
1SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

MSP430, Code Composer Studio, LaunchPad are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

Application Report
SLAA721A–October 2016–Revised December 2016

MSP430FRBoot – Main Memory Bootloader and Over-the-
Air Updates for MSP430™ FRAM Large Memory Model

Devices

Ryan Brown and Katie Pier .. MSP430 Apps

ABSTRACT
This application report is an extension to MSPBoot – Main Memory Bootloader for MSP430
Microcontrollers and describes the implementation of a main-memory resident bootloader for MSP430™
FRAM microcontrollers using either universal asynchronous receiver/transmitter (UART) communication or
a serial peripheral interface (SPI) bus and CC110x RF transceivers to accomplish over-the-air downloads
(OAD). While still being highly flexible and modular, this bootloader maintains a small footprint, making it a
very cost-effective solution, and supports the large memory model (devices with a memory footprint
greater than 16 KB).

A software package with examples and source code for both master and slave devices is available from
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430FRBoot/latest/index_FDS.html.
Section 5 provides step-by-step procedures that explain how to run the examples.

This bootloader is not to be confused with the MSP430 Bootloader (BSL), which resides in protected
memory (ROM) in MSP430 FRAM microcontrollers. For more information on the BSL, see the
MSP430FR57xx, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Bootloader
(BSL) User’s Guide.

Contents
1 Introduction ... 2
2 Implementation ... 3
3 Customization of MSP430FRBoot ... 14
4 Building MSPBoot .. 15
5 Demo Using FRAM LaunchPad Development Kit as Host ... 21
6 References .. 23

List of Figures

1 MSPBoot Software Architecture ... 3
2 Flow Diagram of Main... 4
3 Application Validation by App Manager... 5
4 Memory Assignment... 7
5 Dual Image Application Validation... 8
6 UART 8-N-1 Format ... 10
7 SPI Format .. 10
8 MSP-EXP430FR5969, MSP-EXP430FR6989, and MSP-EXP430FR5994... 15
9 CC1101EMK868-915, BOOST-CCEMADAPTER, and 430BOOST-CC110L 16
10 Import MSPBoot CCS Projects... 17
11 Select Target Configuration... 18
12 Select App1_MSPBoot Project ... 18
13 430txt2C Example.. 19

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com/lit/pdf/SLAA600
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430FRBoot/latest/index_FDS.html
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU550

Introduction www.ti.com

2 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

14 Example Command .. 20
15 Target Selection for Host Project in CCS ... 22

List of Tables

1 PHY-DL Callback Structure ... 10
2 CC110x Data Packet Structure... 11
3 Boot2App_Vector_Table Definition .. 11
4 BSL-Based Protocol Command Format... 12
5 BSL-Based Protocol Commands... 12
6 BSL-Based Protocol Slave Response ... 12
7 Optional Configurations ... 14
8 Customization Files .. 15
9 eUSCI Peripheral Connections ... 21

1 Introduction
Expanding on the original theory behind MSPBoot – Main Memory Bootloader for MSP430™
Microcontrollers, many FRAM applications require a solution that allows for easy field upgrades.
MSP430FRBoot has been designed to accomplish this task with any custom communication peripheral
and entry sequence as defined by the user. Two different examples have been included to further
demonstrate these capabilities. One example uses the UART protocol to create a simple two-wire
communication link between devices, while the other example incorporates SPI buses and two CC110x
devices to accomplish wireless over-the-air downloads. Above all, these solutions can maintain high
performance, high integration, and ultra-low power in a cost-effective design.

MSP430 FRAM devices are equipped with the very useful UART Bootloader (BSL) which allows for a
simple way to do field upgrades. MSP430 FRAM devices have a ROM-resident BSL that supports UART
but cannot be modified to support I2C or other interfaces (the exception to this is FRxxxx1 devices, which
implement an I2C BSL solution instead). Furthermore, the BSL cannot include custom entry sequences
that might be required for application. For more information on the BSL, see the MSP430FR57xx,
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Bootloader (BSL) User’s Guide.

Given these limitations, it becomes necessary to create a bootloader that resides in main memory and still
allows for an easy implementation of the application. This application report describes the implementation
of the MSP430FRBoot bootloader with the following characteristics:
• Small footprint (less than 4KB in size required)
• 20-bit incorporation for large memory models
• Supports the eUSCI peripherals offered on FRAM devices
• UART communication offers the most simple wired interface using a small memory space.
• SPI bus offers over-the-air downloads (using the CC110x) at a slightly larger footprint.
• Different options that allow for customizable levels of robustness
• Optional dual image support in case of communication interruption
• Allows for use of all interrupts in application
• Application can reuse the low-level drivers from the bootloader or implement its own drivers.
• Configurable entry sequence
• Optional validation of application using CRC-CCITT
• Source code available, allowing for additional customizations

Source code for the bootloader with different sample configurations, application examples, and host
examples are included to allow for easy testing, customization, and implementation. Knowledge of UART
and SPI specifications as well as sub-1 GHz RF communication protocol is assumed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU550

www.ti.com Introduction

3SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

1.1 Glossary

BOR Brownout reset
BSL MSP430 Bootloader
CI MSPBoot Communication Interface
CRC Cyclic Redundancy Check
eUSCI Enhanced Universal Serial Communication Interface
MCU Microcontroller
MI MSPBoot Memory Interface
MSPBoot The bootloader described by MSPBoot – Main Memory Bootloader for MSP430™ Microcontrollers
MSP430FRBoot The bootloader described by this application report
OSI Open Systems Interconnection
OAD Over-the-Air Download
SPI Serial Peripheral Interface
ROM Read-Only Memory
UART Universal Asynchronous Receiver/Transmitter

1.2 Conventions
This document contains some UART transfer examples that use the following form:

Host→Target St: Start
Target→Host Sp: Stop

SPI transfer examples use the following form:

Master→Slave X: Don’t care
Slave→Master

2 Implementation
A modular approach is used to allow for an easy migration between MSP430 devices and allow for
customization of each layer. Figure 1 shows the software layers.

