

High Voltage, Latch-Up Proof, Triple SPDT Switches

Data Sheet ADG5433W

FEATURES

Qualified for automotive applications Fully specified at $\pm 12 \, \text{V}$, $\pm 36 \, \text{V}$, $\pm 15 \, \text{V}$, and $\pm 20 \, \text{V}$ Latch-up proof Low on resistance (13.5 Ω) 9 V to 40 V single-supply operation $\pm 9 \, \text{V}$ to $\pm 22 \, \text{V}$ dual-supply operation VSS to VDD analog signal range Human body model (HBM) ESD rating: 8 kV

APPLICATIONS

Relay replacement
Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

GENERAL DESCRIPTION

The ADG5433W is a monolithic industrial CMOS analog switch comprising three independently selectable single-pole, double-throw (SPDT) switches.

All channels exhibit break-before-make switching action that prevents momentary shorting when switching channels. An $\overline{\rm EN}$ input on the ADG5433W (TSSOP package) is used to enable or disable the device. When disabled, all channels are switched off.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical.

FUNCTIONAL BLOCK DIAGRAM

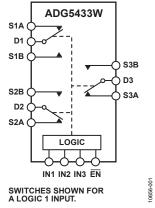


Figure 1.

PRODUCT HIGHLIGHTS

- Trench Isolation Guards Against Latch-Up.
 A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
- Low R_{ON}.
- Dual-Supply Operation.
 For applications where the analog signal is bipolar, the ADG5433W can be operated from dual supplies up to ±22 V.
- Single-Supply Operation.
 For applications where the analog signal is unipolar, the ADG5433W can be operated from a single-rail power supply up to 40 V.
- 5. 3 V logic compatible digital inputs: V_{INH} = 2.0 V, V_{INL} = 0.8 V.
- 6. No V_L logic power supply required.

TABLE OF CONTENTS

Features	. 1
Applications	
Functional Block Diagram	
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
±15 V Dual Supply	. 3
±20 V Dual Supply	. 4
12 V Single Supply	. 5
36 V Single Supply	. 6
Continuous Current per Channel, Sx or Dx	. 7

Absolute Maximum Ratings	•••
ESD Caution	
Pin Configuration and Function Descriptions	9
Typical Performance Characteristics	1(
Test Circuits	1
Terminology	10
Trench Isolation	1′
Applications Information	18
Outline Dimensions	19
Ordering Guide	19
Automotive Products	10

REVISION HISTORY

4/13—Revision A: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	Min	Typ ¹	Max	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$V_{\text{DD}} \ to \ V_{\text{SS}}$	V	
On Resistance, Ron		13.5	22	Ω	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}, V_{DD} = +13.5 \text{ V}, V_{SS} =$
					–13.5 V; see Figure 23
On-Resistance Match Between		0.3	1.4	Ω	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
Channels, ∆R _{ON}		1.0	2		V .10VI 10 A
On-Resistance Flatness, R _{FLAT (ON)}		1.8	3	Ω	$V_s = \pm 10 \text{ V}, I_s = -10 \text{ mA}$
LEAKAGE CURRENTS		. 0.05	. 10		$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)		±0.05	±10	nA	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 22}$
Drain Off Leakage, I _D (Off)		±0.1	±30	nA	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 22}$
Channel On Leakage, I _D (On), I _S (On)		±0.1	±30	nA	$V_S = V_D = \pm 10 \text{ V}$; see Figure 22
DIGITAL INPUTS					
Input High Voltage, V _{INH}	2.0			V	
Input Low Voltage, V _{INL}			0.8	V	
Input Current, I _{INL} or I _{INH}		0.002		μΑ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μΑ	
Digital Input Capacitance, C _{IN}		6		pF	
DYNAMIC CHARACTERISTICS ²					
Transition Time, trransition		157	272	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$
ton (EN)		160	274	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$; see Figure 30
t _{OFF} (EN)		91	140	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$; see Figure 30
Break-Before-Make Time Delay, t _D	21	45		ns	$R_L = 300 \Omega$, $C_L = 35 p$, $FV_{S1} = V_{S2} = 10 V$; see Figure 29
Charge Injection, Q _{INJ}		130		рС	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 31
Off Isolation		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Channel-to-Channel Crosstalk		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 24
Total Harmonic Distortion + Noise		0.01		%	$R_L = 1 \text{ k}\Omega$, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 26
–3 dB Bandwidth		145		MHz	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
Insertion Loss		-0.9		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
C _s (Off)		14		рF	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)		24		рF	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)		53		pF	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}		45	70	μΑ	Digital inputs = 0 V or V _{DD}
I _{SS}		0.001	1	μΑ	Digital inputs = 0 V or V _{DD}
V_{DD}/V_{SS}	±9		±22	V	GND = 0 V

