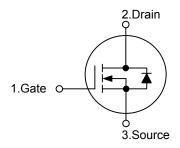
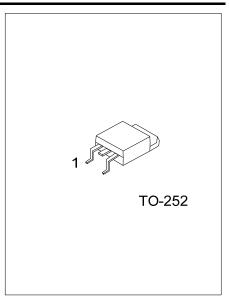


UNISONIC TECHNOLOGIES CO., LTD

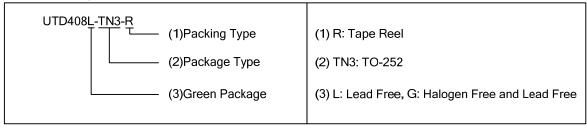

UTD408 Power MOSFET

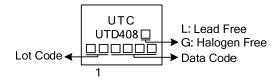

N-CHANNEL ENHANCEMENT MODE

■ FEATURES

- * $R_{DS(ON)}$ = 18m Ω @ V_{GS} = 10 V
- * Low capacitance
- * Optimized gate charge
- * Fast switching capability
- * Avalanche energy specified

■ SYMBOL




■ ORDERING INFORMATION

Ordering Number		Doolsone	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTD408L-TN3-R	UTD408G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 6

UTD408

■ **ABSOLUTE MAXIMUM RATINGS** (T_A = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current (T _C =25°C) (Note 4)		I_{D}	18	Α
Pulsed Drain Current (Note 3)		I_{DM}	40	Α
Avalanche Current (Note 3)		I_{AR}	18	Α
Repetitive Avalanche Energy (L=0.1mH) (Note 3)		E _{AR}	40	mJ
Power Dissipation	T _A =25°C (Note 1)	0	2.5	W
	T _C =25°C (Note 2)	P_D	60	W
Junction Temperature		T_J	+150	°C
Strong Temperature		T_{STG}	-55 ~ +150	°C

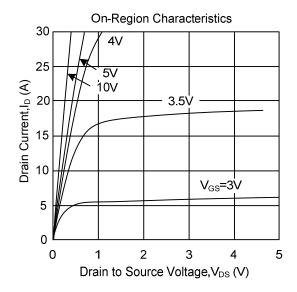
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

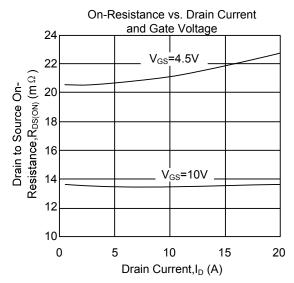
■ THERMAL DATA

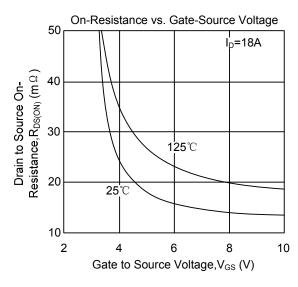
PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient (Note 1)	θ_{JA}	50	°C/W	
Junction to Case (Note 3)	θ_{JC}	2.08	°C/W	

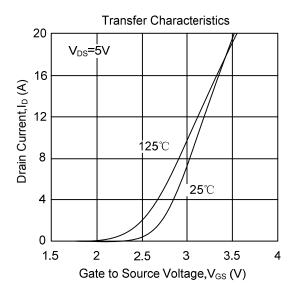
Notes: 1.The value of R θ_{JA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, and the maximum temperature of 150°C may be used if the PCB or heat-sink allows it.

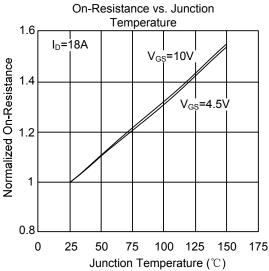
- 2. The power dissipation P_D is based on $T_{J(MAX)}$ = 150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat-sinking is used.
- 3. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.
- 4. The maximum current rating is limited by bond-wires.

