www.ti.com

Ten-Output Low-Jitter Low-Power Clock Buffer and Level Translator

Check for Samples: CDCLVC1310

FEATURES

- High-Performance Crystal Buffer With Ultralow Noise Floor of –169 dBc/Hz
- Additive Phase Noise/Jitter Performance Is 25 fs_{RMS} (Typ.)
- Level Translation With 3.3-V or 2.5-V Core and 3.3-V, 2.5-V, 1.8-V, or 1.5-V Output Supply
- Device inputs consist of primary, secondary, and crystal inputs, and manually selectable (through pins) using the input MUX. The primary and secondary inputs can accept LVPECL, LVDS, HCSL, SSTL or LVCMOS signals and crystal input.
 - Crystal Frequencies Supported Are From 8 MHz to 50 MHz
 - Differential and Single-Ended Input
 Frequencies Supported Are up to 200 MHz
- 10 Single-Ended LVCMOS Outputs. The outputs can operate at 1.5-V, 1.8-V, 2.5-V or 3.3-V Power-Supply Voltage.
 - LVCMOS Outputs Operate up to 200 MHz
 - Output Skew Is 30 ps (Typical)
 - Total Propagation Delay Is 2 ns (Typical)
 - Synchronous and Glitch-Free Output Enable Is Available
- Offered in QFN-32 5-mm x 5-mm Package With Industrial Temperature Range of -40°C to 85°C
- Can Overdrive Crystal Input With LVCMOS Signal up to 50 MHz

APPLICATIONS

- Wireless and Wired Infrastructure
- Networking and Data Communications
- Medical Imaging
- Portable Test and Measurement
- High-End A/V

DESCRIPTION

The CDCLVC1310 is a highly versatile, low-jitter, lowpower clock fanout buffer which can distribute to ten low-jitter LVCMOS clock outputs from one of three inputs, whose primary and secondary inputs can feature differential or single-ended signals and crystal input. Such a buffer is good for use in a variety of mobile and wired infrastructure, data communication, computing, low-power medical imaging, and portable test and measurement applications. When the input is an illegal level, the output is at a defined state. One can set the core to 2.5 V or 3.3 V, and output to 1.5 V, 1.8 V, 2.5 V or 3.3 V. Pin programming easily configures the CDCLVC1310. The overall additive jitter performance is 25 fs_{RMS} (typical). The CDCLVC1310 comes in a small 32-pin 5-mm x 5-mm QFN package.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

BLOCK DIAGRAM

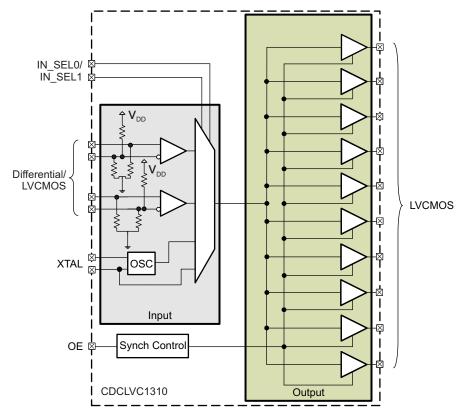
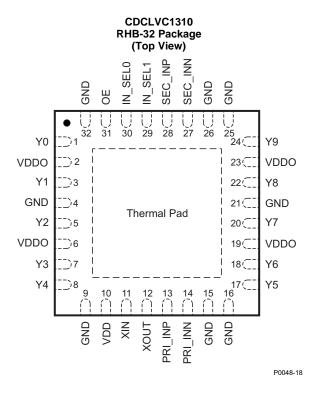



Figure 1. High-Level Block Diagram of CDCLVC1310

PINOUT DIAGRAM

PIN FUNCTIONS

PI	N	1/0	TVDE	DECODINE
NAME	NO(s)	I/O	TYPE	DESCRIPTION
GND	4, 9, 15, 16, 21, 25, 26, 32	PWR	Analog	Power-supply ground
IN_SEL0, IN_SEL1	30, 29	I	Digital	Input-clock selection (pulldown of 150 k Ω)
OE	31	I	Digital	LVCMOS output enable (pulldown of 150 kΩ)
PRI_INN	14	I	Analog	Inverting differential primary reference input, internally biased to Vdd / 2 (pullup or pulldown of 150 k Ω)
PRI_INP	13	I	Analog	Non-inverting differential or single-ended primary reference input (pulldown of 150 kΩ)
SEC_INN	27	1	Analog	Inverting differential secondary reference input, internally biased to Vdd / 2 (pullup or pulldown of 150 $k\Omega)$
SEC_INP	28	I	Analog	Non-inverting differential or single-ended secondary reference input (pulldown of 150 kΩ)
VDD	10	PWR	Analog	Power-supply pins
VDDO	2, 6, 19, 23	PWR	Analog	I/O power-supply pins
XIN	11	I	Analog	Crystal-oscillator input or XTAL bypass mode
XOUT	12	I	Analog	Crystal-oscillator output
Y0	1	0	Analog	LVCMOS output 0
Y1	3	0	Analog	LVCMOS output 1
Y2	5	0	Analog	LVCMOS output 2
Y3	7	0	Analog	LVCMOS output 3
Y4	8	0	Analog	LVCMOS output 4
Y5	17	0	Analog	LVCMOS output 5
Y6	18	0	Analog	LVCMOS output 6
Y7	20	0	Analog	LVCMOS output 7
Y8	22	0	Analog	LVCMOS output 8
Y9	24	0	Analog	LVCMOS output 9

Table 1. Input Selection

IN_SEL1	IN_SEL0	INPUT CHOSEN
0	0	PRI_IN
0	1	SEC_IN
1	0	XTAL or overdrive ⁽¹⁾
1	1	XTAL bypass (2)

This mode is for XTAL input or overdrive of XTAL oscillator with LVCMOS input. For characteristics; see LVCMOS OUTPUT CHARACTERISTICS.

