Enhanced Product

FEATURES

Low input voltage noise: $1.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Low common-mode output: 0.9 V on single supply
Extremely low harmonic distortion
HD2/HD3: -104/-101 dBc at 10 MHz
HD2/HD3: -79/-82 dBc at 70 MHz
HD2/HD3: -73/-75 dBc at 100 MHz
High speed
-3 dB bandwidth: 1.35 GHz, G = 1
Slew rate: 3400 V/ $\mu \mathrm{s}$
0.1 dB gain flatness: 380 MHz

Fast overdrive recovery: 1.5 ns
Offset voltage: 0.5 mV typical

Externally adjustable gain

Differential-to-differential or single-ended-to-differential operation
Adjustable output common-mode voltage
Single-supply operation: 3.3 V or 5 V

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Extended temperature range: $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

ADC drivers

Single-ended-to-differential converters
IF and baseband gain blocks
Differential buffers
Line drivers

GENERAL DESCRIPTION

The ADA4930-1-EP is a very low noise, low distortion, high speed differential amplifier. It is an ideal choice for driving 1.8 V high performance ADCs with resolutions up to 14 bits from dc to 70 MHz . The adjustable output common-mode voltage setting allows the ADA4930-1-EP to match the input of the ADC for maximum dynamic range. The internal common-mode feedback loop provides exceptional output balance, suppression of evenorder harmonic distortion products, and dc level translation.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2. Voltage Noise Spectral Density
With the ADA4930-1-EP, differential gain configurations are easily realized with a simple external feedback network of four resistors determining the closed-loop gain of the amplifier.

The ADA4930-1-EP is fabricated using Analog Devices, Inc., proprietary silicon-germanium (SiGe), complementary bipolar process, enabling it to achieve very low levels of distortion with an input voltage noise of only $1.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$.
The low dc offset and excellent dynamic performance of the ADA4930-1-EP make it well suited for a wide variety of data acquisition and signal processing applications.

The ADA4930-1-EP is available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 16-lead LFCSP. The pinout has been optimized to facilitate printed circuit board (PCB) layout and minimize distortion. The ADA4930-1-EP is specified to operate over the $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range for 3.3 V or 5 V supply voltages.

Additional application and technical information can be found in the ADA4930-1/ADA4930-2 data sheet.

TABLE OF CONTENTS

Features .. 1

Enhanced Product Features ... 1
Applications... 1
General Description ... 1
Functional Block Diagrams... 1
Revision History .. 2
Specifications... 3
3.3 V Operation ... 3
3.3 V V осм to Vo, cm $^{\text {Performance ... } 4}$
3.3 V General Performance.. 4

5 V Operation .. 5

REVISION HISTORY

6/13—Rev. 0 to Rev. A

Changes to Ordering Guide ... 9
10/12-Revision 0: Initial Version
5 V Vocm to $\mathrm{V}_{\mathrm{o}, \mathrm{cm}}$ Performance 6
5 V General Performance. 6
Absolute Maximum Ratings 7
Thermal Resistance 7
Maximum Power Dissipation 7
ESD Caution 7
Pin Configuration and Function Descriptions 8
Outline Dimensions 9
Ordering Guide 9