Figure 1. MSPBoot Software Architecture

Each module is described in more detail in the following sections.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.ti.com/lit/pdf/SLAA600

Main

HW Init

Clock Init

Application Validation

App or Boot? Jump to App

Comm Init

Packet Received?

Comm Poll

Jump to App
command?

Process Command

App

Boot

YN Y

N

Implementation www.ti.com

4 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.1 Main
The main routine has the following purpose:
• Initialize basic functionality of the MSP430 MCU
• Initialize the other MSP430FRBoot layers
• Implement the main loop which polls the communication interface and processes commands

Figure 2 shows the state diagram of the main routine.

Figure 2. Flow Diagram of Main

2.2 Application Manager
The main functions of the Application Manager are:
• Detecting when the device should be in bootloader mode versus application mode
• Validating the application
• Redirecting interrupt vectors
• Jumping from bootloader to application
• Recovering a valid image when in dual-image mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Implementation

5SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.2.1 Bootloader and Application Detection
The Application Manager detects if the bootloader or the application should be executed by applying the
following rules:
• Application is executed if

– The application is valid (see Section 2.2.1.2)
AND

– The bootloader is not forced by an external event or by application (see Section 2.2.1.1)
• Bootloader is executed if

– It is forced by an external event or by the application
OR

– The application is invalid

Figure 3 shows the implementation of this decision process.

Figure 3. Application Validation by App Manager

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

Implementation www.ti.com

6 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.2.1.1 Forcing Bootloader Mode
Even with a valid application, the bootloader mode can be forced by the following:
• Option1: An external event such as the state of a GPIO after reset.

By default, the software checks if the following GPIOs are low after reset to force bootloader mode:
– P1.1 in MSP430FR5969 (S2 button on MSP-EXP430FR5969).
– P1.2 in MSP430FR6989 (S2 button on MSP-EXP430FR6989).
– P5.5 in MSP430FR5994 (S2 button on MSP-EXP430FR5994).
This event can be modified as needed in TI_MSPBoot_AppMgr_BootisForced().

• Option2: An application calls for the execution of bootloader mode.
The variables StatCtrl and PassWd are reserved and shared between application and bootloader. To
force bootloader mode, the application sets these variables to:

PassWd = 0xC0DE
StatCtrl.BIT0 = 1

2.2.1.2 Application Validation
The application validation mechanism allows the bootloader to validate the application before executing it.
Three methods are implemented to allow for different levels of code footprint and security:
• None: The application is not validated and is assumed to be always valid. An external event can be

used to force Boot mode. This method is not recommended.
• Reset vector: If the reset vector is different from 0xFFFF (erased state), the application is assumed to

be valid and is executed.
• CRC_CCITT: A CRC-CCITT is calculated for the whole application image and compared to an

expected value. The BSL-based protocol (see Section 2.4.2.1) uses CRC-CCITT, so this validation
method is recommended when using this protocol.

The validation methods can prevent executing corrupted applications but they do not ensure the integrity
and functionality of the application, which is the user’s responsibility. If the application does not have the
intended functionality, the MSP430 can still be recovered using a hardware entry sequence.

2.2.1.3 Jumping to Application
MSPBoot forces a reset when the Communication Protocol detects that the download is complete and the
device should jump to the application.

FRAM devices use a software BOR to force reset, which provides an efficient method to restore the
MSP430 MCU to a default state. Declaration HW_RESET_BOR is enabled by default.

2.2.2 Memory Assignment
MSPBoot cannot erase or reprogram the bootloader area. This limitation provides a more secure
implementation, because the bootloader is always accessible, and the MSP430 MCU can be recovered by
forcing bootloader mode.

The reset vector is an integral part of the bootloader, because it forces the MSP430 MCU to always jump
to the bootloader entry sequence and, thus, should not be erased. Because the reset vector resides in the
top of 16-bit FRAM space (0xFFFE), the bootloader code is placed in the contiguous locations (see
Figure 4).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Implementation

7SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

Figure 4. Memory Assignment

The interrupt vector table is also in the protected boot area. Because the value of the interrupt tables is
expected to change based on the application, this means that special considerations must be followed to
allow for application interrupts. Additional 20-bit space is available for the application (0x10000 and
above).

2.2.3 Interrupt Vectors in FRAM Devices
FRAM does not have the limitation of a minimum erase size, so all interrupts can be reprogrammed in
FRAM devices without risking erasure of the reset vector. By default, MSP430FRBoot enables protection
of the bootloader area using MPU, but this feature is disabled while reprogramming interrupt vectors.

Some MSP430 MCUs support redirecting vectors to RAM in hardware (SYSRIVECT), which could be a
good alternative especially for devices with sufficient RAM. This also allows for full protection of the
bootloader using the MPU module.

