FEATURES

Ultrawideband frequency range: $\mathbf{1 0 0} \mathbf{~ M H z}$ to $\mathbf{4 0} \mathbf{~ G H z}$
Reflective design
Low insertion loss: 1.5 dB at $\mathbf{4 0} \mathbf{~ G H z}$
High isolation: $\mathbf{3 7} \mathbf{~ d B}$ at 40 GHz
High input linearity
1 dB compression (P1dB): 29.4 dBm typical
Third-order intercept (IP3): 50 dBm typical
High power handling: $\mathbf{2 7} \mathbf{~ d B m}$ through path
ESD sensitivity: TBD
No low frequency spurious
RF settling time (0.1 dB final RF output): TBD

APPLICATIONS

Test instrumentation

Military radios, radars, electronic counter measures (ECMs) Cellular infrastructure

GENERAL DESCRIPTION

The ADRF5024 is a general-purpose, single-pole, double-throw (SPDT) switch manufactured using a silicon process. It comes in a $2.25 \mathrm{~mm} \times 2.25 \mathrm{~mm}, 12$-lead land grid array (LGA) package and provides high isolation and low insertion loss from 100 MHz to 40 GHz .

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

This broadband switch requires dual supply voltages, +3.3 V and -3.3 V, and provides CMOS/LVTTL logic-compatible control.

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION \square

Data Sheet

- ADRF5024: Silicon SPDT Switch 100 MHz to 40 GHz Data Sheet

DESIGN RESOURCES

- ADRF5024 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADRF5024 EngineerZone Discussions.
SAMPLE AND BUY \square
Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features .1
Applications 1
Functional Block Diagram 1
General Description 1
Specifications. 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions. 5
Interface Schematics 5
Typical Performance Charcteristics 6
Insertion Loss, Return Loss, and Isolation 6
Typical Performance Charcteristics 7
Input Power Compression and Third Order Intercept 7
Theory of Operation 8
Outline Dimensions 9

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}, 50 \Omega$ system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE			100		40,000	MHz
INSERTION LOSS Between RFC and RF1/RF2 (On)		100 MHz to 10 GHz 10 GHz to 30 GHz 30 GHz to 40 GHz		$\begin{aligned} & 0.8 \\ & 1.3 \\ & 1.75 \end{aligned}$		dB dB dB
ISOLATION Between RFC and RF1/RF2 (Off)		100 MHz to 10 GHz 10 GHz to 30 GHz 30 GHz to 40 GHz		$\begin{aligned} & 45 \\ & 41 \\ & 37 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
RETURN LOSS RFC and RF1/RF2 (On)		100 MHz to 10 GHz 10 GHz to 30 GHz 30 GHz to 40 GHz		$\begin{aligned} & 27 \\ & 12 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
SWITCHING Rise and Fall Time On and Off Time Settling Time 0.1 dB 0.05 dB	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fall }}$ ton, toff	10% to 90% of RF output $50 \% \mathrm{~V}$ сть to 90% of RF output $50 \% \mathrm{~V}_{\text {ctL }}$ to 0.1 dB of final RF output 50% VCtL to 0.05 dB of final RF output		$\begin{aligned} & 2 \\ & 9 \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		ns ns ns
INPUT LINEARITY 1 dB Power Compression Third-Order Intercept	$\begin{aligned} & \mathrm{P} 1 \mathrm{~dB} \\ & \mathrm{IP} 3 \\ & \hline \end{aligned}$			$\begin{aligned} & 29.4 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
SUPPLY CURRENT Positive Supply Current Negative Supply Current	$\begin{aligned} & \mathrm{loD} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$	VDD, VSS pins		$\begin{aligned} & 14 \\ & 120 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
DIGITAL CONTROL INPUTS Voltage Low High Current Low and High	$\mathrm{V}_{\mathrm{INL}}$ $\mathrm{V}_{\mathrm{INH}}$ IINL, IINH	CTRL pin	$\begin{aligned} & 0 \\ & \text { TBD } \end{aligned}$	<1	$\begin{aligned} & \text { TBD } \\ & 3.3 \end{aligned}$	V V $\mu \mathrm{A}$
RECOMMENDED OPERATING CONDITONS Supply Voltage Positive Negative Digital Control Voltage RF Input Power Through Path Hot Switching Case Temperature	$V_{D D}$ $V_{s s}$ $V_{\text {cti }}$ Pin $\mathrm{T}_{\text {CASE }}$	$\mathrm{f}=100 \mathrm{MHz} \text { to } 40 \mathrm{GHz}, \mathrm{~T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ RF signal is applied to RFC or through connected RF1/RF2 RF signal is present at RFC while switching between RF1 and RF2	$\begin{aligned} & 3.15 \\ & -3.45 \\ & 0 \\ & \\ & \\ & -40 \end{aligned}$		$\begin{aligned} & 3.45 \\ & -3.15 \\ & V_{D D} \\ & 27 \\ & 27 \\ & +85 \end{aligned}$	V V V dBm dBm ${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Positive Supply Voltage	-0.5 V to +3.6 V
Negative Supply Voltage	-3.6 V to +0.5 V
Digital Control Input Voltage	-0.5 V to VDD +0.5 V
RF Input Power ($\mathrm{f}=100 \mathrm{MHz}$ to 40 GHz,	
\quad TCASE $=85^{\circ} \mathrm{C}$)	
Through Path	28 dBm
\quad Hot Switching	28 dBm
Temperature	
\quad Junction, T J	$135^{\circ} \mathrm{C}$
\quad Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad Reflow (MSL3 Rating)	$260^{\circ} \mathrm{C}$
Junction to Case Thermal Resistance, θ_{Jc}	
\quad Through Path	$\mathrm{TBD}{ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Sensitivity	
\quad Human Body Model (HBM)	TBD