SPECIFICATIONS

3.3 V OPERATION

$\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ICM}}=0.9 \mathrm{~V}, \mathrm{~V}_{\text {OCM }}=0.9 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=301 \Omega, \mathrm{R}_{\mathrm{G}}=301 \Omega, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=1 \mathrm{k} \Omega$, single-ended input, differential output, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}=-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Test Conditions/Comments \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
DYNAMIC PERFORMANCE \\
-3 dB Small Signal Bandwidth \\
-3 dB Large Signal Bandwidth \\
Bandwidth for 0.1 dB Flatness \\
Slew Rate \\
Settling Time to \(0.1 \%\) \\
Overdrive Recovery Time
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=0.1 \mathrm{~V} \text { p-p } \\
\& \mathrm{V}_{\mathrm{O}, \mathrm{dm}}=2 \mathrm{~V} \text { p-p } \\
\& \mathrm{V}_{\mathrm{O}, \mathrm{dm}}=0.1 \mathrm{~V} \text { p-p } \\
\& \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \text { step, } 25 \% \text { to } 75 \% \\
\& \mathrm{~V}_{\mathrm{O}, \mathrm{dm}}=2 \mathrm{~V} \text { step, } \mathrm{R}_{\mathrm{L}}=200 \Omega \\
\& \mathrm{G}=3, \mathrm{~V}_{\mathrm{IN}, \mathrm{dm}}=0.7 \mathrm{~V} \text { p-p pulse }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 1430 \\
\& 887 \\
\& 380 \\
\& 2877 \\
\& 6.3 \\
\& 1.5 \\
\& \hline
\end{aligned}
\] \& \& \begin{tabular}{l}
MHz \\
MHz \\
MHz \\
V/ \(\mu \mathrm{s}\) \\
ns \\
ns
\end{tabular} \\
\hline \begin{tabular}{l}
NOISE/HARMONIC PERFORMANCE HD2/HD3 \\
Third-Order IMD \\
Input Voltage Noise \\
Input Current Noise
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{fc}_{\mathrm{c}}=10 \mathrm{MHz}, \mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) \\
\(\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=30 \mathrm{MHz}, \mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) \\
\(\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=70 \mathrm{MHz}, \mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\) \\
\(\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{fc}=100 \mathrm{MHz}, \mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) \\
\(\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{~V}\) p-p/tone, \(\mathrm{f}_{\mathrm{c}}=70.05 \mathrm{MHz} \pm 0.05 \mathrm{MHz}\) \\
\(\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{~V} \mathrm{p}-\mathrm{p} /\) tone, \(\mathrm{f}_{\mathrm{c}}=140.05 \mathrm{MHz} \pm 0.05 \mathrm{MHz}\) \\
\(\mathrm{f}=100 \mathrm{kHz}\) \\
\(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {MAX }}\) \\
\(\mathrm{f}=100 \mathrm{kHz}\)
\end{tabular} \& \& \[
\begin{aligned}
\& -98 /-97 \\
\& -91 /-88 \\
\& -79 /-79 \\
\& -73 /-73 \\
\& 91 \\
\& 86 \\
\& 1.15 \\
\& 1.2 \\
\& 3
\end{aligned}
\] \& \& \begin{tabular}{l}
dBc \\
dBc \\
dBc \\
dBc \\
dBc \\
dBc \\
\(\mathrm{nV} / \sqrt{ } \mathrm{Hz}\) \\
\(\mathrm{nV} / \sqrt{ } \mathrm{Hz}\) \\
\(\mathrm{pA} / \sqrt{ } \mathrm{Hz}\)
\end{tabular} \\
\hline \begin{tabular}{l}
DC PERFORMANCE \\
Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Open-Loop Gain
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{IP}}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\) open circuit, \(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\) \(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) \\
\(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\) \\
\(R_{F}=R_{G}=10 \mathrm{k} \Omega, \Delta V_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\) open circuit \\
\(\mathrm{T}_{\text {MIN }}\) to \(\mathrm{T}_{\text {MAX }}\)
\end{tabular} \& \[
\begin{aligned}
\& -3.1 \\
\& -36 \\
\& -1.8
\end{aligned}
\] \& \[
\begin{aligned}
\& -0.5 \\
\& 2.75 \\
\& -24 \\
\& -0.05 \\
\& +0.1 \\
\& 64 \\
\& 61
\end{aligned}
\] \& \[
\begin{aligned}
\& +3.1 \\
\& -16 \\
\& +1.8
\end{aligned}
\] \& \begin{tabular}{l}
mV \\
\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A} /{ }^{\circ} \mathrm{C}\) \\
\(\mu \mathrm{A}\) \\
dB \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
INPUT CHARACTERISTICS \\
Input Common-Mode Voltage Range Input Resistance \\
Input Capacitance CMRR
\end{tabular} \& \begin{tabular}{l}
Differential \\
Common mode \\
Common mode \\
\(\Delta \mathrm{V}_{\mathrm{ICM}}=0.5 \mathrm{~V} \mathrm{dc} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=\) open circuit \\
\(\mathrm{T}_{\text {min }}\) to \(\mathrm{T}_{\text {max }}\)
\end{tabular} \& 0.3 \& \[
\begin{aligned}
\& 150 \\
\& 3 \\
\& 1 \\
\& -82 \\
\& -76 \\
\& \hline
\end{aligned}
\] \& 1.2