2.2.4 Dual Image Support
The Application Manager can also support dual image mode. In this mode, a valid application is always
expected to reside in main memory even if an image download is interrupted or if a newly downloaded
image is corrupted. This mode is critical for OAD where communication can be interrupted unexpectedly.

In dual image mode, the main memory is divided, creating a Download area and Application area as
explained in Section 2.3.1. The application validation process in this mode (see Figure 5) is different from
the usual procedure.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

Application Validation

Image in AppArea
valid

Image in
DownloadArea

valid

Copy Image from
DownloadArea to

AppArea

Image in AppArea
valid

Erase DownloadArea

Application Valid

Application Invalid

YN

N

Y

N

Y

Implementation www.ti.com

8 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

Figure 5. Dual Image Application Validation

2.2.4.1 Jump to Application in Dual Image Mode
When an application download process is completed, MSPBoot performs the following steps before
jumping to the new application:
1. Validate the new image in the Download area.

(a) If invalid, exit. A reset forces the bootloader again and executes the application only if the original
image is valid.

(b) Continue otherwise.
2. Replace Application area with Download area.
3. Validate image in Application area.

(a) If valid, erase Download area. A reset will execute the application, because the image in the
Application area is valid.

(b) Exit otherwise. This is an unexpected state, but a reset will validate both images again.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Implementation

9SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.3 Memory Interface (MI)
To protect the bootloader area, the MSP430 MCU is logically partitioned in two sections:
• Application area: Writable section with user application and redirected vector table
• Bootloader area: Nonwritable section with bootloader and vector table

The size of each section is defined in the project linker file. Examples showing different memory sizes are
available in the example projects for the Code Composer Studio™ IDE (CCS).

The memory interface provides an API that is used to program and erase the application memory area
and protect the bootloader area. This memory protection is implemented as follows for FRAM devices:
• FRAM does not require erasing, but the application memory is written with 0xFF when an erase is

performed to calculate a valid CRC.
• The address being erased or programmed is validated to avoid accidental corruption of the bootloader

area.
• The MPU protects the bootloader area. The user can modify the MPU settings according to the

application, but TI recommends always protecting the bootloader area.
• MPU protection is disabled only when updating interrupt vectors as discussed in Section 2.2.3.

NOTE: MSPBoot does not allow write or erase access to the bootloader area when executing
updates, but it cannot protect against accidental erase when executing an application. The
bootloader area is hardware-protected using the MPU.

2.3.1 Dual Image Support
When Dual Image support is enabled, the Memory Interface module partitions the MSP430 application
area in two subsections, resulting in the following logical memory map:
• Nonboot area:

– Download area: Section used as temporary buffer to store a new application image. Physical
addresses in this area are inaccessible to the host, but this area is written when the host attempts
to download to logical addresses in the application area.

– Application area: Section used to execute the current application image. Logical addresses in this
area are available to the host, but the host cannot write to the physical addresses. The bootloader
updates this area when a new image in Download area is validated. This procedure is explained in
Section 2.2.4.

• Boot Area: Read-only section with bootloader and vector table.

The size of each sector is defined in the project linker file. Examples showing different memory sizes are
available in the example projects for CCS.

2.4 Communication Interface (CI)
The purpose of the CI is to:
• Receive data from and send data to a host
• Implement a communication protocol
• Parse the data, validate a packet, and execute the appropriate command
• Based on the output of the function, generate a response

Following the Open Systems Interconnection (OSI) model, the CI is divided into two modules:
• Physical-DataLink (PHY-DL)
• Network-Application (NWK-APP)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

ST

1

D0 to D7

8 1

SP

Implementation www.ti.com

10 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.4.1 Physical-DataLink (PHY-DL)
The PHY-DL layer provides a hardware abstraction layer (HAL) to simplify the migration process to a
different MSP430 derivative or peripheral. The PHY-DL layer provides a stable channel for sending data to
and receiving raw data from the host. The current bootloader was implemented using UART or SPI and it
supports the eUSCI, but other options could be included if desired. The PHY-DL layer is initialized by
providing a pointer to a structure with the callback functions in Table 1.

(1) Callback is optional. The protocol or CI may not require a callback.

Table 1. PHY-DL Callback Structure

t_CI_Callback Structure type definition
.RxCallback Called when a new byte is received
.TxCallback Called when a byte needs to be transmitted
.ErrorCallback (1) Called when an error is detected in PHY-DL (for example, a time-out)

A higher level layer (NWK-APP) uses the callback functions to implement the communication protocol.
Depending on the protocol, some callbacks are not required and can be disabled in the PHY-DL layer to
reduce the footprint. NWK-APP layer is described in Section 2.4.2.

2.4.1.1 UART
The UART interface is implemented using 8-N-1 format (8 data bits, no parity bit, and 1 stop bit) (see
Figure 6).

Figure 6. UART 8-N-1 Format

The default baud rate is defined as CONFIG_CI_PHYDL_UART_BAUDRATE = 57600.

2.4.1.2 SPI
The SPI interface, used for CC110x communication, is implemented using the following configuration (also
see Figure 7):
• 8-bit data
• MSB first
• Clock polarity = 0 (inactive state is low)
• Clock phase = 1 (data captured on first clock edge, changed on following edge)
• 3-pin configuration with STE implemented using GPIO

Figure 7. SPI Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Implementation

11SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.4.1.3 CC110x
The CC110x devices send data using a packet structure shown in Table 2.