 $^{^1}$ Typical specifications represent average readings at 25°C. 2 Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	Min	Typ¹	Max	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{ON}		12.5	21	Ω	$V_S = \pm 15 \text{ V}, I_S = -10 \text{ mA}, V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}; see Figure 23$
On-Resistance Match Between Channels, ΔR_{ON}		0.3	1.4	Ω	$V_S = \pm 15 \text{ V, } I_S = -10 \text{ mA}$
On-Resistance Flatness, RFLAT (ON)		2.3	3.5	Ω	$V_S = \pm 15 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)		±0.05	±10	nA	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 22}$
Drain Off Leakage, I _D (Off)		±0.1	±30	nA	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 22}$
Channel On Leakage, I_D (On), I_S (On)		±0.1	±30	nA	$V_S = V_D = \pm 15 \text{ V}$; see Figure 22
DIGITAL INPUTS					
Input High Voltage, V _{INH}	2.0			V	
Input Low Voltage, V _{INL}			0.8	V	
Input Current, I _{INL} or I _{INH}		0.002		μΑ	$V_{IN} = V_{GND}$ or V_{DD}
			±0.1	μΑ	
Digital Input Capacitance, C _{IN}		6		рF	
DYNAMIC CHARACTERISTICS ²					
Transition Time, transition		150	253	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$
t _{on} (EN)		152	253	ns	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 10 \text{V}$; see Figure 30
$t_{OFF}(\overline{EN})$		90	130	ns	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 10 \text{V}$; see Figure 30
Break-Before-Make Time Delay, t _D	17	36		ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 10 V$; see Figure 29
Charge Injection, Q _{INJ}		176		рC	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 31}$
Off Isolation		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Channel-to-Channel Crosstalk		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 24
Total Harmonic Distortion + Noise		0.012		%	$R_L = 1 \text{ k}\Omega$, 20 V p-p, f = 20 Hz to 20 kHz; see Figure 26
–3 dB Bandwidth		140		MHz	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
Insertion Loss		-0.8		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
C _s (Off)		15		рF	$V_{S} = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)		23		pF	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)		52		pF	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I _{DD}		50		μΑ	Digital inputs = 0 V or V _{DD}
		70	110	μA	
I _{SS}		0.001		μA	Digital inputs = 0 V or V _{DD}
			1	μA	
V_{DD}/V_{SS}	±9		±22	V	GND = 0 V

¹ Typical specifications represent average readings at 25°C. ² Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	Min	Typ¹	Max	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0VtoV_{DD}$	V	
On Resistance, R _{ON}		26	42	Ω	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA, } V_{DD} = 10.8 \text{ V, } V_{SS}$ = 0 V; see Figure 23
On-Resistance Match Between Channels, ΔR_{ON}		0.3	1.6	Ω	$V_s = 0 \text{ V to } 10 \text{ V, } I_s = -10 \text{ mA}$
On-Resistance Flatness, R _{FLAT (ON)}		5.5	12	Ω	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)		±0.05	±10	nA	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
Drain Off Leakage, I _D (Off)		±0.1	±30	nA	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
Channel On Leakage, I _D (On), I _S (On)		±0.1	±30	nA	$V_S = V_D = 1 \text{ V}/10 \text{ V}$; see Figure 22
DIGITAL INPUTS					
Input High Voltage, V _{INH}	2.0			V	
Input Low Voltage, V _{INL}			0.8	V	
Input Current, I _{INL} or I _{INH}		0.002		μΑ	$V_{IN} = V_{GND}$ or V_{DD}
·			±0.1	μΑ	
Digital Input Capacitance, C _{IN}		6		pF	
DYNAMIC CHARACTERISTICS ²					
Transition Time, transition		220	400	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$
ton (EN)		228	426	ns	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 8 \text{V}$; see Figure 30
t _{OFF} (EN)		90	151	ns	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 8 \text{V}$; see Figure 30
Break-Before-Make Time Delay, t _D	54	106		ns	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$, $V_{S1} = V_{S2} = 8 \ V$; see Figure 29
Charge Injection, Q _{INJ}		60		рС	$V_S = 6 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 31
Off Isolation		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Channel-to-Channel Crosstalk		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 24
Total Harmonic Distortion + Noise		0.1		%	$R_L = 1 \text{ k}\Omega$, 6 V p-p, f = 20 Hz to 20 kHz; see Figure 26
–3 dB Bandwidth		150		MHz	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27
Insertion Loss		-0.8		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
C _s (Off)		18		рF	$V_S = 6 V, f = 1 MHz$
C _D (Off)		28		pF	$V_S = 6 V, f = 1 MHz$
C_D (On), C_S (On)		54		pF	$V_S = 6 V, f = 1 MHz$
POWER REQUIREMENTS					V _{DD} = 13.2 V
I _{DD}		40		μΑ	Digital inputs = 0 V or V _{DD}
		50	65	μA	
V_{DD}	9		40	V	$GND = 0 V, V_{SS} = 0 V$