Table 2. INPUT/OUTPUT OPERATION(1)

INPUT STATE	OUTPUT STATE
PRI_INx, SEC_INx open	Logic LOW
PRI_INP, SEC_INP = HIGH, PRI_INN, SEC_INN = LOW	Logic HIGH
PRI_INP, SEC_INP = LOW, PRI_INN, SEC_INN = HIGH	Logic LOW

(1) Device must have switching edge to obtain output states.

⁽²⁾ This mode is only XTAL bypass. For characteristics, see LVCMOS OUTPUT CHARACTERISTICS.

Table 3. OE Function

OE	Yx
0	High-impedance
1	Enabled

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
VDD, VDDO	Supply-voltage range	-0.5 to 4.6	V
V _{IN}	Input-voltage range	-0.5 to VDD + 0.5	V
V _{OUT}	Output-voltage range	-0.5 to VDDO + 0.5	5 V
I _{IN}	Input current	±20	V
Гоит	Output current	±50	V
T _{stg}	Storage-temperature range	-65 to 150	°C
T _J	Junction temperature	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT		
VDDO		3.135	3.3	3.465			
	Output supply voltage	2.375	2.5	2.625	V		
		1.6	1.8	2			
		1.35	1.5	1.65			
\	Consequently walks as	3.135	3.3	3.465			
VDD	Core supply voltage	2.375	2.5	2.625	V		
I _{OH}	High-level output current, LVCMOS			-24	mA		
I _{OL}	Low-level output current, LVCMOS			24	mA		
T _A	Ambient temperature	-40		85	°C		

Product Folder Links: CDCLVC1310

THERMAL INFORMATION

		CDCLVC1310	
	THERMAL METRIC ⁽¹⁾	RHB	UNIT
		32 PINS	
θ_{JA}	Junction-to-ambient thermal resistance (2)	41.7	°C/W
θ_{JCtop}	Junction-to-case (top) thermal resistance (3)	34.1	°C/W
θ_{JB}	Junction-to-board thermal resistance (4)	14.4	°C/W
ΨЈТ	Junction-to-top characterization parameter ⁽⁵⁾	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter (6)	14.4	°C/W
θ_{JCbot}	Junction-to-case (bottom) thermal resistance (7)	6.2	°C/W

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

INPUT CHARACTERISTICS

over recommended ranges of supply voltage (VDDO ≤ VDD), load and ambient temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Charac	teristic (OE, IN_SEL0, IN_SEL1, PRI	IN, SEC_IN)				
I _{IH}	Input high current	VDD = 3.465 V, V _{IH} = 3.465 V			40	μΑ
I _{IL}	Input low current	VDD = 3.465 V, V _{IL} = 0 V			-40	μΑ
ΔV/ΔΤ	Input edge rate	20%–80%		2		V/ns
R _{Pullup/down}	Pullup or pulldown resistance			150		kΩ
C _{IN}	Input capacitance			2		pF
Single-End	ed DC Characteristic (PRI_INP, SEC	_INP) ⁽¹⁾	·			
\ /	Input high voltage	VDD = 3.3 V ±5%	2	,	/DD + 0.3	V
V _{IH}	input nigh voltage	VDD = 2.5 V ±5%	1.6	,	/DD + 0.3	v
\ /	land land land	VDD = 3.3 V ±5%	-0.3		1.3	V
V_{IL}	Input low voltage	VDD = 2.5 V ±5%	-0.3		0.9	V
Single-End	ed DC Characteristic (OE, IN_SEL0,	IN_SEL1)	·			
V _{IH}	Input high voltage		0.7 × VDD			V
V _{IL}	Input low voltage			().3 × VDD	V
Differential	DC Characteristic (PRI_IN, SEC_IN)				•	
$V_{I,DIFF}$	Differential input voltage swing (2)		0.15		1.3	V
V _{ICM}	Input common-mode voltage ⁽³⁾		0.5	V	DD - 0.85	V
AC Charac	teristic (PRI_IN, SEC_IN)					
f _{IN}	Input frequency		DC		200	MHz
idc	Input duty cycle		40%		60%	

- (1) PRI/SEC_INN biased to VDD / 2
- (2) V_{IL} should not be less than -0.3 V
- (3) Input common-mode voltage is defined as V_{IH} (see Figure 19).

CRYSTAL CHARACTERISTICS

over recommended ranges of supply voltage, load and ambient temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Equivalent series resistance (ESR)			50		Ω
Maximum shunt capacitance			7		pF
Drive level			100		μW

CRYSTAL OSCILLATOR CHARACTERISTICS

over recommended ranges of supply voltage, load and ambient temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Mode of oscillation		Fur	ndamental		
Frequency		8		50	MHz
Frequency in overdrive mode ⁽¹⁾				50	MHz
Frequency in bypass mode (2)				50	MHz
On-chip load capacitance			12		pF

⁽¹⁾ Input signal swing (max) = 2 V; input signal t_r (max) = 10 ns; t_f(max) = 10 ns; functional, but device may not meed ac parameters.