(1) The maximum packet length is 24 bytes; therefore, the most data bytes (N) allowed per packet is 16.
(2) If the length is equal to one (command only), these sections are not included in the packet.

Table 2. CC110x Data Packet Structure

Header Length (1) Command Address (2) Data (2) Checksum
0x80 N 1 byte 3 bytes N-6 bytes 2 bytes

The configuration for the CC110x in MSP430FRBoot is as follows:
• 250-kbps data speeds
• Carrier frequency of 902750 Hz

The data speed can be set to either 1.2 or 38.4 kbps through the variable sent by the radio_init function
inside of TI_MSPBoot_CI_PHYDL_CC1101.c. Radio frequency can be altered in TI_MSPBoot_Config.h.
Changes must be made to both the target and host firmware projects. See the CC1101 Low-Power Sub-1
GHz RF Transceiver data sheet for more information regarding common CC110x command and other
communication details.

This packet structure is identical to the BSL-based protocol, therefore it can be directly transferred from
the PHY-DL to the NWK-APP layer with the expected formatting. This is also referred to in
Section 2.4.2.1.2.

2.4.1.4 Comm Sharing
The user application can use the communication interface as desired (UART, GPIO, or other purpose),
because the resources are released when the microcontroller jumps to the application. Optionally, the CI
PHY-DL can be shared with the application, allowing it to use the same communication interface and
reducing the application footprint. When this feature is enabled, the bootloader shares the function
pointers from Table 3.

Table 3. Boot2App_Vector_Table Definition

Boot2App_Vector_Table Table with addresses of shared CI PHY-DL functions
TI_MSPBoot_CI_PHYDL_Init Function used to initialize PHY-DL passing a pointer to an application t_CI_Callback
TI_MSPBoot_CI_PHYDL_Poll Function checks all relevant flags and calls corresponding callbacks when required.
TI_MSPBoot_CI_PHYDL_TxByte Function used to write the TX Buffer

The application must declare its own callbacks, which are passed during initialization of CI PHY-DL and
called when the corresponding event is detected. The PHY-DL layer is designed with low footprint being a
top priority. The application can always implement its own drivers if the PHY-DL implementation is
inadequate. Application examples showing how to share CI PHY-DL are included in the software package.

2.4.2 NWK-APP
The CI Network-Application layer implements the communication protocol, interpreting the raw data from
PHY-DL, and validates such data before executing the appropriate commands. For means of simplicity,
MSP430FRBoot only uses the BSL-based protocol.

2.4.2.1 BSL-Based Protocol
The MSP430 BSL is the standard bootloader included in MSP430 MCUs. The BSL is described in detail in
MSP430 Programming With the Bootloader (BSL).

The BSL-based protocol implemented in MSP430FRBoot maintains robustness but does not implement all
the commands and exactly the same format as the BSL protocol to reduce its footprint. The protocol is
packet-based and has the format shown in Table 4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.ti.com/lit/pdf/SWRS061
http://www.ti.com/lit/pdf/SWRS061
http://www.ti.com/lit/pdf/SLAU319

Implementation www.ti.com

12 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

(1) PAYLOAD_MAX_SIZE is set to 19 by default (1 CMD + 3 Addr + 16 Data)

Table 4. BSL-Based Protocol Command Format

Header Length Payload Checksum[L] Checksum[H]
0x80 1 to PAYLOAD_MAX_SIZE (1) 1 to PAYLOAD_MAX_SIZE bytes 1 byte 1 byte

Header: Fixed to 0x80.

Length: 1 byte with the length of the payload. Valid values are 1 to PAYLOAD_MAX_SIZE.

Payload: 1 to PAYLOAD_MAX_SIZE bytes containing the command, address, and data (optional
depending on the command type).

Checksum: 16-bit CRC-CCITT of the payload.

The commands in Table 5 are implemented as a payload.

Table 5. BSL-Based Protocol Commands

Command CMD Byte1 Byte2 Byte3 Byte4 … Bytelength–1

ERASE_SEGMENT 0x12 ADDR[L] ADDR[M] ADDR[H] X X X
ERASE_APP 0x15 X X X X X X
RX_DATA_BLOCK 0x10 ADDR[L] ADDR[M] ADDR[H] DATA0 X DATAn
TX_VERSION 0x19 X X X X X X
JUMP2APP 0x1C X X X X X X

ERASE_SEGMENT: Erases the memory segment (512B in FRAM) addressed by ADDR.

ERASE_APP: Erases the application area.

RX_DATA_BLOCK: Programs n bytes of data starting at address ADDR.

TX_VERSION: Requests the MSPBoot version from the target.

JUMP2APP: Instructs the target to jump to the application image (after validation).

Response from the target are always a single byte (Table 6 lists the valid values).