 $^{^1}$ Typical specifications represent average readings at 25°C. 2 Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	Min	Typ ¹	Max	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			$0VtoV_{DD}$	V		
On Resistance, R _{ON}		14.5	23	Ω	$V_S = 0 \text{ V to } 30 \text{ V}, I_S = -10 \text{ mA}, V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}; \text{ see Figure 23}$	
On-Resistance Match Between Channels, ΔR_{ON}		0.3	1.4	Ω	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA}$	
On-Resistance Flatness, R _{FLAT (ON)}		3.5	6.5	Ω	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -10 \text{ mA}$	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$	
Source Off Leakage, Is (Off)		±0.05	±10	nA	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}; \text{ see Figure 22}$	
Drain Off Leakage, I _D (Off)		±0.1	±30	nA	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}; \text{ see Figure 22}$	
Channel On Leakage, I _D (On), I _S (On)		±0.1	±30	nA	$V_S = V_D = 1 \text{ V}/30 \text{ V}$; see Figure 22	
DIGITAL INPUTS						
Input High Voltage, V _{INH}	2.0			V		
Input Low Voltage, VINL			0.8	V		
Input Current, I _{INL} or I _{INH}		0.002		μΑ	$V_{IN} = V_{GND}$ or V_{DD}	
			±0.1	μA		
Digital Input Capacitance, C _{IN}		6		рF		
DYNAMIC CHARACTERISTICS ²						
Transition Time, transition		180	289	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 18 V$	
t _{on} (EN)		176	268	ns	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 18 \text{V}$; see Figure 30	
t_{OFF} (\overline{EN})		98	129	ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 18 V$; see Figure 30	
Break-Before-Make Time Delay, t_{D}	21	50		ns	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 18 V$; see Figure 29	
Charge Injection, Q _{INJ}		150		рC	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 31}$	
Off Isolation		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25	
Channel-to-Channel Crosstalk		-60		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 24	
Total Harmonic Distortion + Noise		0.4		%	$R_L = 1 \text{ k}\Omega$, 18 V p-p, $f = 20 \text{ Hz}$ to 20 kHz; see Figure 26	
–3 dB Bandwidth		135		MHz	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 27	
Insertion Loss		-1		dB	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27	
C _s (Off)		18		рF	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$	
C _D (Off)		28		pF	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$	
C_D (On), C_S (On)		46		рF	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$	
POWER REQUIREMENTS					V _{DD} = 39.6 V	
I_{DD}		80		μΑ	Digital inputs = 0 V or V _{DD}	
		100	130	μΑ		
V_{DD}	9		40	V	$GND = 0 V, V_{SS} = 0 V$	

 $^{^1}$ Typical specifications represent average readings at 25°C. 2 Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5.

