiss	Channel-1	Ch-2		4900				
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		300		рF		
- Carpar Capacitanio	- 055	Channel-2	Ch-2		710		Pi		
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		120				
<u> </u>		V 45 V V 40 V L 40 4 A	Ch-2		280				
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 19.4 \text{ A}$	Ch-1		29	45	_		
Total Gate Charge	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2						
		Channel-1	Ch-1		-	73 110 13.5 21			
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 19.4 \text{ A}$	Ch-2		34	51	nC		
Gate-Source Charge	Q_{gs}		Ch-1 Ch-2		5.8 15				
		Channel-2	Ch-1		3.1				
Gate-Drain Charge	Q_{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$			7.3		-		
			Ch-2 Ch-1	0.5	2.4	4.8			
Gate Resistance	R_{g}	f = 1 MHz	Ch-2	0.2	0.9	1.8	Ω		

Notes:

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

Parameter	Symbol Test Conditions			Min.	Тур.	Max.	Unit
Dynamic ^a					•	•	
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		20	40	
•	1(1)	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2		35	70	
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1 Ch-2		10	20	
		 			25	50	1
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V}, R_{I} = 1.5 \Omega$	Ch-2		35	70	
Fall Time		$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	Ch-1		10	20	
Fall Time	t _f	J GEN 9	Ch-2		10	20	
Turn-On Delay Time	t., ,		Ch-1		15	30	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		15	30	
Rise Time	t _r	V_{DD} = 15 V, R_L = 1.5 Ω $I_D \cong$ 10 A, V_{GEN} = 10 V, R_q = 1 Ω	Ch-1		10	20	
THISC THINC	4	D = 10 A, VGEN - 10 V, Hg - 122	Ch-2		7	15	
rn-Off Delay Time t _{d(off)} Channel-2		Ch-1		30	60		
	u(on)	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2 Ch-1		40	80	
Fall Time	t _f	1D = 1071, VGEN = 10 V, 11g = 1 32			10	20	-
			Ch-2		10	20	
Drain-Source Body Diode Characteristi	cs	1	·	1	1		ı
Continuous Source-Drain Diode Current	Is	T _C = 25 °C	Ch-1 Ch-2			24 28	
			Ch-1			90	Α
Pulse Diode Forward Current ^a	I _{SM}		Ch-2			110	
		I _S = 10 A, V _{GS} = 0 V	Ch-1		0.8	1.2	
Body Diode Voltage	V_{SD}	I _S = 10 A, V _{GS} = 0 V	Ch-2		0.8	1.2	V
			Ch-1		16	30	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2		30	60	ns
Pady Diada Payaraa Bassyary Chargo	0	Channel-1	Ch-1		6	12	nC
body blode neverse necovery Charge	Diode Reverse Recovery Charge Q_{rr} $I_F = 10 \text{ A}$, $dI/dt = 100 \text{ A/}\mu\text{s}$, $T_J = 25 \text{ °C}$ $Ch-1$ $Ch-2$ $Ch-2$ $Ch-1$ $Ch-2$ $Ch-1$ $Ch-2$ $Ch-1$ $Ch-2$ $Ch-1$ $Ch-2$ $Ch-1$ $Ch-1$ $Ch-2$ $Ch-1$ $Ch-$		40	110			
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		9		
Tiovorso Hecovery Fair Time	'a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		17		ns
Reverse Recovery Rise Time	t _b		Ch-1		7		110
. ic. c. cc . icocvery i iico i iiiic	-0		Ch-2		13		

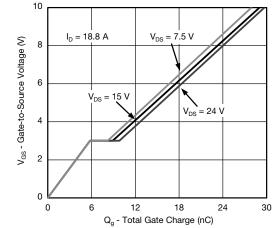

Notes:


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

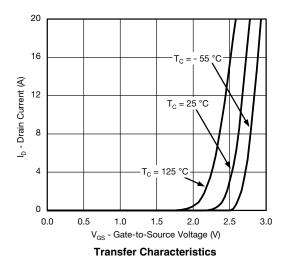
a. Guaranteed by design, not subject to production testing.

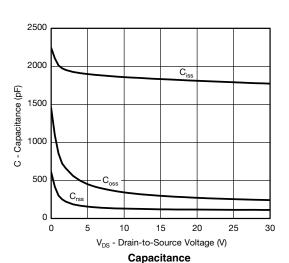
b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

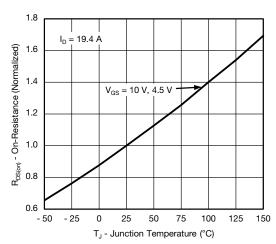
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


40

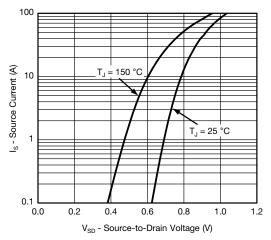
I_D - Drain Current (A) On-Resistance vs. Drain Current


