

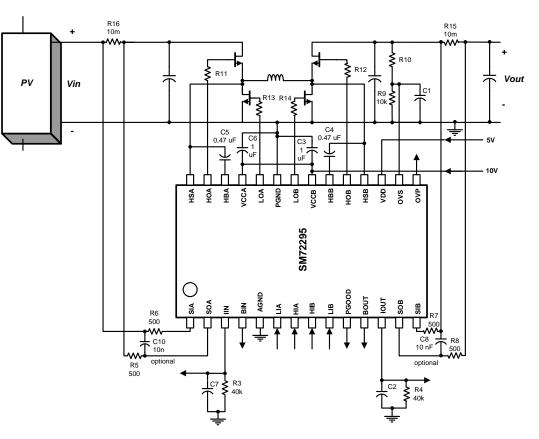
SNVS688E - OCTOBER 2010-REVISED APRIL 2013

SM72295 Photovoltaic Full Bridge Driver

Check for Samples: SM72295

FEATURES

- Renewable Energy Grade
- Dual Half Bridge MOSFET Drivers
- Integrated 100V Bootstrap Diodes
- Independent High and Low Driver Logic Inputs
- Bootstrap Supply Voltage Range up to 115V DC
- Two Current Sense Amplifiers with Externally Programmable Gain and Buffered Outputs
- Programmable Over Voltage Protection
- Supply Rail Under-Voltage Lockouts with Power Good Indicator


PACKAGE

• SOIC-28

Typical Application Circuit

DESCRIPTION

The SM72295 is designed to drive 4 discrete N type MOSFET's in a full bridge configuration. The drivers provide 3A of peak current for fast efficient switching and integrated high speed bootstrap diodes. Current sensing is provided by 2 transconductance amplifiers with externally programmable gain and filtering to remove ripple current to provide average current information to the control circuit. The current sense amplifiers have buffered outputs available to provide a low impedance interface to an A/D converter if needed. An externally programmable input over voltage comparator is also included to shutdown all outputs. Under voltage lockout with a PGOOD indicator prevents the drivers from operating if VCC is too low.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Connection Diagram

1	SIA		HSA	28
2	SOA		HOA	27
3	IIN		HBA	26
4	BIN		VCCA	25
5	AGND		LOA	24
_6	LIA		PGND	23
7	HIA	SM72295	LOB	22
8	нв	51172295	VCCB	21
9	LIB		HBB	20
<u>10</u>	PGOOD		HOB	19
<u>11</u>	BOUT		HSB	18
12	IOUT		VDD	17
<u>13</u>	SOB		OVS	16
14	SIB		OVP	15

Figure 1. Top View SOIC-28

PIN DESCRIPTIONS

Pin	Name	Description	Application Information
1	SIA	Sense high input for input current sense transconductance amplifier	Tie to positive side of the current sense resistor through an external gain programming resistor (RI). Amplifier transconductance is 1/RI.
2	S0A	Sense low input for input current sense transconductance amplifier	Tie to negative side of the current sense resistor through an external gain programming resistor. Amplifier transconductance is 1/RI.
3	IIN	Output for current sense transconductance amplifier	Output of the input current sense amplifier. Requires an external resistor to ground (RL). Gain is RL/RI, where RI is the external resistor in series with the SIA pin.
4	BIN	Buffered IIN	Buffered IIN.
5	AGND	Analog ground	Ground return for the analog circuitry. Tie to the ground plane under the IC
6, 9	LIA, LIB	Low side driver control input	The inputs have TTL type thresholds. Unused inputs should be tied to ground and not left open.
7, 8	HIA, HIB	High side driver control input	The inputs have TTL type thresholds. Unused inputs should be tied to ground and not left open.
10	PGOOD	Power good indicator output	Open drain output with an internal pull-up resistor to VDD indicating VCC is in regulation. PGOOD low implies VCC is out of regulation.
11	BOUT	Buffered IOUT	Buffered IOUT.
12	IOUT	Output for current sense comparator.	Output of the output current sense amplifier. Requires an external resistor to ground (RL). Gain is RL/RI, where RI is the external resistor in series with the SIB pin.
13	S0B	Sense low input for output current sense amplifier	Tie to negative side of the current sense resistor through an external gain programming resistor. Amplifier transconductance is 1/RI.
14	SIB	Sense high input for output current sense amplifier	Tie to positive side of the current sense resistor through an external gain programming resistor (RI). Amplifier transconductance is 1/RI.
15	OVP	Over voltage indicator output	Open drain output with an internal pull-up resistor to VDD indicating OVS >VDD. OVP is low when OVS>VDD.
16	OVS	Sense input for over voltage	Requires an external resistor divider. VDD is the reference voltage.
17	VDD	3.3V or 5V regulator output	Bypass with 0.1uF. Reference for over voltage shutdown and IOUT/IIN clamp
18, 28	HSA, HSB	High side MOSFET source connection	Connect to bootstrap capacitor negative terminal and the source of the high side MOSFET.