LVCMOS OUTPUT CHARACTERISTICS

over recommended ranges of supply voltage (VDDO \leq VDD), load (50 Ω to VDDO/2), and ambient temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
f _{OUT}					200	MHz	
V_OH		VDDO = 3.135 V to 3.465 V	0.8 * VDDO				
		VDDO = 2.375 V to 2.625 V	0.8 * VDDO			V	
VOH	Output high voltage	VDDO = 1.6 V to 2 V	0.7 * VDDO			V	
		VDDO = 1.35 V to 1.65 V	0.7 * VDDO		200 0.2 * VDDO 0.2 * VDDO 0.3 * VDDO 15 20 25 30 7.3 9.0 4.8 5.4 2.1 2.5 1.2 1.4 30 50		
Vol	Output low voltage	VDDO = 3.135 V to 3.465 V				V	
		VDDO = 2.375 V to 2.625 V			-		
		VDDO = 1.6 V to 2 V					
		VDDO = 1.35 V to 1.65 V			0.2 * VDDO 0.2 * VDDO 0.3 * VDDO 0.3 * VDDO 9.0 5.4 2.5 1.4		
		VDDO = 3.3 V		15			
D		VDDO = 2.5 V		20		Ω	
KOUT	Output impedance	VDDO = 1.8 V		25	9.0 9.0 5.4 2.5 1.4	12	
		VDDO = 1.5 V		30			
		VDDO=3.3V +/- 5%, 20% to 80%	5.6	7.3	9.0		
	Output along sets sining and falling	VDDO=2.5V +/- 5%, 20% to 80%	3.9	4.8	5.4	\ //	
R _{OUT}	Output slew rate, rising and falling	VDDO=1.8V +/- 200mV, 20% to 80%	1.6	2.1	2.5	V/ns	
		VDDO=1.5V +/- 150mV, 20% to 80%	0.9	1.2	1.4		
t _{SK}	Output skew			30	50	ps	
t _{SK,PP}	Part-to-part skew ⁽¹⁾				2	ns	

(1) Calculation for part-to-part skew is the difference between the fastest and the slowest t_{pd} across multiple devices.

⁽²⁾ Input signal swing (max) = V_{DD} ; input signal t_r (max) = 10 ns; t_r (max) = 10 ns; functional, but device may not meed ac parameters.

LVCMOS OUTPUT CHARACTERISTICS (continued)

over recommended ranges of supply voltage (VDDO ≤ VDD), load (50 Ω to VDDO/2), and ambient temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Output frequency	VDD = 3.3 V ±5%, VDDO = 1.35 V to VDD	1.5	1.95	4.0		
t _{DELAY}	Output frequency	VDD = 2.5 V ±5%, VDDO = 1.35 V to VDD	1.8	2.4	4.4	ns	
		Single-ended input, VDD = 3.3 V, VDDO = 3.3 V		25		f _S , RMS	
•	Sustant lovel additive iitter(2)	Single-ended input, VDD = 2.5 V or 3.3 V, VDDO = 1.5 V, 1.8 V, or 2.5 V, $f_{\text{IN/OUT}}$ = 125 MHz		30			
t _{RJIT}	System-level additive jitter ⁽²⁾	Differential input, VDD = 3.3 V, VDDO = 3.3 V		30			
		Differential input, VDD = 2.5 V or 3.3 V, VDDO = 1.5 V, 1.8 V, or 2.5 V, f _{IN/OUT} = 125 MHz		30			
		10-kHz offset ⁽³⁾		-145			
		100-kHz offset ⁽³⁾		-156			
		1-MHz offset ⁽³⁾		-163			
		10-MHz offset ⁽³⁾		-164			
NE	Natas flass	20-MHz offset ⁽³⁾		-164			
NF	Noise floor	10-kHz offset ⁽⁴⁾		-145		dBc/Hz	
		100-kHz offset ⁽⁴⁾		-155			
		1-MHz offset ⁽⁴⁾		-160			
		10-MHz offset ⁽⁴⁾		-161			
		20-MHz offset ⁽⁴⁾		-162		1	
odc	Output duty cycle	f _{IN/OUT} = 125 MHz, idc = 50% ⁽⁵⁾	45%		55%		
t _{EN}	Output enable or disable time				2	Cycle	
MUXISOLATION	MUX isolation (6)	125 MHz	55			dB	

Integration range: 12 kHz-20 MHz; input source see the System-Level Additive-Jitter Measurement section

Single-ended input, $f_{\text{IN/OUT}} = 125 \text{ MHz}$, VDD = VDDO = 3.3 V Differential input, $f_{\text{IN/OUT}} = 125 \text{ MHz}$, VDD = VDDO = 3.3 V (3)

Stable V_{IH}, V_{IL}, and V_{CM} See Figure 18. (5)

PHASE NOISE WITH XTAL⁽¹⁾ SELECTED

VDD = VDDO = 2.5 V or 3.3 V, f_{XTAL} = 25 MHz, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Irma	DMC phase litter	IB = 12 kHz to 5 MHz, VDD = VDDO = 3.3 V	80			fo rmo
Jrms	Jrms RMS phase jitter	IB = 12 kHz to 5 MHz, VDD = VDDO = 2.5 V		fs rms		
		f _{offset} = 100 Hz, VDD = VDDO = 3.3 V				
		f _{offset} = 1 kHz, VDD = VDDO = 3.3 V		-137		
		f _{offset} = 10 kHz, VDD = VDDO = 3.3 V		-163		
		f _{offset} = 100 kHz, VDD = VDDO = 3.3 V		-168		
		f _{offset} = 1 MHz, VDD = VDDO = 3.3 V		-168		dBc/Hz
DNI	Dhasa naisa (asa Firum 45)	f _{offset} = 5 MHz, VDD = VDDO = 3.3 V		-169		
PN	Phase noise (see Figure 15)	f _{offset} = 100 Hz, VDD = VDDO = 2.5 V		-91		
		f _{offset} = 1 kHz, VDD = VDDO = 2.5 V		-136		
		f _{offset} = 100 kHz, VDD = VDDO = 2.5 V	-159			
			-164			
				-165		
		f _{offset} = 5 MHz, VDD = VDDO = 2.5 V		-165		