Table 6. BSL-Based Protocol Slave Response

Response Value Description
OK 0x00 Previous command executed correctly
HEADER_ERROR 0x51 Frame had incorrect header
CHECKSUM_ERROR 0x52 Frame checksum incorrect
PACKETZERO_ERROR 0x53 Length of packet = 0
PACKETSIZE_ERROR 0x54 Length of packet > MAX_LEN
UNKNOWN_ERROR 0x55 Error in protocol
INVALID_PARAMS 0xC5 Parameters received for command are incorrect
INCORRECT_COMMAND 0x56 Received command is not valid
MSPBOOT_VERSION 0 to 0xFF Sent as response for TX_VERSION command (default is 0xA0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Implementation

13SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

2.4.2.1.1 Security
The contents of each packet are validated with a 16-bit CRC that provides additional robustness to the
bootloader. The host can check the result of each command and retry if the previous command was
unsuccessful.

The ERASE_SEGMENT and RX_DATA_BLOCK commands can erase and write any area within the 16-
bit memory map, thus potentially corrupting the bootloader. To avoid this possibility, TI recommends
including the CONFIG_MI_MEMORY_RANGE_CHECK MI definition to validate the address before a
program or erase operation. The application area can be corrupted if the process is interrupted, so TI
recommends using one of the application validation methods described in Section 2.2.1.2 or use the dual-
image approach.

2.4.2.1.2 BSL-Based Protocol Using CC110x
The CC110x implementation of this protocol follows the same guidelines used for UART, but it includes
slight changes since the information is received in complete packets instead of bytes. Because the
incoming CC110x packet outlined in Table 2 is the same as the expected BSL-based protocol in Table 4,
data from the PHY-DL layer can be directly transferred to the NWK-APP without the need for conversion.

2.4.2.1.3 Examples Using UART or CC110x
The following considerations apply when using UART with BSL-based protocol:
• Address is not required, because communication is expected to be point-to-point.
• All bytes in UART are in 8-N-1 format as described in Section 2.4.1.1.
• The target responds with the command result when ready and not when requested by the host.
• The host should wait for the response from the target after sending a command, preferably with a time-

out.
• Different commands have different processing times.
• Example: Host erases the microcontroller application area.

0x80 0x01 0x15 0x64 0xA3
Header Length ERASE_APP Checksum_L Checksum_H

The target device processes the command and responds with the result when ready.

0x00
OK

The same considerations apply when using a CC110x with BSL-based protocol. The exception to this is
Section 2.4.2.1.2 where it is stated that all bytes received in packets from the CC110x are in the same
format expected for BSL-based protocol; therefore, they can be directly transferred from the PHY-DL to
the NWK-APP. Although processing times are the same, over-the-air communication can be expected to
be slightly slower than UART, and host wait times should be lengthened to compensate.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

Customization of MSP430FRBoot www.ti.com

14 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

3 Customization of MSP430FRBoot
MSPBoot was designed with low cost and low footprint being top priorities; however, some applications
require or can benefit from having a higher level of security and robustness. Based on the application
requirements, different levels of customizations have been added to the MSP430FRBoot code and they
can be adjusted to particular needs. These options are selected either by adding the appropriate files or
by enabling or disabling preprocessor definitions. Table 7 list the options that can be configured in
TI_MSPBoot_Config.h.

Table 7. Optional Configurations

Value Description Change in
Code Size

NDEBUG
Defined ASSERT_H functions are ignored. Watchdog is enabled. –

Undefined Used during debugging. ASSERT_H functions are checked. Watchdog is disabled. Adds approximately
20 bytes

CONFIG_MI_MEMORY_RANGE_CHECK

Defined The address being erased or programmed is validated to be within the Application area. Adds approximately
40 bytes

Undefined Address being erased or programmed is not validated. Host must send correct address. –

CONFIG_APPMGR_APP_VALIDATE

1 Application is validated by checking its reset vector. Adds approximately
10 bytes

2 Application is validated by checking its CRC_CCITT. Adds approximately
94 bytes

CONFIG_CI_PHYDL_COMM_SHARED

Defined Communication Interface PHY-DL layer is shared with application. Adds approximately
4 bytes

Undefined CI PHY-DL is not shared with application. –

CONFIG_CI_PHYDL_TIMEOUT

Defined Detect time-out in CI PHY-DL. Adds approximately
48 to 62 bytes

Undefined CI PHY-DL does not detect time-out. –

CONFIG_CI_PHYDL_ERROR_CALLBACK

Defined A callback function is called when a time-out error is detected. Adds approximately
16 to 20 bytes

Undefined A callback function is not called when a time-out is detected. –

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Customization of MSP430FRBoot

15SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

Other customizations are selected by adding and using the appropriate files in the project. Table 8 lists the
files that are interchangeable in the project.

Table 8. Customization Files

File Comments
CI PHY-DL
TI_MSPBoot_CI_PHYDL_USCI_UART.c Use eUSCI as UART
TI_MSPBoot_CI_PHYDL_CC1101.c Use CC110x
MI
TI_MSPBoot_MI_FRAM.c API used to program application FRAM
TI_MSPBoot_MI_FRAMDualImg.c API implementing dual image in FRAM
App Manager
TI_MSPBoot_AppMgr.c Standard App Manager
TI_MSPBoot_AppMgrDualImg.c App Manager that supports dual image

3.1 Predefined Customizations
The software package includes projects for Code Composer Studio IDE that support three devices
(MSP430FR5969, MSP430FR6989, MSP430FR5994) with two communication interfaces (UART or SPI
with CC110x) and two predefined configurations (single image, dual image) per device. In the provided
CCS examples, devices and communication interfaces are separated by project selection, and the
predefined configurations can be chosen under Project → Build Configurations → Set Active.