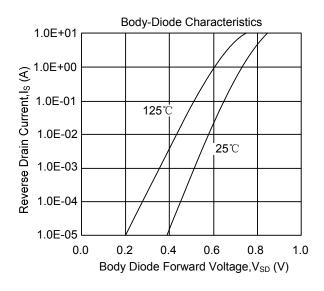

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

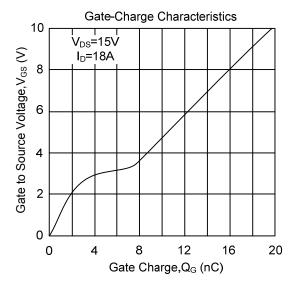

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0 V, I _D =250μA	30			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =24V, V _{GS} =0 V			1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{V}$			100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.8	2.5	V
On State Drain Current	$I_{D(ON)}$	V_{DS} =5V, V_{GS} =4.5V	40			Α
Static Drain-Source On-Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 18A$		13.6	18	mΩ
Static Drain-Source On-Resistance		V_{GS} =4.5V, I_{D} =10A		20.6	27	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			1040	1250	pF
Output Capacitance	Coss	V_{DS} =15 V, V_{GS} =0V, f=1MHz		180		pF
Reverse Transfer Capacitance	C _{RSS}			110		pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_G			19.8	25	nC
Gate Source Charge	Q_{GS}	V_{DS} =15V, V_{GS} =10V, I_{D} =18A		2.5		nC
Gate Drain Charge	Q_GD			3.5		nC
Turn-ON Delay Time	t _{D(ON)}			4.5		ns
Turn-ON Rise Time	t _R	V_{GS} =10V, V_{DS} =15V, R_L =0.82 Ω ,		3.9		ns
Turn-OFF Delay Time	t _{D(OFF)}	$R_{GEN} = 3\Omega$		17.4		ns
Turn-OFF Fall-Time	t _F			3.2		ns
SOURCE- DRAIN DIODE RATINGS A	ND CHARAC	CTERISTICS				
Maximum Continuous Drain-Source					18	Α
Diode Forward Current	I _S				10	A
Drain-Source Diode Forward Voltage	V_{SD}	I _S =1A,V _{GS} =0V		0.75	1	V
Body Diode Reverse Recovery Time	t _{RR}	I _F =18 A, dI/dt=100A/μs		19	25	ns
Body Diode Reverse Recovery Charge	Q _{RR}	I _F =18 A, dI/dt=100A/μs		8		nC

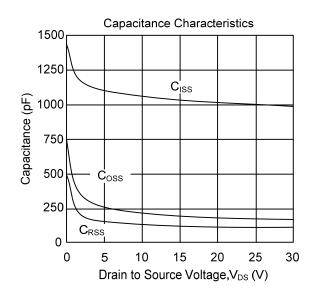

Notes: 5. Pulse width limited by T_{J(MAX)}


6. Pulse width ≤300us, duty cycle ≤2%.

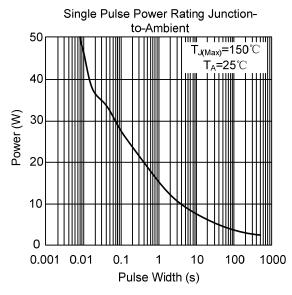

■ TYPICAL CHARACTERISTICS

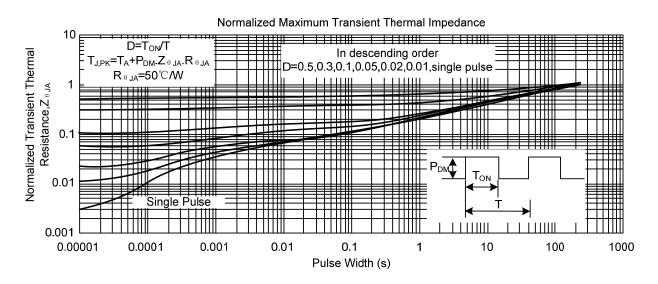


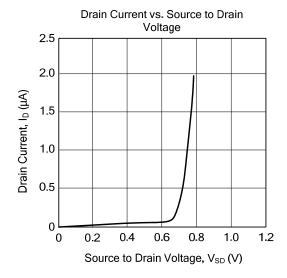


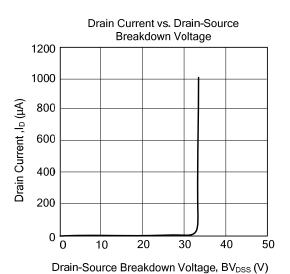


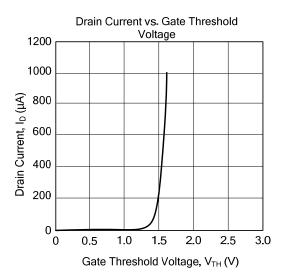


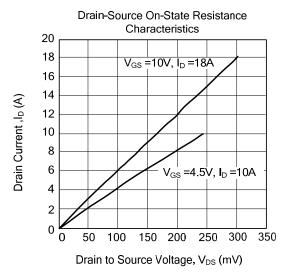

UTD408 Power MOSFET


■ TYPICAL CHARACTERISTICS (Cont.)









■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.