-77 \& | V |
| :--- |
| $\mathrm{k} \Omega$ |
| $\mathrm{M} \Omega$ |
| pF |
| dB |
| dB |

\hline | OUTPUT CHARACTERISTICS Output Voltage |
| :--- |
| Linear Output Current Output Balance Error | \& | Each single-ended output; $R_{F}=R_{G}=10 \mathrm{k} \Omega$ |
| :--- |
| Each single-ended output; $R_{F}=R_{G}=10 \mathrm{k} \Omega, T_{\text {MIN }}$ to $T_{\text {MAX }}$ |
| Each single-ended output; $f=1 \mathrm{MHz}, \mathrm{THD} \leq 60 \mathrm{dBc}$ $\mathrm{f}=1 \mathrm{MHz}$ | \& 0.11 \& \[

$$
\begin{aligned}
& 30 \\
& 55
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~mA} \\
& \mathrm{~dB}
\end{aligned}
$$
\]

\hline
\end{tabular}

3.3 V Vocm TO $_{\text {o, cm }}$ PERFORMANCE

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Vocm DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{o}, \mathrm{~cm}}=0.1 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{~cm}}=2 \mathrm{Vp}-\mathrm{p}, 25 \% \text { to } 75 \% \end{aligned}$		$\begin{aligned} & 745 \\ & 828 \end{aligned}$		MHz V/ $\mu \mathrm{s}$
Vocm INPUT CHARACTERISTICS Input Voltage Range Input Resistance Input Offset Voltage Input Voltage Noise Gain CMRR	$\begin{aligned} & V_{\mathrm{OS}, \mathrm{~cm}}=\mathrm{V}_{\mathrm{ocm}}-\mathrm{V}_{\mathrm{OCM}} ; \mathrm{V}_{\mathbb{P}}=\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\Delta \mathrm{V}_{\text {ocm }}=0.5 \mathrm{~V} \mathrm{dc} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{aligned} & 0.8 \\ & 7.0 \\ & -25 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 8.3 \\ & +15.4 \\ & 23.5 \\ & 1 \\ & 1.01 \\ & -83 \\ & -76 \end{aligned}$	1.1 10.3 +31 1.02 -77	V $\mathrm{k} \Omega$ mV $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ V/V V/V dB dB

3.3 V GENERAL PERFORMANCE

Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit			
POWER SUPPLY								
Operating Range			3.3		V			
Quiescent Current per Amplifier	Enabled	32	35	40	mA			
	Enabled, $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ variation		81		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$			
	Disabled	0.44	1.8	2.35	mA			
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		2.4		mA			
+PSRR	$\Delta V_{\text {ICM }}=0.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit		-74	-70	dB			
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		-68		dB			
-PSRR	$\Delta V_{I C M}=0.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit		-87	-76	dB			
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		-77		dB			
POWER-DOWN ($\overline{\text { PD }})$								
$\overline{\text { PD }}$ Input Voltage	Disabled	<0.8			V			
	Enabled	>1.3			V			
Turn-Off Time		1			$\mu \mathrm{s}$			
Turn-On Time		12			ns			
$\overline{\text { PD Pin Bias Current }}$								
Enabled				$\overline{\mathrm{PD}}=3.3 \mathrm{~V}$		0.09		$\mu \mathrm{A}$
Disabled	$\overline{\mathrm{PD}}=0 \mathrm{~V}$		97		$\mu \mathrm{A}$			
OPERATING TEMPERATURE RANGE		-55		+105	${ }^{\circ} \mathrm{C}$			