RUMENTS

PIN DESCRIPTIONS (continued)

Pin	Name	Description	Application Information
19, 27	HOA, HOB	High side gate driver output	Connect to gate of high side MOSFET with a short low inductance path.
20,26	HBA, HBB	High side gate driver bootstrap rail.	Connect the positive terminal of the bootstrap capacitor to HB and the negative terminal to HS. The bootstrap capacitor should be placed as close to IC as possible.
21,25	VCCA, VCCB	Positive gate drive supply	Locally decouple to PGND using low ESR/ESL capacitor located as close to IC as possible.
22, 24	LOA, LOB	Low side gate driver output	Connect to the gate of the low side MOSFET with a short low inductance path.
23	PGND	Power ground return	Ground return for the LO drivers. Tie to the ground plane under the IC

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

	-0.3 to 14V		
	-0.3 to 7V		
	-0.3 to 15V		
	-0.3 to 7V		
	-0.3 to VCC+ 0.3V		
	HS-0.3 to HB + 0.3V		
	-0.3 to 100V		
	-0.8 to 0.8V		
	-5 to 100V		
	115V		
	-0.3 to VDD		
	-0.3 to VDD		
	-0.3 to VDD		
Junction Temperature			
	-55°C to +150°C		
Human Body Model	2 kV		
	Human Body Model		

(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics tables.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

(3) In the application the HS nodes are clamped by the body diode of the external lower N-MOSFET, therefore the HS node will generally not exceed –1V. However, in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage transiently. If negative transients occur, the HS voltage must never be more negative than VCC-15V. For example if VCC = 10V, the negative transients at HS must not exceed –5V.

(4) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. 2 kV for all pins except HB, HO & HS which are rated at 1000V.

SNVS688E - OCTOBER 2010 - REVISED APRIL 2013

Texas Instruments

www.ti.com

Recommended Operating Conditions

1 5	
VCCA,VCCB	+8V to +14V
VDD	+3V to 7V
SI, SO common mode	VDD+1V to 100V
HS ⁽¹⁾	-1V to 100V
HBA, HBB	HS+7V to HS+14V
HS Slew Rate	<50V/ns
Junction Temperature	-40°C to +125°C

(1) In the application the HS nodes are clamped by the body diode of the external lower N-MOSFET, therefore the HS node will generally not exceed –1V. However, in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage transiently. If negative transients occur, the HS voltage must never be more negative than VCC-15V. For example if VCC = 10V, the negative transients at HS must not exceed –5V.