⁽¹⁾ Crystal specification: $C_L = 18 \text{ pF}$; ESR = 35 Ω (max); $C_0 = 7 \text{ pF}$; drive level = 100 μ W (max)

DEVICE CURRENT CONSUMPTION

over recommended ranges of supply voltage, load and ambient temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OVERALL PARAMETERS FOR ALL VERSIONS									
	Static device current ⁽¹⁾	$ \begin{aligned} \text{OE} &= 0 \text{ V or V}_{\text{DD}};\\ \text{Ref. input (PRI/SEC)} &= 0 \text{ V or V}_{\text{DD}};\\ \text{I}_{\text{O}} &= 0 \text{ mA; V}_{\text{DD}} / \text{V}_{\text{DDO}} = 3.3 \text{ V} \end{aligned} $		14		A			
I _{DD}	Static device current***	$ \begin{aligned} \text{OE} &= 0 \text{ V or V}_{\text{DD}};\\ \text{Ref. input (PRI/SEC)} &= 0 \text{ V or V}_{\text{DD}};\\ \text{I}_{\text{O}} &= 0 \text{ mA; V}_{\text{DD}} \text{ / V}_{\text{DDO}} &= 2.5 \text{ V} \end{aligned} $		8		mA			
$I_{DD,XTAL}$	Device current with XTAL input ⁽¹⁾			20		mA			
		VDDO = 3.465 V; f = 100 MHz			8.8				
C_{PD}	Power dissipation capacitance per output (2)	VDDO = 2.625 V; f = 100 MHz			7.7	F			
		VDDO = 2 V; f = 100 MHz			7.3	pF			
		VDDO = 1.65 V; f = 100 MHz			6.9				

 I_{DD} and $I_{DD,XTAL}$ is the current through V_{DD} ; outputs enabled or in the high-impedance state; no load. This is the formula for the power dissipation calculation (see the *Power Considerations* section)

$$\begin{split} & \text{IDD,Total} = \text{IDD} + \text{IDD,Cload} + \text{IDD,dyn} \text{ [mA]} \\ & \text{IDD,dyn} = \text{CPD} \times \text{V}_{\text{DDO}} \times \text{f} \times \text{n} \text{ [mA]} \\ & \text{IDD,Cload} = \text{C}_{\text{load}} \times \text{V}_{\text{DDO}} \times \text{f} \times \text{n} \text{ [mA]} \\ & \text{n} = \text{Number of switching output pins} \end{split}$$

TEST CONFIGURATIONS

Figure 2 through Figure 8 illustrate how to set up the device for a variety of test configurations.

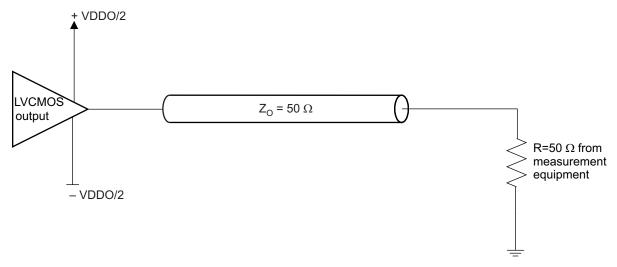


Figure 2. LVCMOS Output DC Configuration; Test Load Circuit

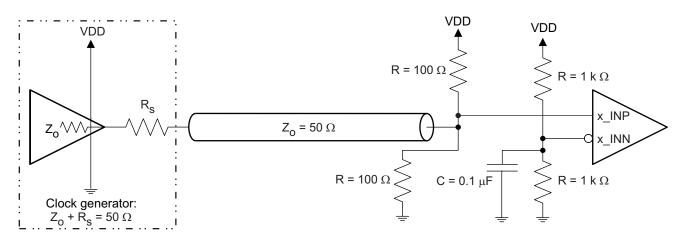


Figure 3. LVCMOS Input DC Configuration During Device Test

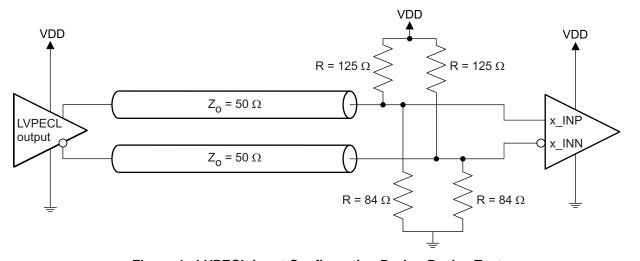


Figure 4. LVPECL Input Configuration During Device Test

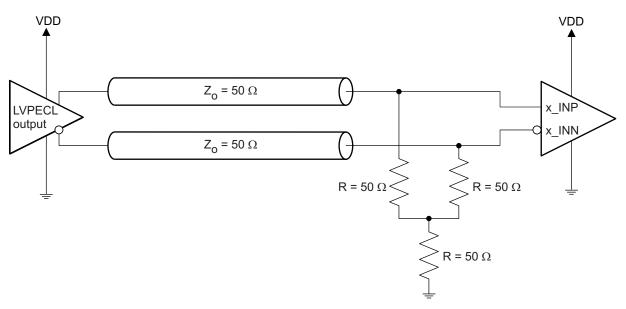


Figure 5. LVPECL Input Configuration During Device Test

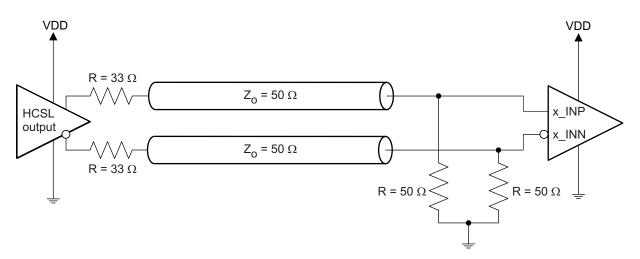


Figure 6. HCSL Input Configuration During Device Test

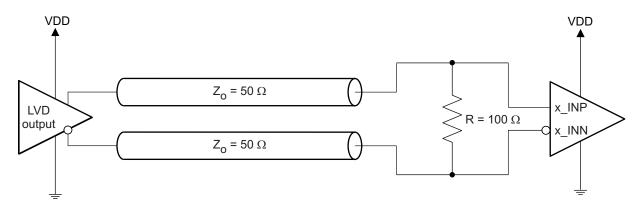


Figure 7. LVDS Input Configuration During Device Test

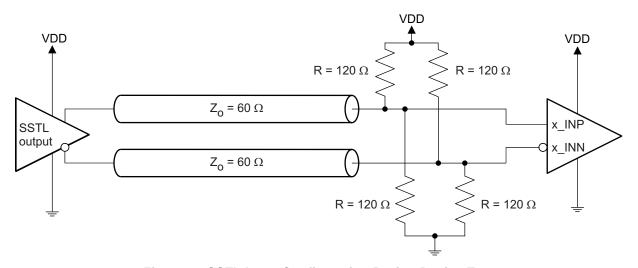


Figure 8. SSTL Input Configuration During Device Test

APPLICATION INFORMATION

Typical Application Load

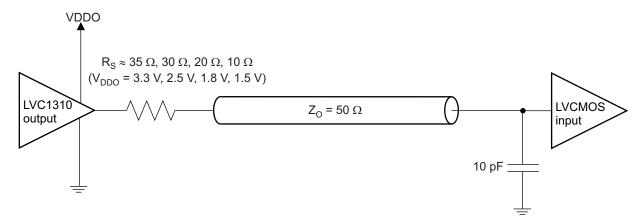


Figure 9. LVCMOS Output DC Configuration: Typical Application Load

Parameter Measurement Information

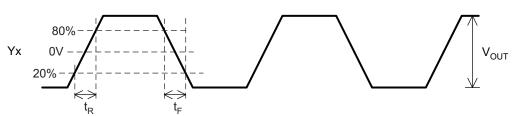


Figure 10. LVCMOS Output Voltage, and Rise and Fall Times

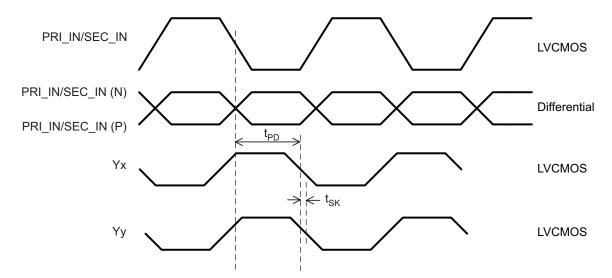


Figure 11. Differential and Single-Ended Output Skew and Propagation Delay

Crystal Oscillator Input

The crystal oscillator circuit is characterized with 18-pF parallel-resonant crystals. Choices of C1 and C2 were to minimize the ppm error. Optional resistor $R_{OPTIONAL}$ limits the drive level of the oscillator circuit.

Copyright © 2011–2014, Texas Instruments Incorporated

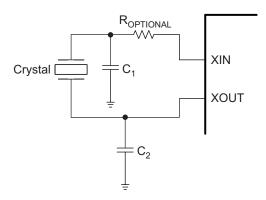


Figure 12. Crystal Reference Input

The input XIN can accept single-ended LVCMOS signals in two configurations. It is possible to overdrive the oscillator stage or to use a pure LVCMOS input (see Table 1). If overdriving the oscillator stage, it is necessary to ac-couple the input with a capacitor (see Figure 13). Otherwise, if selecting the bypass, there is no requirement for a coupling capacitor. Additional measurements and information about crystal oscillator input and limiting the drive level are available in the applications report *Crystal Oscillator Performance of the CDCLVC1310* (SCAA119).

NOTE

If using the overdrive or bypass mode, the device is functional, but may not meet its ac parameters.

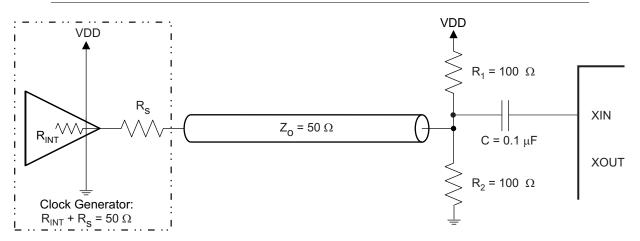


Figure 13. Single-Ended Crystal Input

Phase-Noise Performance

The CDCLVC1310 provides ultralow phase-noise outputs (noise floor = -170 dBc/Hz) if it has an attached crystal. Figure 14 shows the phase-noise plot of the CDCLVC1310 with a 25-MHz crystal at $V_{DD} = V_{DDO} = 3.3$ V and room temperature.

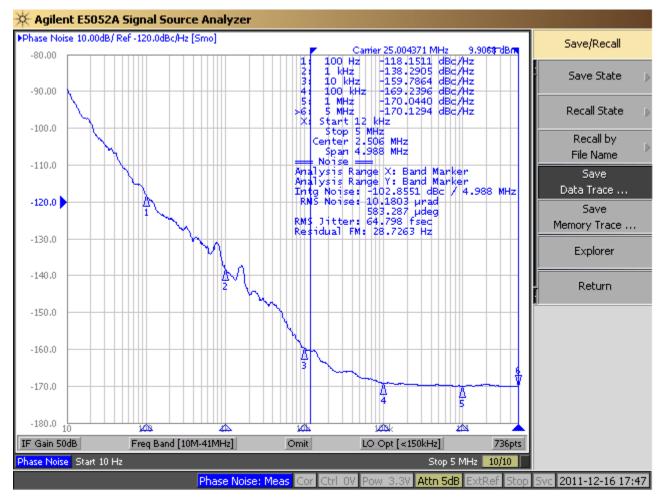


Figure 14. Phase-Noise Profile With 25-MHz Crystal at Nominal Conditions

System-Level Additive-Jitter Measurement

For high-performance devices, limitations of the equipment influence phase-noise measurements. The noise floor of the equipment often exceeds the noise floor of the device. The real noise floor of the device is probably lower (see LVCMOS Output Characteristics). Phase noise is influenced by the input source and the measurement equipment. Additional measurements and information about system-level additive jitter and noise floor are available in the applications report *Phase Noise Performance of CDCLVC1310* (SCAA115).

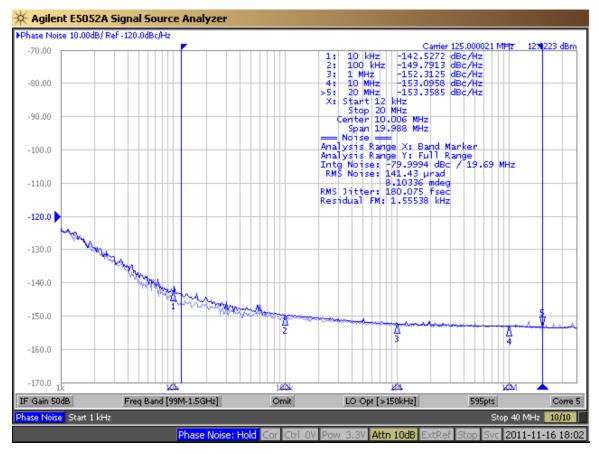


Figure 15. Input Phase Noise (179.4 fs, Light Blue) and Output Phase Noise (180 fs, Dark Blue)

Output Enable

Pulling OE to LOW (t_1) , forces the outputs to the high-impedance state after the next falling edge of the input signal (t_2) . The outputs remain in the high-impedance state as long as OE is LOW (see Figure 16).

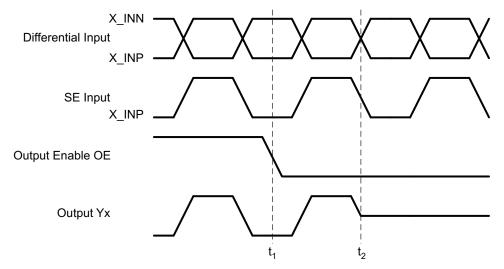


Figure 16. OE: Disable Outputs

If the outputs are in the high-impedance state, pulling OE to HIGH forces all outputs LOW asynchronously (t_3) . Within two clock cycles (maximum), the outputs start switching again (t_4) , after a falling edge of the input signal (see Figure 17).

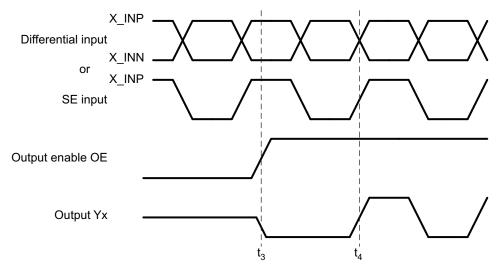


Figure 17. OE: Enable Outputs

If the outputs are in the high-impedance state and the input is static (no clock signal), OE works fully asynchronously. A transition of OE from LOW to HIGH forces the outputs to LOW. A transition from HIGH to LOW does not force to the high-impedance state again. Therefore, a state change requires a falling edge of the input signal (see Figure 16).

MUX Isolation

The definition of MUX isolation is the difference in output amplitude (dB) between an active and a static input signal.

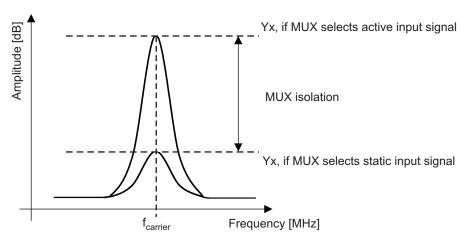
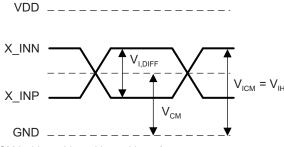



Figure 18. Output Spectrum of an Active and a Static Input Signal

Differential Input Level

NOTE: The calculation for VCM is: $V_{CM} = V_{DD} - V_{ICM} - V_{I,DIFF}/2$

Figure 19. Differential Input Level

Power Considerations

The following power consideration refers to the device-consumed power consumption only. The device power consumption is the sum of static power and dynamic power. The dynamic power usage consists of two components:

- Power used by the device as it switches states
- · Power required to charge any output load

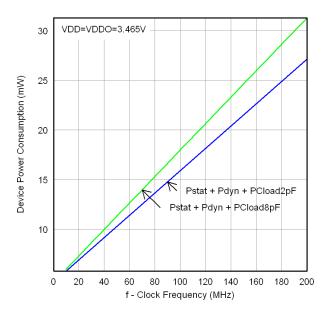
The output load can be capacitive-only or capacitive and resistive. Use the following formula to calculate the power consumption of the device:

$$P_{Dev} = P_{stat} + P_{dyn} + P_{Cload}$$
 (see Figure 20 and Figure 21)
 $P_{stat} = I_{DD} \times V_{DD}$
 $P_{dyn} + P_{Cload} = (I_{DD,dyn} + I_{DD,Cload}) \times V_{DDO}$

where:

$$I_{DD,dyn} = C_{PD} \times V_{DDO} \times f \times n \text{ [mA] (see Figure 22)}$$

 $I_{DD,Cload} = C_{load} \times V_{DDO} \times f \times n \text{ [mA]}$


Example for power consumption of the CDCLVC1310: 10 outputs are switching, f = 100 MHz, $V_{DD} = V_{DDO} = 3.3$ V and assuming $C_{load} = 2$ pF per output:

$$\begin{split} &P_{\text{Dev}} = 46.2 \text{ mW} + 117.5 \text{ mW} = 163.7 \text{ mW} \\ &P_{\text{stat}} = 14 \text{ mA} \times 3.3 \text{ V} = 46.2 \text{ mW} \\ &P_{\text{dyn}} + P_{\text{Cload}} = (29 \text{ mA} + 6.6 \text{ mA}) \times 3.3 \text{ V} = 117.5 \text{ mW} \\ &I_{\text{DD,dyn}} = 8.8 \text{ pF} \times 3.3 \text{ V} \times 100 \text{ MHz} \times 10 = 29 \text{ mA} \\ &I_{\text{DD,Cload}} = 2 \text{ pF} \times 3.3 \text{ V} \times 100 \text{ MHz} \times 10 = 6.6 \text{ mA} \end{split}$$

NOTE

For dimensioning the power supply, consider the total power consumption. The total power consumption is the sum of device power consumption and the power consumption of the load.

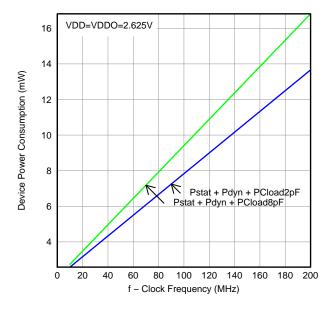


Figure 20. Device Power Consumption versus Clock Frequency (VDD = VDDO = 3.465 V; Load 2 pF, 8 pF; per Output)

Figure 21. Device Power Consumption versus Clock Frequency (VDD = VDDO = 2.625 V; Load 2 pF, 8 pF; per Output)

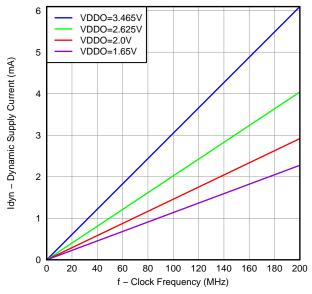


Figure 22. Dynamic Supply Current versus Clock Frequency (per Output)

Thermal Management

Power consumption of the CDCLVC1310 can be high enough to require attention to thermal management. For reliability and performance reasons, limit the die temperature to a maximum of 125°C. That is, as an estimate, T_A (ambient temperature) plus device power consumption times θ_{IA} should not exceed 125°C.

The device package has an exposed pad that provides the primary heat removal path as well as an electrical grounding to the printed circuit board (PCB). To maximize the removal of heat from the package, incorporate a thermal landing pattern including multiple vias to a ground plane on the PCB within the footprint of the package. Solder the exposed pad down to ensure adequate heat conduction out of the package. Figure 23 shows a recommended land and via pattern.

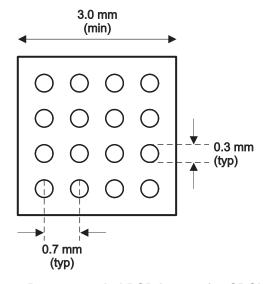


Figure 23. Recommended PCB Layout for CDCLVC1310

Power-Supply Filtering

High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter or phase noise is very critical to applications.

Use of filter capacitors eliminates the low-frequency noise from power supply, where the bypass capacitors provide the very low-impedance path for high-frequency noise and guard the power-supply system against induced fluctuations. The bypass capacitors also provide instantaneous current surges as required by the device, and should have low ESR. To use the bypass capacitors properly, place them very close to the power supply pins and lay out traces with short loops to minimize inductance. TI recommends to adding as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply pins in the package. There is a recommendation, but not a requirement, to insert a ferrite bead between the board power supply and the chip power supply to isolate the high-frequency switching noises generated by the clock driver, preventing them from leaking into the board supply. Choosing an appropriate ferrite bead with very low dc resistance is important, because it is imperative to provide adequate isolation between the board supply and the chip supply, and to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper operation.

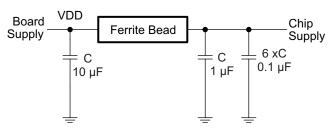


Figure 24. Power-Supply Decoupling

Product Folder Links: CDCLVC1310

SCAS917E -JULY 2011-REVISED JANUARY 2014

REVISION HISTORY

Changes from Revision D (July 2013) to Revision E	Page
Changed V _{OH} in LVCMOS OUTPUT CHARACTERISTICS	7
Changed V _{OL} in LVCMOS OUTPUT CHARACTERISTICS	7
Changed t _{SLEW-RATE} in LVCMOS OUTPUT CHARACTERISTICS	7
Changes from Revision C (October 2012) to Revision D	Page
Changed t _{DELAY} in LVCMOS OUTPUT CHARACTERISTICS	8
Changes from Revision B (February 2012) to Revision C	Page
Changed unit for phase jitter from picosecond to femtosecond	
Changed unit for phase jitter from picosecond to remosecond	9
Revised Figure 3	10
Revised Figure 3Revised Figure 4	
 Revised Figure 3 Revised Figure 4 Revised Figure 5 	
 Revised Figure 3 Revised Figure 4 Revised Figure 5 Revised Figure 6 	
 Revised Figure 3 Revised Figure 4 Revised Figure 5 	

PACKAGE OPTION ADDENDUM

24-Nov-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CDCLVC1310RHBR	ACTIVE	VQFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCLVC 1310	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

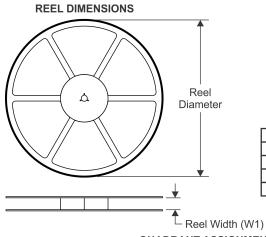
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

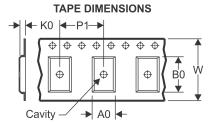
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

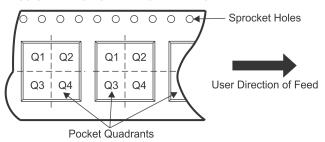
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



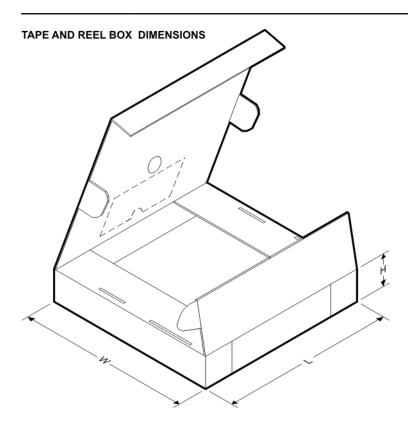

24-Nov-2014

PACKAGE MATERIALS INFORMATION

www.ti.com 5-May-2017


TAPE AND REEL INFORMATION

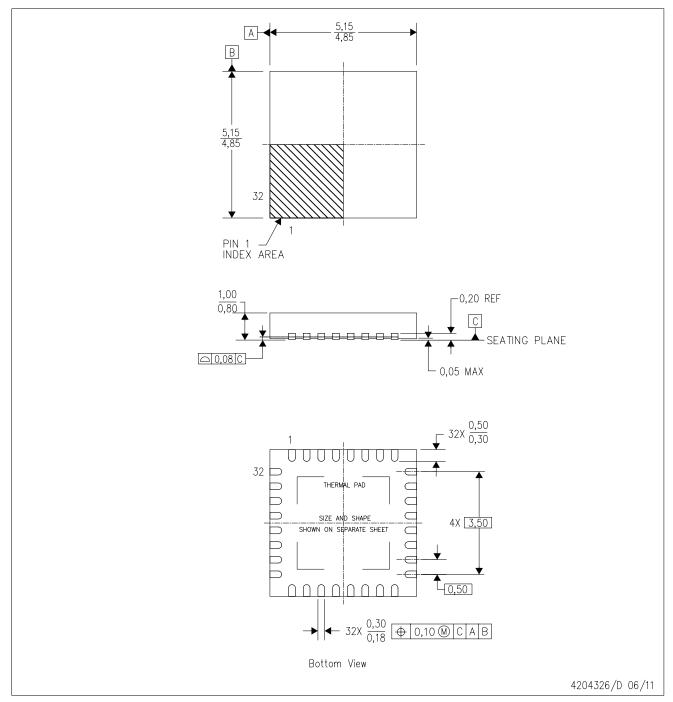
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCLVC1310RHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 5-May-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCLVC1310RHBR	VQFN	RHB	32	3000	367.0	367.0	35.0

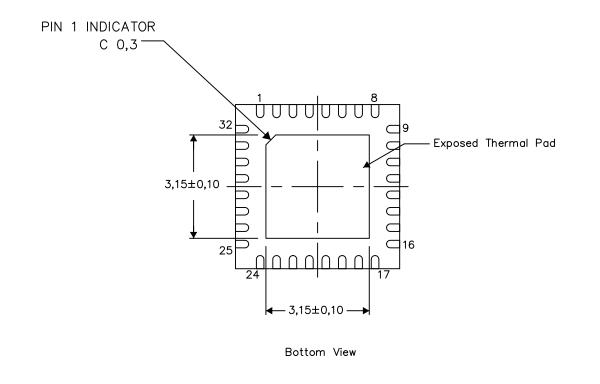
RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RHB (S-PVQFN-N32)


PLASTIC QUAD FLATPACK NO-LEAD

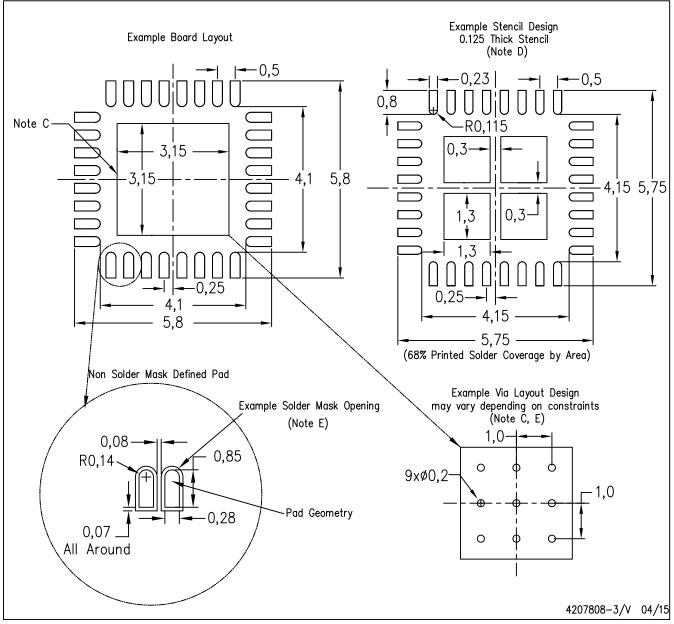
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions


4206356-3/AC 05/15

NOTE: A. All linear dimensions are in millimeters

RHB (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for any larger diameter vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.