5 V OPERATION

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ICM}}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{OCM}}=0.9 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=301 \Omega, \mathrm{R}_{\mathrm{G}}=301 \Omega, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=1 \mathrm{k} \Omega$, single-ended input, differential output, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}=-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Small Signal Bandwidth -3 dB Large Signal Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% Overdrive Recovery Time	$\begin{aligned} & \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=0.1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{O}, \mathrm{dm}}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{O}, \mathrm{dm}}=0.1 \mathrm{~V} \text { p-p } \\ & \mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \text { step, } 25 \% \text { to } 75 \% \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \text { step, } \mathrm{R}_{\mathrm{L}}=200 \Omega \\ & \mathrm{G}=3, \mathrm{~V}_{\mathrm{IN}, \mathrm{dm}}=0.7 \mathrm{~V} \text { p-p pulse } \end{aligned}$		$\begin{aligned} & 1350 \\ & 937 \\ & 369 \\ & 3400 \\ & 6 \\ & 1.5 \end{aligned}$		MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE HD2/HD3 Third-Order IMD Input Voltage Noise Input Current Noise	$\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{fc}_{\mathrm{c}}=10 \mathrm{MHz}, \mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=30 \mathrm{MHz}, \mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=70 \mathrm{MHz}, \mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{f}_{\mathrm{c}}=100 \mathrm{MHz}, \mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{~V}$ p-p/tone, $\mathrm{f}_{\mathrm{c}}=70.05 \mathrm{MHz} \pm 0.05 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{o}, \mathrm{dm}}=1 \mathrm{~V}$ p-p/tone, $\mathrm{fc}=140.05 \mathrm{MHz} \pm 0.05 \mathrm{MHz}$ $\mathrm{f}=100 \mathrm{kHz}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{f}=100 \mathrm{kHz}$		$\begin{aligned} & -104 /-101 \\ & -91 /-93 \\ & -79 /-82 \\ & -73 /-75 \\ & 94 \\ & 90 \\ & 1.2 \\ & 1.3 \\ & 2.8 \end{aligned}$		dB dBc dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Open-Loop Gain	$\mathrm{V}_{\mathrm{IP}}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OCM }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ open circuit, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $R_{F}=R_{G}=10 \mathrm{k} \Omega, \Delta V_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ open circuit $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{aligned} & -3.1 \\ & -34 \\ & -0.82 \end{aligned}$	$\begin{aligned} & -0.15 \\ & 1.8 \\ & -23 \\ & -0.05 \\ & +0.1 \\ & 64 \\ & 61 \end{aligned}$	$\begin{aligned} & +3.1 \\ & -15 \\ & +0.82 \end{aligned}$	mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ dB dB
INPUT CHARACTERISTICS Input Common-Mode Voltage Range Input Resistance Input Capacitance CMRR	Differential Common mode Common mode $\Delta \mathrm{V}_{\mathrm{Icm}}=1 \mathrm{~V} \mathrm{dc} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	0.3	150 3 1 -82 -76	2.8 -77	V $\mathrm{k} \Omega$ $\mathrm{M} \Omega$ pF dB dB
OUTPUT CHARACTERISTICS Output Voltage Linear Output Current Output Balance Error	Each single-ended output; $R_{F}=R_{G}=10 \mathrm{k} \Omega, \mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Each single-ended output; $f=1 \mathrm{MHz}, \mathrm{TDH} \leq 60 \mathrm{dBc}$ $\mathrm{f}=1 \mathrm{MHz}$	0.18	$\begin{aligned} & 30 \\ & 55 \end{aligned}$	3.38	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$

5 V V ${ }_{\text {осм }}$ TO $\mathrm{V}_{\mathrm{o}, \text { см }}$ PERFORMANCE

Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Vocm DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{o}, \mathrm{~cm}}=0.1 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}, \mathrm{~cm}}=2 \mathrm{Vp}-\mathrm{p}, 25 \% \text { to } 75 \% \end{aligned}$		$\begin{aligned} & 740 \\ & 1224 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \hline \end{aligned}$
Vocm INPUT CHARACTERISTICS Input Voltage Range Input Resistance Input Offset Voltage Input Voltage Noise Gain CMRR	$\begin{aligned} & V_{\mathrm{os}, \mathrm{~cm}}=\mathrm{V}_{\mathrm{o}, \mathrm{~cm}}-\mathrm{V}_{\mathrm{OCM} ;} ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{ocm}}=0 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\Delta \mathrm{V}_{\text {OcM }}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	$\begin{aligned} & 0.5 \\ & 7.0 \\ & -25 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 8.3 \\ & +0.35 \\ & 23.5 \\ & 1 \\ & 1 \\ & -80 \\ & -76 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 10.2 \\ & +15 \\ & \\ & 1.02 \\ & \\ & -77 \end{aligned}$	V $\mathrm{k} \Omega$ mV $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ V/V V/V dB dB