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$	80	58	36	mA maximum
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$	85	63	39	mA maximum
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$	63	45	28	mA maximum
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$	83	60	37	mA maximum

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V _{SS} to GND	+0.3 V to -48 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Digital Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, Sx or Dx Pins	280 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or Dx ²	Data + 15%
Temperature Range	
Operating	−40°C to +125°C
Storage	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	112.6°C/W
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

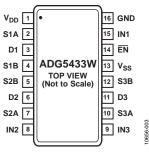


Figure 2. Pin Configuration

Table 7. Pin Function Descriptions

	I ·	
Pin No.	Mnemonic	Description
1	V_{DD}	Most Positive Power Supply Potential.
2	S1A	Source Terminal 1A. This pin can be an input or an output.
3	D1	Drain Terminal 1. This pin can be an input or an output.
4	S1B	Source Terminal 1B. This pin can be an input or an output.
5	S2B	Source Terminal 2B. This pin can be an input or an output.
6	D2	Drain Terminal 2. This pin can be an input or an output.
7	S2A	Source Terminal 2A. This pin can be an input or an output.
8	IN2	Logic Control Input 2.
9	IN3	Logic Control Input 3.
10	S3A	Source Terminal 3A. This pin can be an input or an output.
11	D3	Drain Terminal 3. This pin can be an input or an output.
12	S3B	Source Terminal 3B. This pin can be an input or an output.
13	V_{SS}	Most Negative Power Supply Potential. In single-supply applications, this pin must be connected to ground.
14	EN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, the INx logic inputs determine the on switches.
15	IN1	Logic Control Input 1.
16	GND	Ground (0 V) Reference.

Table 8. Truth Table

EN	INx	SxA	SxB
1	X ¹	Off	Off
0	0	Off	On
0	1	On	Off

 $^{^{1}}$ X = don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

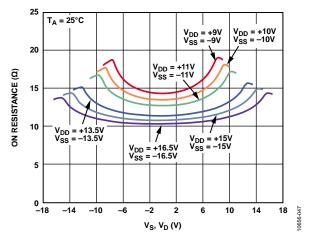


Figure 3. On Resistance as a Function of V_S , V_D (Dual Supply)

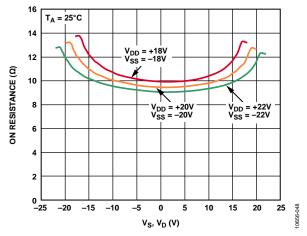


Figure 4. On Resistance as a Function of V_S , V_D (Dual Supply)

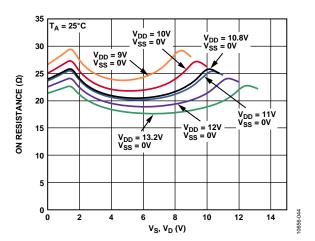


Figure 5. On Resistance as a Function of V_S , V_D (Single Supply)

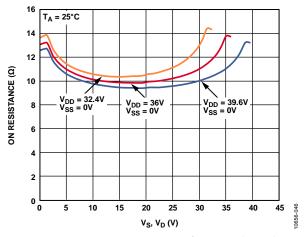


Figure 6. On Resistance as a Function of V_S , V_D (Single Supply)

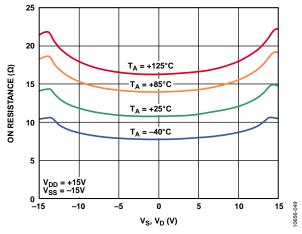


Figure 7. On Resistance as a Function of $V_S(V_D)$ for Different Temperatures, ± 15 V Dual Supply

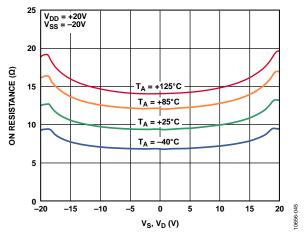


Figure 8. On Resistance as a Function of V_5 (V_0) for Different Temperatures, ± 20 V Dual Supply

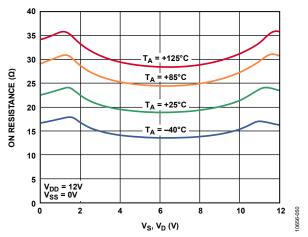


Figure 9. On Resistance as a Function of V_{S} (V_{D}) for Different Temperatures, 12 V Single Supply

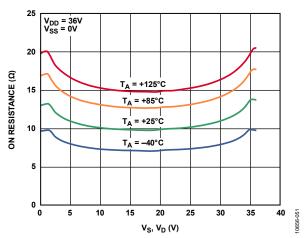


Figure 10. On Resistance as a Function of V_S (V_D) for Different Temperatures, 36 V Single Supply