4 Building MSPBoot
This section provides a step-by-step guide that explains how to build the bootloader and demo
applications for a target device. Section 5 explains how to build and use the host applications to run a
demo.

4.1 LaunchPad™ Development Kit Hardware
This software package includes examples for the MSP430FR5969, MSP430FR6989, and MSP430FR5994
on their LaunchPad™ development kits (MSP-EXP430FR5969, MSP-EXP430FR6989, and MSP-
EXP430FR5994, respectively) (see Figure 8).

Figure 8. MSP-EXP430FR5969, MSP-EXP430FR6989, and MSP-EXP430FR5994

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

Building MSPBoot www.ti.com

16 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

The bootloader and demo applications use the same LED (LED1 and LED2) and push button (S1 and S2)
notations across all variants of the LaunchPad development kits. The pin assignments that correspond to
these I/O peripherals are different for each board derivative. For ease of use, the examples have been
designed so that the host and target LaunchPad development kits should be the same derivative, although
this can be modified for different configurations if desired.

4.2 CC110x Hardware
Two hardware options are available for using CC110x communication with the MSP430FRBoot examples.
The first is a combination of the CC1101EMK868-915 and BOOST-CCEMADAPTER, but the simplest
solution is with a 430BOOST-CC110L. Figure 9 shows both options.

Figure 9. CC1101EMK868-915, BOOST-CCEMADAPTER, and 430BOOST-CC110L

Two units of either option are required, one for the host device and the other for the target. Both solutions
are compatible across all LaunchPad development kits and are directly connected such that no other
hardware is required to run the provided examples. More information about the ecosystem for the
LaunchPad development kits and BoosterPack plug-in modules can be found on the TI LaunchPad tools
page.

4.3 Software
The software package includes the following folders:
• Target: Target bootloader and demo applications.

– FR5969_UART, FR5969_CC1101, FR5994_UART, FR5994_CC1101, FR6989_UART,
FR6989_CC1101: Projects that support the appropriate FRAM derivative with the communication
specified.
• CCS: CCS project files.

• MSPBoot: CCS project files for the bootloader.
• Config: CCS Linker files for the bootloader.

• App1_MSPBoot: CCS project files for Application Example 1.
• Config: CCS Linker files for App1.

• App2_MSPBoot: CCS project files for Application Example 2.
• Config: CCS Linker files for App2.

• Src: Source code.
• MSPBoot: Source code for the bootloader.

• AppMgr: App Manager source code files.
• Comm: CI source code files.
• MI: MI source code files.

• App1: Source code for Application Example 1.
• App2: Source code for Application Example 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.ti.com/launchpad
http://www.ti.com/launchpad

www.ti.com Building MSPBoot

17SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

• Host: Host demo application.
– MSP-EXP430FR5969, MSP-EXP430FR5994, MSP-EXP430FR6989: Host project that supports the

corresponding LaunchPad development kits (see Section 4.3.2).
• CCS: CCS project files.
• Src: Source code.

• TargetApps: Converted target application examples.
• 430txt_converter: Scripts and applications used to convert CCS output files to host TargetApps. See

Section 4.3.2 for details.

4.3.1 Building the Target Software
1. Select a target processor: MSP430FR5969, MSP430FR5994, or MSP430FR6989.
2. Open CCS and select or create a workspace.
3. Import the MSPBoot CCS projects into the workspace. The projects are located in

MSPBoot\Target\<target>\CCS\

Figure 10. Import MSPBoot CCS Projects

4. Build the bootloader.
(a) Select the MSPBoot project.
(b) Select the proper target configuration based on Section 3.1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

Building MSPBoot www.ti.com

18 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

Figure 11. Select Target Configuration

(c) Build and Download . Only the target LaunchPad development kit should be connected to
the PC.

5. Build both applications.
(a) Select the App1_MSPBoot project and select the same configuration as the bootloader:

Figure 12. Select App1_MSPBoot Project

(b) Click the Build project. The output is generated after this step, but the output will be converted
and downloaded through the Host processor. Section 4.3.2 explains how to convert the image, and
Section 5 explains how to download it using a host demo.

(c) Repeat Step 5 for App2_MSPBoot.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com Building MSPBoot

19SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

4.3.2 Convert Application Output Images
The CCS and IAR projects generate outputs in MSP430 .txt format in the
MSPBoot\Target\<target>\CCS\<App>\<Configuration>\ directories, where,

<target> = FR5969_UART, FR5969_CC1101, FR5994_UART, FR5994_CC1101, FR6989_UART, or
FR6989_CC1101
<App> = App1_MSPBoot or App2_MSPBoot
<Configuration> = BSLBased_20bit or BSLBased_DualImg

This .txt file does not include CRC, and it needs to be converted to a format usable by the Host project. To
make this easier, the software package includes 430txt2C, a Perl script used to convert an MSP430 .txt
file to a C array:

Location: MSPBoot\430txt_converter\430txt2C.pl

Syntax: 430txt2c.pl src dest struct
src = Source file in .txt format
dest = Destination file in .c format
struct = Name of array in C file

Figure 13 shows an example of running 430txt2C.

Figure 13. 430txt2C Example

NOTE: A Perl interpreter is required to run this script. Visit http://www.perl.org/ to download an
interpreter if needed.