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. THE EXPOSED PAD MUST BE CONNECTED TO THE RF/DC GROUND OF THE PRINTED CIRCUIT BOARD (PCB).

Figure 2. Pin Configuration (Top View)
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,3,4,6,10,12$	GND	Ground. These pins must be connected to the RF/dc ground of the printed circuit board (PCB).
2	RFC	RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc.
5	RF1	RF Throw Port 1. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is necessary when the RF line potential is equal to $0 \mathrm{~V} \mathrm{dc}$. Positive Supply Voltage Pin.
7	VDD	CTRL
8	Control Input.	
9	VSS	Negative Supply Voltage Pin. RF Throw Port 2. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF/dc ground of the printed circuit board (PCB).

INTERFACE SCHEMATICS

Figure 3. RF Pin Interface Schematic

Figure 4. Digital Pin Interface Schematic

TYPICAL PERFORMANCE CHARCTERISTICS INSERTION LOSS, RETURN LOSS, AND ISOLATION

TBD

TBD

TBD

TBD

Preliminary Technical Data

TYPICAL PERFORMANCE CHARCTERISTICS

INPUT POWER COMPRESSION AND THIRD ORDER INTERCEPT

TBD

THEORY OF OPERATION

The ADRF5024 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin. A driver is incorporated on die to perform logic functions internally and to provide the user with the advantage of a simplified control interface. The driver features a single digital control input pin, CTRL that controls the state of RF paths. Depending on the logic level applied to the CTRL pin, one RF path is in insertion loss state while the other path is in isolation state (see Table 4). The insertion loss path conducts the RF signal equally well in both directions between RF throw port and RF common port while the isolation path provides high loss between RF throw port and the insertion loss path. RF throw port becomes open reflective in off state.

Table 4. Control Voltage Truth Table

Digital Control Input	RF Paths	
V1	RF1 to RFC	RF2 to RFC
Low	Isolation (off)	Insertion loss (on)
High	Insertion loss (on)	Isolation (off)

The ideal power-up sequence is as follows:

1. Connect ground.
2. Power up VDD and VSS. The relative order is not important.
3. Power up the digital control inputs. The relative order of the logic control inputs is not important. However, powering the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures.
4. Apply an RF input signal. The design is bidirectional; the RF input signal can be applied to the RFC port while the RF throw ports are outputs or vice versa. All of the RF ports are dc-coupled to 0 V , and no dc blocking is required at the RF ports when the RF line potential is equal to 0 V .

OUTLINE DIMENSIONS

Figure 12-Terminal Land Grid Array [LGA]
$2.25 \mathrm{~mm} \times 2.25 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CC-12-3)
Dimensions shown in millimeters