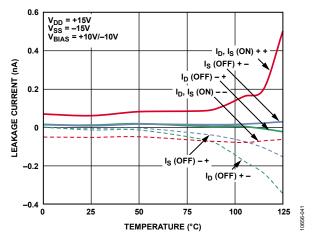


Figure 11. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

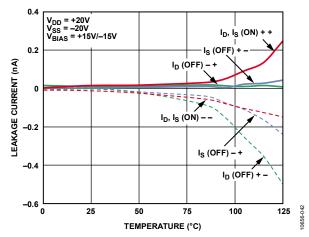


Figure 12. Leakage Currents as a Function of Temperature, ±20 V Dual Supply

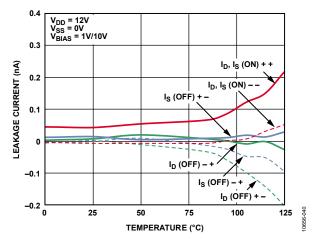


Figure 13. Leakage Currents as a Function of Temperature, 12 V Single Supply

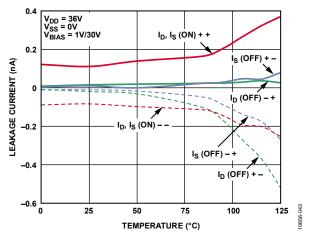


Figure 14. Leakage Currents as a Function of Temperature, 36 V Single Supply

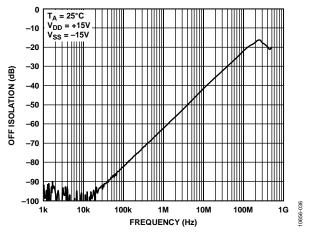


Figure 15. Off Isolation vs. Frequency

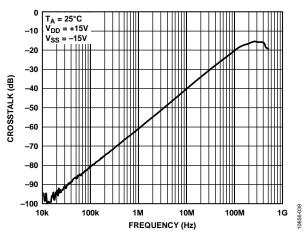


Figure 16. Crosstalk vs. Frequency

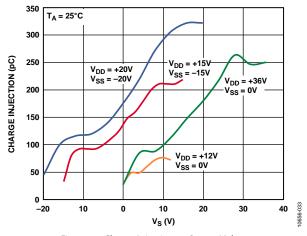


Figure 17. Charge Injection vs. Source Voltage

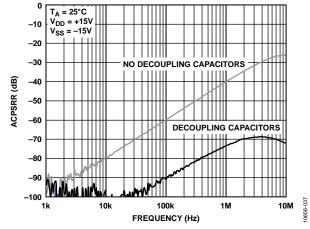


Figure 18. ACPSRR vs. Frequency

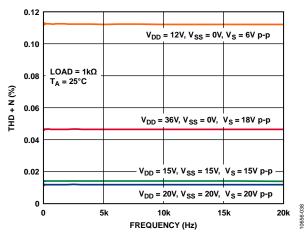


Figure 19. THD + N vs. Frequency

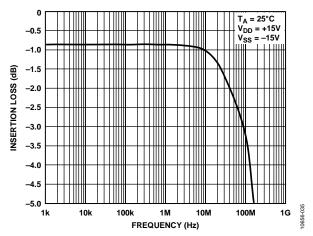


Figure 20. Bandwidth

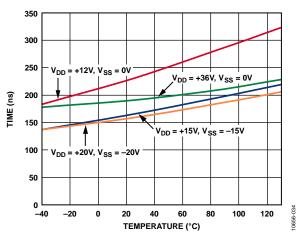


Figure 21. t_{TRANSITION} Times vs. Temperature

TEST CIRCUITS

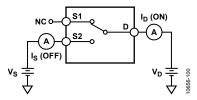


Figure 22. On and Off Leakage

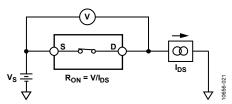


Figure 23. On Resistance

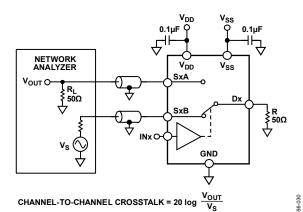


Figure 24. Channel-to-Channel Crosstalk

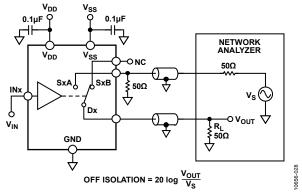


Figure 25. Off Isolation

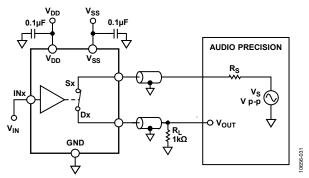


Figure 26. THD + Noise

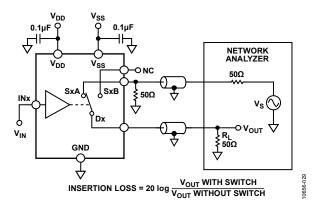


Figure 27. Bandwidth

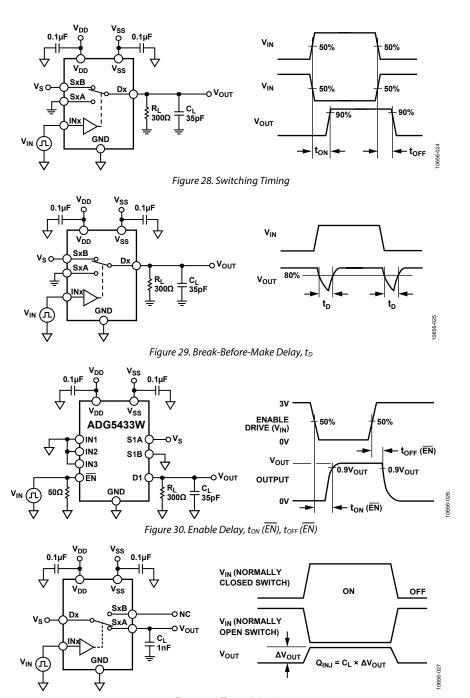


Figure 31. Charge Injection

TERMINOLOGY

I_{DD}

 I_{DD} represents the positive supply current.

Iss

Iss represents the negative supply current.

V_D, V_S

 V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.

Rox

 R_{ON} is the ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT} (ON)

The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $R_{\rm FLAT\,(ON)}$.

Is (Off)

Is (Off) is the source leakage current with the switch off.

ID (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{\rm D}$ (On) and $I_{\rm S}$ (On) represent the channel leakage currents with the switch on.