5 V GENERAL PERFORMANCE

Table 6.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit			
POWER SUPPLY								
Operating Range			5		V			
Quiescent Current per Amplifier	Enabled	31.1	34	38.4	mA			
	Enabled, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ variation		74.5		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$			
	Disabled	0.45	1.8	2.6	mA			
	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		2.7		mA			
+PSRR	$\Delta V_{I C M}=1 \mathrm{~V}_{;} \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit		-74	-71	dB			
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		-70		dB			
-PSRR	$\Delta V_{I C M}=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=$ open circuit		-91	-75	dB			
	$\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}$		-78		dB			
POWER-DOWN ($\overline{\text { PD }})$								
$\overline{\text { PD Input Voltage }}$	Disabled	<2.5			V			
	Enabled	>3			V			
Turn-Off Time		1			$\mu \mathrm{s}$			
Turn-On Time		12			ns			
$\overline{\mathrm{PD}}$ Pin Bias Current								
Enabled				$\overline{\mathrm{PD}}=5 \mathrm{~V}$		0.09		$\mu \mathrm{A}$
Disabled	$\overline{\mathrm{PD}}=0 \mathrm{~V}$		97		$\mu \mathrm{A}$			
OPERATING TEMPERATURE RANGE		-55		+105	${ }^{\circ} \mathrm{C}$			

ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	Rating
Supply Voltage	5.5 V
Power Dissipation	See Figure 3
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {IA }}$ is specified for the device (including exposed pad) soldered to a high thermal conductivity 2 s 2 p circuit board, as described in EIA/JESD51-7.The $\theta_{\text {JA }}$ for the 16-Lead LFCSP(exposed pad) package is $81.6^{\circ} \mathrm{C} / \mathrm{W}$.

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation in the ADA4930-1-EP package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4930-1-EP. Exceeding a junction temperature of $150^{\circ} \mathrm{C}$ for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive. The quiescent power is the voltage between the supply pins (V_{s}) times the quiescent current $\left(\mathrm{I}_{\mathrm{s}}\right)$. The power dissipated due to the load drive depends on the particular application. The power due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. RMS voltages and currents must be used in these calculations.

Airflow increases heat dissipation, effectively reducing θ_{JA}. In addition, more metal directly in contact with the package leads/ exposed pad from metal traces, through holes, ground, and power planes reduces θ_{JA}.

Figure 3 shows the maximum safe power dissipation vs. the ambient temperature for the ADA4930-1-EP single 16-lead LFCSP $\left(81.6^{\circ} \mathrm{C} / \mathrm{W}\right)$ on a JEDEC standard 4-layer board.

Figure 3. Maximum Power Dissipation vs. Ambient Temperature, 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. EXPOSED PADDLE. THE EXPOSED PAD IS NOT

ELECTRICALLY CONNECTED TO THE DEVICE. IT IS
TYPICALLY SOLDERED TO GROUND OR A POWER
PLANE ON THE PCB THAT IS THERMALLY CONDUCTIVE. 命
Figure 4. Pin Configuration
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	- FB	Negative Output for Feedback Component Connection.
2	+ IN	Positive Input Summing Node.
3	- IN	Negative Input Summing Node.
4	+ FB	Positive Output for Feedback Component Connection.
5 to 8	$+V_{S}$	Positive Supply Voltage.
9	Vocm	Output Common-Mode Voltage.
10	+OUT	Positive Output for Load Connection.
11	- OUT	Negative Output for Load Connection.
12	PD	Power-Down Pin.
13 to 16	$-V_{S}$	Negative Supply Voltage.
	EPAD	Exposed Paddle. The exposed pad is not electrically connected to the device. It is typically

Enhanced Product

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.
1
Figure 5. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-21)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADA4930-1SCPZ-EPR2	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16 -Lead LFCSP_WQ	$\mathrm{CP}-16-21$	250	H 2 X
ADA4930-1SCPZ-EPR7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$16-$ Lead LFCSP_WQ	CP-16-21	1,500	H 2 X
ADA4930-1SCPZ-EPRL	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16 -Lead LFCSP_WQ	CP-16-21	5,000	H 2 X

[^0]NOTES

Enhanced Product	ADA4930-1-EP

NOTES

NOTES

[^0]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