The software package includes several Windows .bat files in the MSPBoot\430txt_converter folder. The
purpose of these files (in addition to serving as examples) is to automate the process of calculating the
CRC for applications, converting to .C, and copying to host projects.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.perl.org/

Building MSPBoot www.ti.com

20 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

4.3.3 Generating Linker Files
Linker files for CCS and IAR are included for all target configurations, and they can be used as a starting
point for other devices or custom projects. MSP430FRBoot includes a linker generator script that can also
help with this process.

MSPFRBootLinkerGen: Generates application and bootloader linker files for CCS (also see Figure 14).

Location: MSPFRBoot\linkerGen\MSPFRBootLinkerGen.pl
Syntax: MSPFRBootLinkerGen.pl [-help]

-file <filename>
-lnk_file <lnk_msp430.cmd>
-boot_size <size>
[-dual_image]

[-shared_vectors] <number>

Where (all numbers are hex values),
-file <filename> = Specifies output file prefixes. The following files are generated:

./output/<filename>/_Boot.cmd (linker file for Bootloader in CCS).

./output/<filename>/_App.cmd (linker file for Application in CCS).
-lnk_file <lnk_msp430.cmd> = Specifies the default linker file for the device
being used.
-boot_size <size> = Specifies size of bootloader area. Only increments of 0x400 are allowed
because of the granularity of the MPU (Memory Protection Unit).
-dual_image = Optional parameter. If defined, linker files for dual-image support are generated, with
separate download and application areas.

-shared_vectors <number> = Optional parameter. Specifies the number of shared vectors (in
hex). If not specified, default value is 3 vectors.

Figure 14. Example Command

NOTE: A Perl interpreter is required to run this script. Visit http://www.perl.org/ to download an
interpreter if needed.

This script uses templates that are located in the same folder. These templates can be modified as
needed but they are required to run the script.

The software package includes a Windows .bat file that is used to generate the linker files for all
predefined projects and targets configurations. This file can also be used as a base for any further
customizations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.perl.org/

www.ti.com Demo Using FRAM LaunchPad Development Kit as Host

21SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

5 Demo Using FRAM LaunchPad Development Kit as Host
This software package includes projects and source code for a host device running on MSP-
EXP430FR5969, MSP-EXP430FR5994, and MSP-EXP430FR6989 LaunchPad development kits. Each
supports its own MSPBoot protocol with all target derivatives. As an example, the MSP-EXP430FR5969
supports MSP430FR5969 MSPBoot targets for either UART or CC110x communication for both single-
image or dual-image modes, and so forth. This can be tailored such that any LaunchPad development kit
host can be used to program any target MSP derivative with the proper MSP430FRBoot firmware.

5.1 Hardware
From the options described earlier, this demo uses FRAM LaunchPad development kits to connect to a
target of the same derivative. For UART communication, the eUSCI TXD and RXD lines need to be
connected in addition to ground. Make sure that the host TXD line is connected to the target RXD line,
and the host RXD line is connected to the target TXD line.

No wiring is required between the target and host devices when using CC110x communication. Simply
connect the CC1101EMK868-915 with BOOST-CCEMADAPTER or the 430BOOST-CC110L to the
corresponding LaunchPad development kit or device pins to complete the setup. Make sure that the
BoosterPack plug-in modules are correctly oriented on the LaunchPad development kit boards.

Table 9 lists the specific eUSCI peripheral used for each MSP device and communication type.

Table 9. eUSCI Peripheral Connections

CI Pin
MSP Derivative

MSP430FR5969 MSP430FR5994 MSP430FR6989

UART
RXD P2.6/UCA1RXD P6.1/UCA3RXD P4.3/UCA0RXD
TXD P2.5/UCA1TXD P6.0/UCA3TXD P4.2/UCA0TXD
GND

SPI (CC110x)

MISO P1.7/UCB0SOMI P5.1/UCB1SOMI P1.7/UCB0SOMI
MOSI P1.6/UCB0SIMO P5.0/UCB1SIMO P1.6/UCB0SIMO
CLK P2.2/UCB0CLK P5.2/UCB1CLK P1.4/UCB0CLK
SS P3.0 P4.4 P1.5

5.2 Building the Host Project
The host project can be built following the next steps:
1. Import the project to CCS. The project files are located in MSPBoot\Host\ <host>\CCS, where <host>

is the variant of the LaunchPad development kit (MSP-EXP430FR5969, MSP-EXP430FR5994, or
MSP-EXP430FR6989).

2. Select the target derivative. This can be selected using the different target configurations in CCS (see
Figure 15).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

Demo Using FRAM LaunchPad Development Kit as Host www.ti.com

22 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

Figure 15. Target Selection for Host Project in CCS

3. Build and download the application. Only the host LaunchPad development kit should be connected to
the PC at this time to avoid FET target confusion in CCS.

This project uses Application images located in the following folder:
MSPBoot\Host\<host>\Src\TargetApps

Prebuilt images are included, but target Applications can be replaced or updated by following the
procedure described in Section 4.3.1 and Section 4.3.2.

5.3 Running the Demo
The host LaunchPad development kit project sends two different images to the target device, using a push
button for user interaction. USB connection to a computer is not required on either LaunchPad
development kit to run the demo; however, each kit should be powered either by a USB connection
through the eZ-FET or with a steady 3.3-V external power supply to the VCC and GND pins (ensure that
the eZ-FET is disconnected in this instance). Because both the host and target LaunchPad development
kits are of the same derivative, it might be helpful to label each board accordingly to avoid confusion. The
demo is run using these steps, regardless of communication type or image mode used:
1. Build and download MSPBoot as described in Section 4.3.1, and build App1 and App2.
2. Convert App1 and App2 according to Section 4.3.2.