Electrical Characteristics⁽¹⁾

Specifications in standard typeface are for $T_J = 25^{\circ}$ C, and those in boldface type apply over the full operating junction temperature range. No load on LO & HO, VCC = 10V, VDD = 5V, HB-HS = 10V, OVS = 0V unless otherwise indicated.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SUPPLY (CURRENTS					
I _{DD}	VDD Quiescent Current	SIA = SOB, SIB = SOB.		25	40	μA
I _{CC}	VCC Quiescent Current (ICCA+ICCB)	All outputs off		500	800	μA
I _{CCO}	VCC Operating Current (ICCA+ICCB)	LOA & LOB switching at 200kHz		2.2	3	mA
I _{HB}	HBA, HBB Quiescent Current	All outputs off		55	200	μA
I _{HBO}	HBA, HBB Operating Current	HOA & HOB switching at 200kHz		700	1000	μA
I _{HBS}	HBA & HBB to V _{SS} Current, Quiescent	HS = 100V, HB = 110V		0.1	10	μA
I _{HBSO}	HBA and HBB to V _{SS} Current, Operating	f = 200kHz		130		μA
PGOOD, 0	OVB OUTPUTs					
V _{OL}	Output Low RDS			25	50	Ω
R _{PU}	VDD pull up resistor			50	90	kΩ
LI ,HI INP	UT PINS					
V _{IL}	Input Voltage Threshold		1.3	1.8	2.3	V
VIHYS	Input Voltage Hysteresis			50		mV
RI	LI, HI Pull down Resistance		100	200	400	kΩ
OVER VO	LTAGE SHUTDOWN					
V _{OVR}	OVS Rising Threshold		VDD-50mV	VDD	VDD+50mV	V
V _{OVH}	OVS threshold Hysteresis			5%		VDD
I _{OVS}	OVS input bias current	OVS <vdd< td=""><td></td><td>1</td><td></td><td>nA</td></vdd<>		1		nA
UNDER V	OLTAGE SHUTDOWN					
V _{CCR}	VCC Rising Threshold		6	6.9	7.4	V
V _{CCH}	VCC threshold Hysteresis			0.5		V
V_{HBR}	HB-HS Rising Threshold		5.7	6.6	7.1	V
V _{HBH}	HB-HS Threshold Hysteresis			0.4		V
BOOT ST	RAP DIODE					
V _{DH}	High-Current Forward Voltage	I _{VCC-HB} = 100mA		0.8	1	V
R _D	Dynamic Resistance	I _{VCC-HB} = 100mA		1	1.65	Ω

(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).

Electrical Characteristics⁽¹⁾ (continued)

Specifications in standard typeface are for $T_J = 25^{\circ}$ C, and those in boldface type apply over the full operating junction temperature range. No load on LO & HO, VCC = 10V, VDD = 5V, HB-HS = 10V, OVS = 0V unless otherwise indicated.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LO & HO	GATE DRIVER					
V _{OL}	Low-Level Output Voltage	$I_{LO} = 100$ mA $V_{OL} = LO$ -PGND or HO-HS		0.16	0.4	V
V _{OH}	High-Level Output Voltage	I _{LO} = -100mA V _{OH} = VCC-LO or VCC-HO		0.28	0.6	V
I _{OHL}	Peak Pullup Current	HO, LO = 12V		3		А
I _{OLL}	Peak Pulldown Current	HO, $LO = 0V$		3		Α
t _{LPHL}	LO Turn-Off Propagation Delay	LI Falling to LO Falling		22		ns
t _{LPLH}	LO Turn-On Propagation Delay	LI Rising to LO Rising		26		ns
t _{HPHL}	HO Turn-Off Propagation Delay	HI Falling to HO Falling		22		ns
t _{HPLH}	LO Turn-On Propagation Delay	HI Rising to HO Rising		26		ns
t _{MON}	Delay Matching: LO on & HO off			1		ns
t _{MOFF}	Delay Matching: LO off & HO on			1		ns
t _{RC} , t _{FC}	Either Output Rise/Fall Time	C _L = 1000pF		8		ns
t _{PW}	Minimum Input Pulse Width that Changes the Output			50		ns
t _{BS}	Bootstrap Diode Turn-On or Turn-Off Time	I _F = 100mA/ I _R = 100mA		37		ns
CURRENT	SENSE AMPLIFIER	•				+
V _{OS}	Offset voltage	$R_{SI} = R_{SO} = 500$, 10mV sense resistor voltage	-2		2	mV
Gain 5mV	Gain is programmed with external resistors IOUT, IIN =(RL/RSI)* (SI-SO)	5mV sense resistor voltage $R_{SI} = R_{SO} = 1000, R_L = 75K$		390		mV
Gain 50mV	Gain is programmed with external resistors IOUT, IIN =(RL/RSI)* (SI-SO)	50mV sense resistor voltage $R_{SI} = R_{SO} = 1000, R_{L} = 75K$		3.85		V
Vclamp	Output Clamp	0.1V sense resistor voltage $R_{SI} = R_{SO} = 1000, R_L = 75K$		VDD		V
CURRENT	SENSE BUFFER	•				+
	Offset voltage (BIN-IIN), (BOUT-IOUT)	IIN = 2.5V	-60		60	mV
	Output low voltage BOUT,BIN	IIN, IOUT = 0	0		50	mV
	Output high voltage BOUT,BIN	IIN, IOUT = VDD	VDD-100mV	VDD-30mV	VDD	mV
THERMAL	RESISTANCE	·				
θ _{JA}	Junction to Ambient	SOIC-28 ⁽²⁾		60		°C/W