20

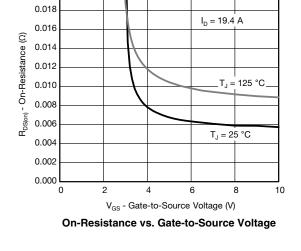

60

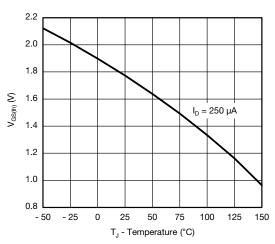

80

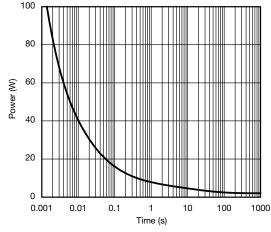
Gate Charge

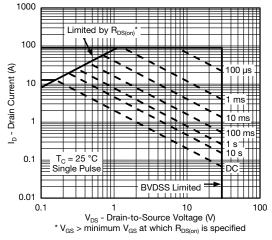


On-Resistance vs. Junction Temperature

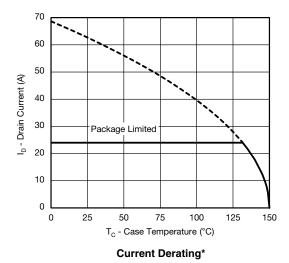

0

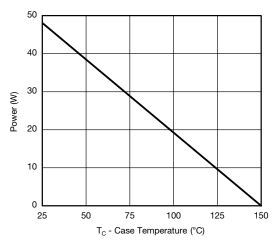

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


0.020

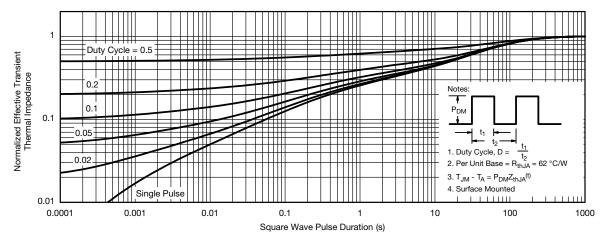
Threshold Voltage



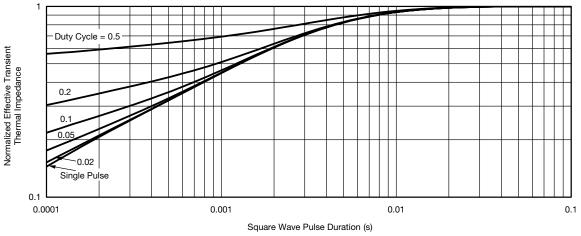

Single Pulse Power

Safe Operating Area, Junction-to-Ambient

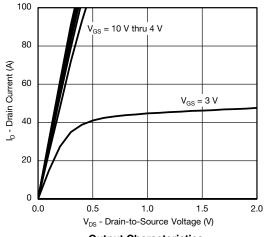
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

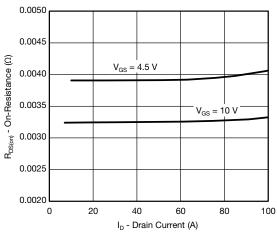


Power, Junction-to-Case

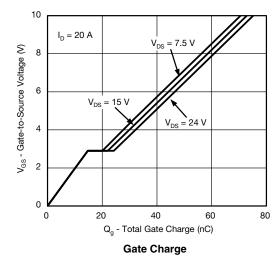

 $^{^{\}star}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

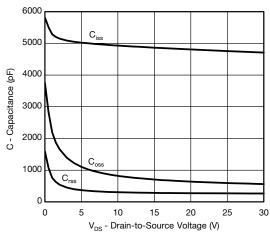

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

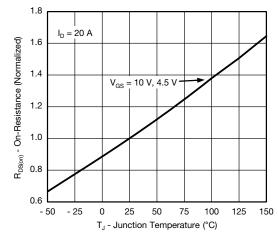
VISHAY.


CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Output Characteristics

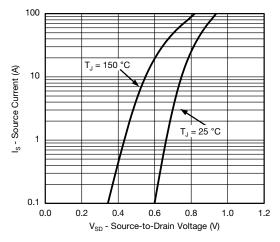


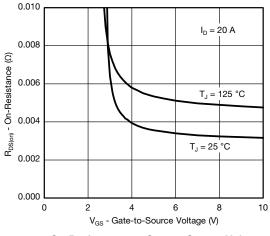
On-Resistance vs. Drain Current

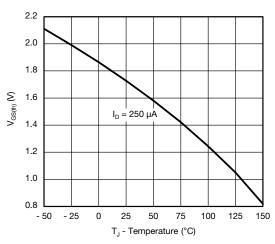


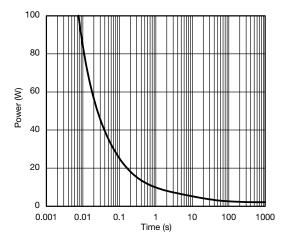
20 16 I_D - Drain Current (A) 12 T_C = 25 °C 8 T_C = 125 °C 4 55 °C 0 0.5 1.0 2.0 3.5 0.0 1.5 2.5 3.0 V_{GS} - Gate-to-Source Voltage (V)