\mathbf{V}_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

IINL, IINH

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

C_D (Off)

 C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

C_s (Off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 $C_D\left(On\right)$ and $C_S\left(On\right)$ represent on switch capacitances, which are measured with reference to ground.

C_{IN}

C_{IN} represents digital input capacitance.

$t_{ON}(\overline{EN})$

 $t_{\rm ON}$ (EN) represents the delay time between the 50% and 90% points of the digital input and switch on condition.

$t_{OFF}(\overline{EN})$

t_{OFF} (EN) represents the delay time between the 50% and 90% points of the digital input and switch off condition.

ttransition

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

tı

 $t_{\rm D}$ represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

On Response

On response is the frequency response of the on switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD + N.

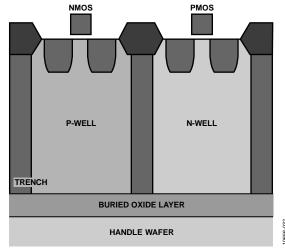
AC Power Supply Rejection Ratio (ACPSRR)

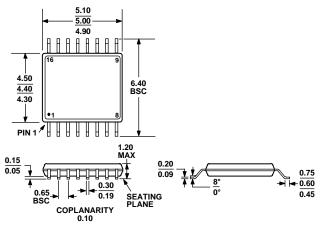
ACPSRR is a measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TRENCH ISOLATION

In the ADG5433W, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.




Figure 32. Trench Isolation

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5433W high voltage switch allows single-supply operation

from 9 V to 40 V and dual supply operation from ± 9 V to ± 22 V. The ADG5433W (as well as other select devices within this family) achieves 8 kV human body model ESD ratings, which provide a robust solution eliminating the need for separate protect circuitry designs in some applications.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 33. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Description	Package Option
ADG5433WBRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5433WBRUZ-REEL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADG5433W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

² W = Qualified for Automotive Applications.

NOTES