(2) 2 layer board with 2 oz Cu using JEDEC JESD51 thermal board.

SNVS688E -OCTOBER 2010-REVISED APRIL 2013

www.ti.com

Block Diagram

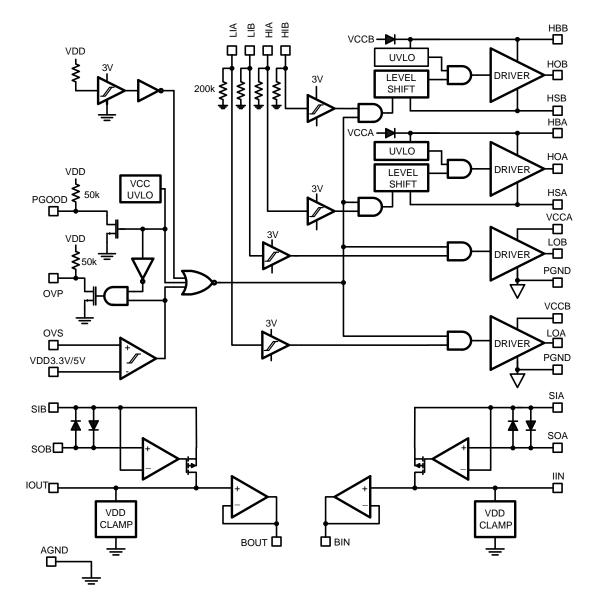
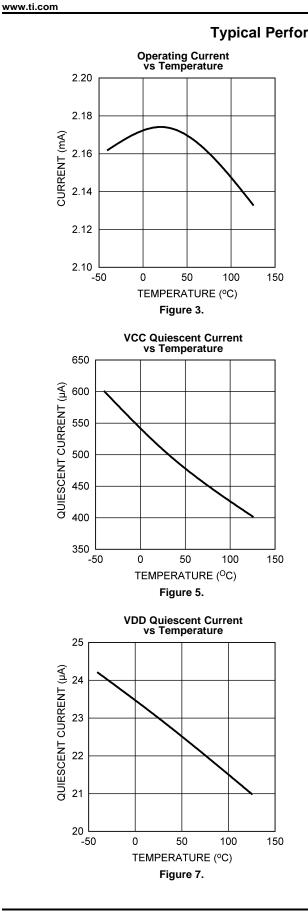
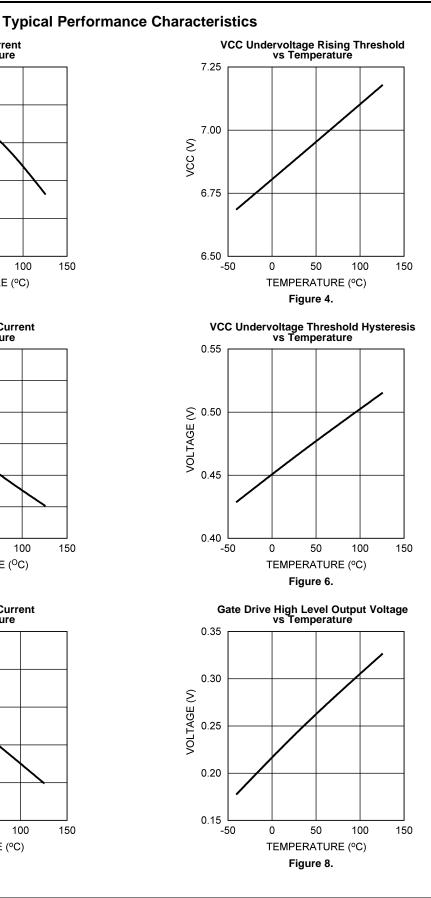