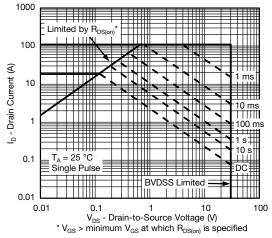
Transfer Characteristics


Capacitance

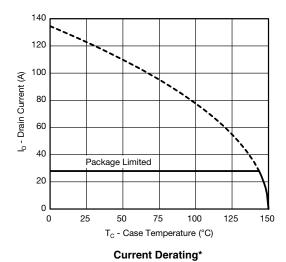

On-Resistance vs. Junction Temperature

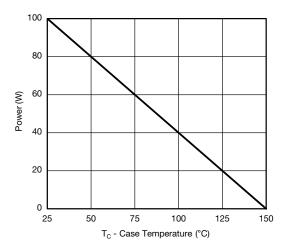

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

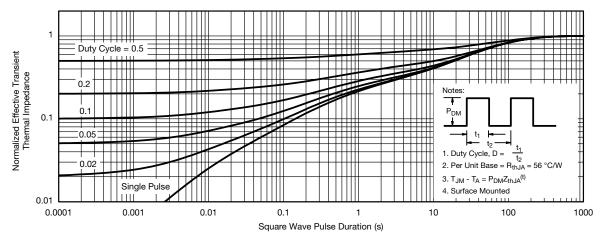
Threshold Voltage



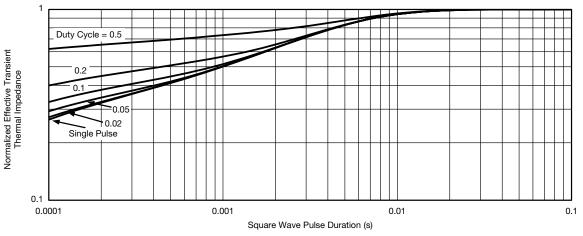

Single Pulse Power

Safe Operating Area, Junction-to-Ambient

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



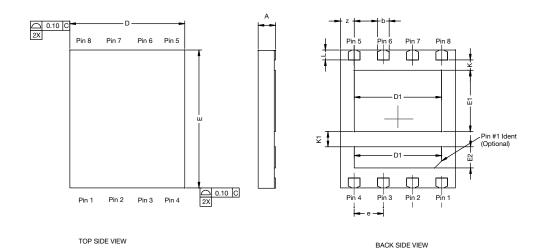
Power, Junction-to-Case

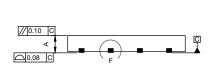

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

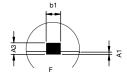
CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

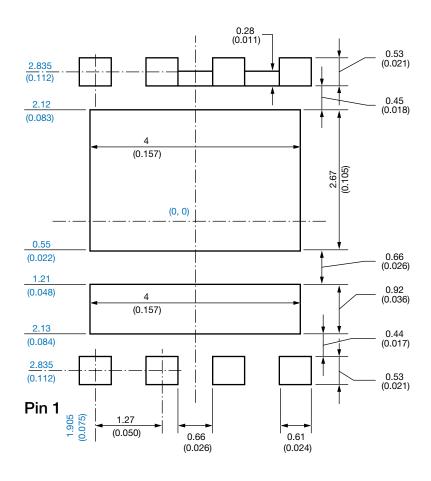

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67344.


Document Number: 67344 S11-2380-Rev. C, 28-Nov-11 www.vishay.com


Vishay Siliconix

PowerPAIR® 6 x 5 BW Case Outline

(for SiZ900DT only)



	MILLIMETERS			INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	-	0.10	0.000	-	0.004		
A3	0.20 REF				0.008 REF			
b	0.51 BSC				0.020 BSC			
b1		0.25 BSC		0.010 BSC				
D	5.00 BSC			0.197 BSC				
D1	3.75	3.80	3.85	0.148	0.150	0.152		
Е	6.00 BSC			0.236 BSC				
E1	2.62	2.67	2.72	0.103	0.105	0.107		
E2	0.87	0.92	0.97	0.034	0.036	0.038		
е		1.27 BSC			0.005 BSC			
K		0.45 TYP.			0.018 TYP.			
K1	0.66 TYP.			0.026 TYP.				
L	0.43 BSC			0.017 BSC				
Z	0.34 BSC			0.013 BSC				

Revision: 31-Oct-11 Document Number: 69027

Recommended Minimum PAD for PowerPAIR® 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.