NOTE: Batch file PrepareCCSOutput_[FR derivative].bat shows how to convert to C and copy the
output files. In this host implementation, the MSP430 MCU holds the target image without
CRC, so it calculates the CRC value assuming that unimplemented locations are 0xFF.

3. Build and download the host application as described in Section 5.2.
4. Connect the boards according to the desired communication type (UART as described in Section 5.1

or one of the CC110x solutions described in Section 4.2).
5. Reset and execute code in both devices.
6. To enter the target bootloader mode (indicated by both LED1 and LED2 remaining on):

(a) If the target does not have a valid application (default), the target stays in bootloader mode.
(b) Bootloader mode can be forced in hardware by pressing and holding the S2 button on the target

device while pressing and releasing the reset button.
(c) If running an application:

(i) APP1 jumps to bootloader mode when the S2 button is pressed on the target device.
(ii) APP2 jumps to bootloader mode when it receives the Force Boot command (supported only if

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

www.ti.com References

23SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for
MSP430™ FRAM Large Memory Model Devices

CI PHY-DL is shared).
7. Press the S1 button on the host board. The host device performs the following sequence of

commands:
(a) Toggles LED1 twice.
(b) Sends “Force Boot” command (0xAA).

(i) If the target device is already in bootloader mode, it discards the packet, because the CRC is
incorrect.

(ii) If the target is running APP2, the target device enters bootloader mode.
(c) Requests the bootloader version (sends the TX_VERSION command).

(i) If the target response is 0xA0 (expected from BSL protocol), the host continues.
(ii) If the target response is any other value, the host aborts transaction.

(d) Erases the target application area (sends the ERASE_APP command).
(e) Sends APP1 (uses the RX_DATA_BLOCK commands).
(f) Programs CRC of APP1 (uses the RX_DATA_BLOCK command).
(g) Forces the target application to run (sends the JUMP2APP command).
(h) Toggles LED1 twice to indicate successful transfer, and keeps LED1 on to show that the host is

now ready to send APP2.
8. Target starts running APP1 upon completion of transfer.

(a) The target device blinks LED1.
(b) LED1 blinks at a periodic interval using the timer.
(c) Press the S2 button on the target board to enter bootloader mode.

9. With the target in bootloader mode, press S2 button on the host board to send APP2. When finished
and done toggling, LED1 of the host board stays off to indicate that APP1 is now ready to be sent.

10. Target starts running APP2 upon completion of transfer.
(a) The target device blinks LED2.
(b) Press the S2 button on the target board to toggle LED2.
(c) Because the CI is initialized, the host can send a Force Boot command to force bootloader mode in

the target device at the start of a new transfer sequence.
11. Press the S1 button on the host to start a new sequence sending APP1 again.

Dual-image mode contains a brief pause from the host after the transfer is complete while it validates the
download area, transfers the memory into the application space, and erases the download area after the
application area is validated by a CRC-CCITT check.

6 References
1. MSPBoot – Main Memory Bootloader for MSP430 Microcontrollers
2. MSP430FR57xx, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Bootloader

(BSL)
3. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide
4. CC1101 Low-Power Sub-1 GHz RF Transceiver

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A
http://www.ti.com/lit/pdf/SLAA600
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU550
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SWRS061

Revision History www.ti.com

24 SLAA721A–October 2016–Revised December 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from October 13, 2016 to December 20, 2016 ... Page

• Added new Byte2 column and renumbered following bytes in Table 5, BSL-Based Protocol Commands................... 12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA721A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	MSP430FRBoot – Main Memory Bootloader and Over-the-Air Updates for MSP430™ FRAM Large Memory Model Devices
	1 Introduction
	1.1 Glossary
	1.2 Conventions

	2 Implementation
	2.1 Main
	2.2 Application Manager
	2.2.1 Bootloader and Application Detection
	2.2.1.1 Forcing Bootloader Mode
	2.2.1.2 Application Validation
	2.2.1.3 Jumping to Application

	2.2.2 Memory Assignment
	2.2.3 Interrupt Vectors in FRAM Devices
	2.2.4 Dual Image Support
	2.2.4.1 Jump to Application in Dual Image Mode

	2.3 Memory Interface (MI)
	2.3.1 Dual Image Support

	2.4 Communication Interface (CI)
	2.4.1 Physical-DataLink (PHY-DL)
	2.4.1.1 UART
	2.4.1.2 SPI
	2.4.1.3 CC110x
	2.4.1.4 Comm Sharing

	2.4.2 NWK-APP
	2.4.2.1 BSL-Based Protocol

	3 Customization of MSP430FRBoot
	3.1 Predefined Customizations

	4 Building MSPBoot
	4.1 LaunchPad™ Development Kit Hardware
	4.2 CC110x Hardware
	4.3 Software
	4.3.1 Building the Target Software
	4.3.2 Convert Application Output Images
	4.3.3 Generating Linker Files

	5 Demo Using FRAM LaunchPad Development Kit as Host
	5.1 Hardware
	5.2 Building the Host Project
	5.3 Running the Demo

	6 References

	Revision History
	Important Notice