Figure 2. Block Diagram

SNVS688E-OCTOBER 2010-REVISED APRIL 2013

ÈXAS **NSTRUMENTS**

www.ti.com

SNVS688E -OCTOBER 2010-REVISED APRIL 2013

0.17

0.16

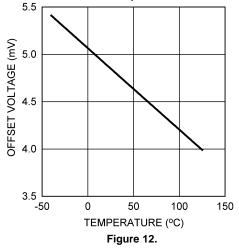
0.15

0.14 0.13 0.12

0.11 0.10 0.09

-50

0

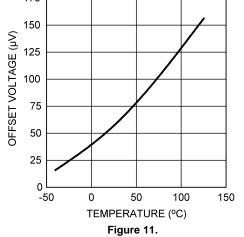

VOLTAGE (V)

 Typical Performance Characteristics (continued)

 Gate Drive Low level Output Voltage vs Temperature
 Bootstrap Diode Forward Voltage vs Temperature
0.9 FORWARD VOLTAGE (V) 0.8 0.7 0.6 50 -50 0 100 150 TEMPERATURE (°C)

Current Sense Amplifier Output Buffer Offset Voltage vs Temperature

Current Sense Amplifier Input Offset Voltage vs Temperature 175

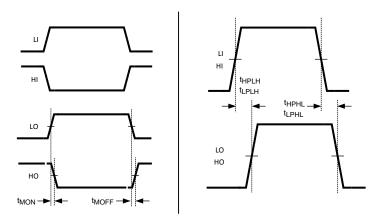

50

TEMPERATURE (°C)

Figure 9.

100

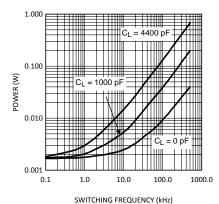
150



Submit Documentation Feedback

8

Copyright © 2010–2013, Texas Instruments Incorporated

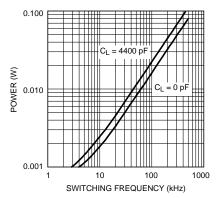

Power Dissipation Considerations

The total IC power dissipation is the sum of the gate driver losses and the bootstrap diode losses. The gate driver losses are related to the switching frequency (f), output load capacitance on LO and HO (C_L), and supply voltage (V_{DD}) and can be roughly calculated as:

$$P_{DGATES} = 2 \bullet f \bullet C_{L} \bullet V_{DD}^{2}$$

(1)

There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and HO outputs. The following plot shows the measured gate driver power dissipation versus frequency and load capacitance. At higher frequencies and load capacitance values, the power dissipation is dominated by the power losses driving the output loads and agrees well with the above equation. This plot can be used to approximate the power losses due to the gate drivers.



The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Since each of these events happens once per cycle, the diode power loss is proportional to frequency. Larger capacitive loads require more current to recharge the bootstrap capacitor resulting in more losses. Higher input voltages (V_{IN}) to the half bridge result in higher reverse recovery losses. The following plot was generated based on calculations and lab measurements of the diode power dissipation. The total IC power dissipation can be estimated from the previous plots by summing the gate drive losses with the bootstrap diode losses for the intended application.

SNVS688E -OCTOBER 2010-REVISED APRIL 2013

www.ti.com

Figure 14. Diode Power Dissipation $V_{IN} = 50V$

Layout Considerations

The optimum performance of high and low-side gate drivers cannot be achieved without taking due considerations during circuit board layout. Following points are emphasized.

- Low ESR / ESL capacitors must be connected close to the IC, between VDD and VSS pins and between the HB and HS pins to support the high peak currents being drawn from VDD during turn-on of the external MOSFET.
- 2. To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor must be connected between MOSFET drain and ground (VSS).
- 3. In order to avoid large negative transients on the switch node (HS pin), the parasitic inductances in the source of top MOSFET and in the drain of the bottom MOSFET (synchronous rectifier) must be minimized.
- 4. Grounding Considerations:
 - (a) The first priority in designing grounding connections is to confine the high peak currents that charge and discharge the MOSFET gate into a minimal physical area. This will decrease the loop inductance and minimize noise issues on the gate terminal of the MOSFET. The MOSFETs should be placed as close as possible to the gate driver.
 - (b) The second high current path includes the bootstrap capacitor, the bootstrap diode, the local ground referenced bypass capacitor and low-side MOSFET body diode. The bootstrap capacitor is recharged on a cycle-by-cycle basis through the bootstrap diode from the ground referenced VDD bypass capacitor. The recharging occurs in a short time interval and involves high peak current. Minimizing this loop length and area on the circuit board is important to ensure reliable operation.

SNVS688E - OCTOBER 2010 - REVISED APRIL 2013

REVISION HISTORY

Cł	nanges from Revision D (April 2013) to Revision E P	age
•	Changed layout of National Data Sheet to TI format	. 10

12-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SM72295MA/NOPB	ACTIVE	SOIC	DW	28	26	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	S72295	Samples
SM72295MAE/NOPB	ACTIVE	SOIC	DW	28	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	S72295	Samples
SM72295MAX/NOPB	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	S72295	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

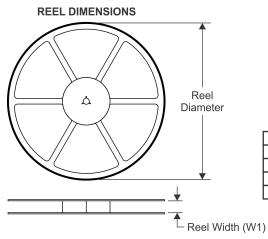
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

12-Oct-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

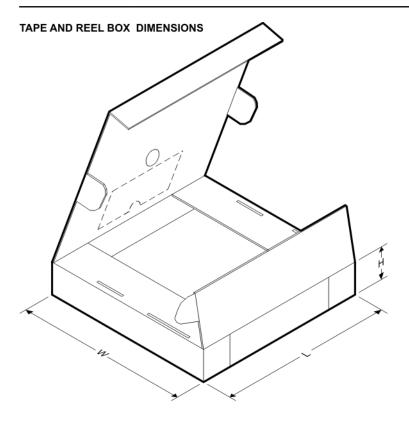
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

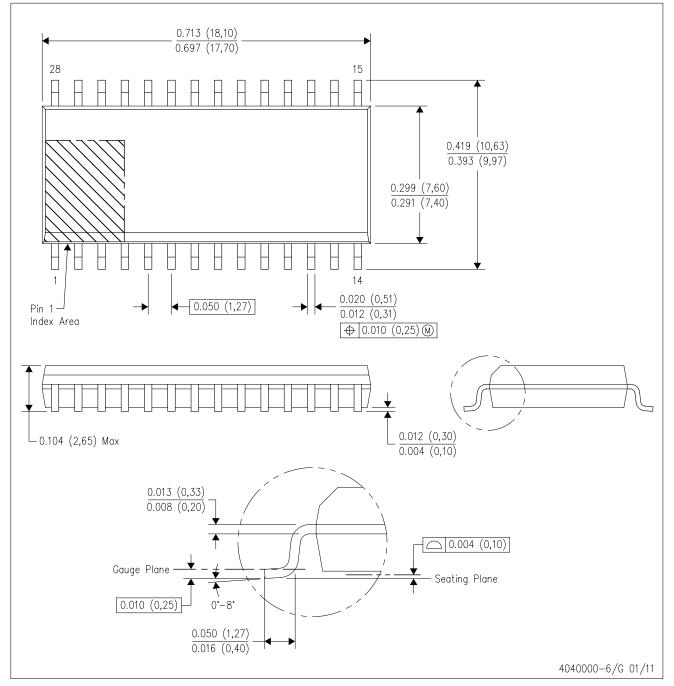

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SM72295MAE/NOPB	SOIC	DW	28	250	178.0	24.4	10.8	18.4	3.2	12.0	24.0	Q1
SM72295MAX/NOPB	SOIC	DW	28	1000	330.0	24.4	10.8	18.4	3.2	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Apr-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SM72295MAE/NOPB	SOIC	DW	28	250	213.0	191.0	55.0
SM72295MAX/NOPB	SOIC	DW	28	1000	367.0	367.0	45.0

DW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AE.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated